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The electron-diffusion Seebeck coefticient of metals and dilute alloys is investigated in a simple model
in which free electrons are scattered by phonons or by substitutional impurities bound in the lattice.
Second-order corrections to the T matrix for electron scattering involving intermediate virtual phonon
states are found to be of small magnitude but to have a very strong energy dependence. They thus
make a large contribution to the thermoelectric coefficients while leaving the conductivities essentially
unaltered. The pronounced temperature dependence of these second-order contributions allows an

interpretation of experimental results that relies less on the phonomenon of phonon drag then has
previously been the case.

l. INTRODUCTION

The thermoelectric effects in metals depend on
the electronic structure of the materials involved
in a manner sufficiently subtle to render their in-
terpretation difficult. In a Peltier experiment, for
example, an electric current flows through the
sample in the absence of a temperature gradient,
and the resulting heat current is measured. This
flow of thermal energy, however, is found' to be
limited to the small imbalance between the oppos-
ing heat currents carried by electrons with ener-
gies respectively greater than or less than the
chemical potential f. A further complication may
be added in the form of the heat current carried by
the phonons which have been scattered by the con-
duction electrons in the phenomenon known as pho-
non drag. Consequently, theoretical predictions
of thermoelectric coefficients depend on such deli-
cate quantities as the energy derivative of the
scattering of the electrons; they are frequently
highly dependent on the model chosen, since there
are few other experiments that can be called on to
justify any given value for the energy dependence
of electron scattering cross sections. In fact, it
is not merely the details of the scattering that dif-
fer in the various published calculations; the fun-
damental mechanisms giving rise to the energy de-
pendence of the scattering may be totally different.
One school of thought, ' for example, treats the
scattering as a single-particle problem and pro-
duces an energy-dependent scattering as a conse-
quence of the energy dependence of the pseudopo-
tentials of the scattering ions. The present au-
thors, on the other hand, have investigated4~ the
scattering as a many-particle problem, and have
found the effects of the electron-phonon interaction
to dominate the sign as well as the magnitude of the

thermoelectric effects.
In the present paper, a detailed discussion is

given of the effects reported briefly in Refs. 4-6.
In Sec. II the Boltzmann equation and vector mean
free path are briefly discussed, and then in Sec.
III the calculation of the scattering amplitude is
described. The effects of the second-order terms
in the scattering amplitude on the thermoelectric
effects in pure metals are evaluated in Sec. IV,
while Sec. V consists of the calculation of the ad-
ditional contributions to be expected in a dilute al-
loy, where virtual recoil of the solute atoms is
possible. The summary of these results, included
in the discussion in Sec. VI, is intended to be com-
prehensible without reference to the details of the
derivation.

II. THE BOLTZMANN EQUATION

Of the available formalisms for calculating
transport coefficients, we choose the simplest, and
consider the predictions of a solution for the Boltz-
mann equation. The reasons for this choice are
twofold. Firstly, we shall be working in second-
order perturbation theory, the range of validity of
which is, in some cases, related to that of the
Boltzmann equation itself. For example, the re-
duction of the Kubo formula to produce the Boltz-
mann equation breaks down when the ladder sum
contains crossed phonon lines; such terms are of
the fourth order in the electron-phonon interaction,
and it is thus consistent to ignore their effect in
the present calculation. Secondly, we wish to al-
low the possibility of exterjdiag the calculation to
anisotropic materials, for which the Boltzmann
equation alone presents a major computational ob-
stacle. ~ In the present paper, however, we confine
our attention to a free-electron model having a
spherical Fermi surf ace.
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Q v, ~ A5($ —8,) (2)

per fractional change in energy 8, evaluated at 8
= t; and with v, the electron velocity for wave num-
ber k, and with A, the vector mean free path'; in
the present paper a more delicate expression for
this quantity will be required in some instances.
It is common to write ( in the form

s inc(f)
9 in/ (3)

with o the conductivity for a metal with Fermi en-
ergy f. This would be inappropriate in the present
case, in which many-body effects are to be taken
into account. We shall, see that there are impor-
tant contributions to the scattering that are func-
tions of S,—t; the changes in expression (2} that
lead to corresponding contributions to S are then
found by studying the variation of A, with 8 sohile

f is kept fixed. Allowing g to vary with 8 would
lead to a spurious disappearance of these terms
from the final expression for S.

In the present calculation it will be possible for
the most part to write

3 Bins ~

(4)

with 7' ' the inverse relaxation time found from the
linearized Boltzmann equation, '

,' =Q Q(k, k')(& ') (1 —~ cos8„,}
The term equal to —,

' in Eq. (4) is characteristic of
the density of states of the free-electron system,
while in Eq. (5) the quantity Q(k, k') is the intrinsic
probability for an electron to be scattered from an
occupied state k to an empty one k', the probability
of occupation of a state k is f» and 8». is the angle
between k and k'. The fact that A is treated as a
scalar indicates that the assumption has been made
that the scattering is isotropic, so that Q(k, k') is
invariant under rotation of the crystal axes. Hav-
ing thus simplified the model to the greatest extent
that is profitable, we now turn to the core of the

The results of this approach are that the Seebeck
coefficient, or thermopower, S, is given' by the
expression

S=(L eT/()( .
Here Lo is v ks/3e, the free-electron Lorenz
number, k~ is Boltzmann's constant, T the abso-
lute temperature, e the electronic charge, and f
the chemical potential, equal to the Fermi energy
in this instance. The dimensionless parameter $
is customarily taken to be equal to the fractional
change in the quantity

problem and study the energy dependence of the
scattering.

III. THE SCATTERING PROBABILITY

Until a few years ago it was commonly assumed
that the exclusion principle could be ignored for the
intermediate state in second-order perturbation
calculations of the scattering of conduction elec-
trons. It was argued that any contribution from
scattering through occupied intermediate states
need not be included because another set of scat-
teri~ processes existed which exactly cancelled
these particular terms in the scattering amplitude.
In 1964 Kondo' pointed out that such a procedure
is invalid if the scatterer may exchange spin with
the scattered electron, as then the tyro terms in
second order that had been expected to cancel dif-
fer in that one term contains a product of spin
raising and lowering operators of the form S'S
while the other contains S S'. As these operators
do not commute, a term containing f;., the occu-
pancy of the intermediate state of the electron,
exists in the scattering probability, and the well
known resistance minimum results. " In general
terms, one may say that the Kondo effect occurs
because the scatterer possesses an internal degree
of freedom. It thus is reasonable to ask whether
the degrees of freedom of an ion that allow it to
participate in lattice vibrations might also have
measurable consequences in second-order scatter-
ing processes.

Another common practice has been the neglect
of the effects of the renormalization of vertices in
electron scattering processes that occurs when ad-
ditional electron-phonon interactions are included.
While the importance of such effects on the for-
ward-scattering amplitude (and hence on the elec-
tronic specific heat} have long been recognized, '
little note appears to have been taken of the correc-
tions caused to the general electron-scattering
probabilities. This is probably a consequence of
the smallness of the parameter m/M, the ratio of
the electron mass to the ion mass. However,
while it is perfectly true that the magnitude of the
scattering cross section may only be changed by a.

very small amount, the energy derivative of the
cross section may be radically altered. As we
shall in fact see, the fractional change in the ener-
gy derivative of the cross section is typically of the
order of (m/M ) ( Vt'/ks e'), with V a. parameter re-
lated to the ionic potential and k~O™ the Debye ener-
gy. Such corrections are at least significant, and
in many cases dominant.

For simplicity we consider a rigid-ion model of
a random substitutional alloy. The potential W(r)
acting on an electron is then

W(r) =Z V(r —l —y, )+ P U, (r —l —y, ), (6)
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where V(r) is the potential due to a single screened
solvent ion and U, vanishes at solvent-ion sites and
is equal to the difference between solute and sol-
vent potentials at the solute-ion sites, which are a
small fraction c of the total number of sites. The
displacements y, of the ions from their equilibrium
positions may be expressed in terms of the normal

modes of vibration of the lattice, which is assumed
to be of Bravais form. Equation (6) may then be
written in second-quantized form as

with

V=K c~R. c, V, , Nb, (K)+ iN"~ g b, (K+ q)(h/2M(d„) ' (K ~ S)(a„+a'„)
0» 0' q)s S

S(K 2 2')(K S)(K 2 )(2/'2M )FF(IF'/2M, )', ( „+ „)(2, , ~, , )+ )ge8eg yS

U= Z,', U, , (
RR (K)+ R"' Z R (K 2)'(IF/2MFF„) (K S)(„,)+ )a~s

The notation here is that of Ref. 1, Chap. 5, in
which c, annihilates an electron of wave number k
and a„annihilates a phonon of wave number q, po-
larization s, and frequency (d„. The ionic mass,
assumed equal for solvent and solute, is M; and

V& „and U» are, respectively, the Fourier trans-
form of the potential due to a single ion, and Fou-
rier transform of the difference between the poten-
tials due to solute and solvent ions; and K =k —k'.
The function R is defined as

R(K) N'ge' '-
with the sum proceeding only over solute sites,
while

(9)

~(K) =Z ~„,
with g the vectors of the reciprocal lattice.

When the scattering amplitude T p„-. between elec-
tron states is calculated to second order, a large
number of terms are obtained. Of these, we ignore
contributions from the terms in V that are of ze-
roth order in the phonon coordinates, as these will
merely change the electron wave functions from
plane waves to Bloch waves. A selection of the re-
maining terms of lowest order is illustrated in

Fig. 1, in which electrons are represented by
smooth lines, phonons by wavy lines, and scatter-
ing by the impurity potential by a vertex marked
with a cross. For brevity, no distinction is made
between phonon absorption or emission in this il-
lustration. We shall assume the resistivity to be
calculable from the diagrams shown in Figs. 1(a)
and 1(b) alone; this point has already been the sub-
ject of some discussion in the literature. " The
thermoelectric effects, on the other hand, require
the examination of terms of higher order, and in
particular of those terms of second order that add

l

coherently to terms of first order. As an example
we note diagrams like Figs. 1(c)-l(f), which may
represent the same net process as Fig. 1(a), and

Figs. 1(g)-1(1)which may be coherent with Fig.
l(b). It is permissible to neglect these terms in

calculating the resistivity because of an almost
complete cancellation that occurs between, for ex-
ample, the diagrams of Figs. 1(c) and 1(e). The
fact that the cancellation is not complete is due to
the energy of the phonon present in the intermedi-
ate state of the system; the small contribution that
does not cancel is found to be highly energy depen-
dent, and thus crucial in calculating the Seebeck
coeff icient.

IV. EFFECTS 1N PURE MATERIALS

We consider first inelastic scattering from the
pure-metal potential. V, and confine our attention
to those processes of which the net result is the

(o) (b)

(d} (e)

(i) (j) (&)

FEG. 1. Possible low-order scattering processes.
An electron {straight line) may be scattered by absorp-
tion or emission of a phonon {wavy line), by an impurity
(vertical dashed line), or by both simultaneously.
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scattering of an electron from k to k', and the cre-
ation or destruction of a single phonon of wave
number q and polarization s. In the second-order
terms we retain only those containing the Fermi
occupation function f;. of the intermediate electron

state k, and find

T= T +T'+ a

where

l/3 (g "U2
(k', n, +1 ~Tz" (k, n») = —f V»gq s( coth~ " +1

S 4f~ ~ k a
(10)

I/2
', n +1

~
&& ~k, n }= —4fN ~ V,.V. ..q' ~ s'(q-q') ~ s'(q —q') ~ s

4M(gp~~ 2M(a)~. ~.

- j./2
)~» ~e

(&» —&»„}'-(+~.~;)' "' . 247'

The upper (lower} signs are appropriate to those
processes in which a phonon of wave vector q is
emitted (absorbed}. The phonon system has been
assumed to be in equilibrium, and so the phenom-
enon of phonon drag will be absent from our re-
sults. The approximation is made that the energy
%o„of the real phonon that is absorbed or emitted
is small compared with that of the virtual phonon

q that is present in the intermediate state in dia-
grams like Figs. 1(d), 1(e), etc. This will be a
valid step at low temperatures, as Av„- k~ T,
while the principal contribution from virtual pho-
nons comes from those for which keg, ., -kae, the
Debye energy; at high temperatures the invalidity
of this particular approximation becomes irrele-
vant, as processes involving vi, rtual phonons then
make a negligible contribution.

To third order in V the probability Q'(k, k') for
an electron in the occupied state k to be inelasti-
cally scattered to the empty state k' is

q'(k, k') =—(~ r,"'~'+2aer,"' r,"')5($» —S» + &~,).
(12)

Here the simplifying assumption has been made
that v„ is independent of s. Substitution of Eqs.
(10)-(12) in Eq. (5) gives the energy-dependent re-
laxation time v&. We assume the magnitude A, of
the vector mean free path to be a slowly varying
function of energy, so that A». /A„=1 to order hu/f.
Further, the energy-conserving delta function in
Eq. (12}requires 8». = 8, + 5&A, so that if 8» = f, we
find

(1 —f» )/(1 —f~) = 1 v tanh(ff(o, /2ks 7') .
Equation (5) thus becomes

x5(g» —h». v Ry, ) . (13)

An average relaxation time of sufficient accuracy
to provide a value for the conductivity is found
from this expression in the usual way when terms
in T& are neglected. We assume here a simple
model in which V, is equal to some constant V and
the phonon spectrum is of isotropic Debye form
with characteristic temperature e. With N the
number of ions and N' the number of electrons,
one finds~4

1 32v(NVp m N T
T(f) 2 I k»e MN' 0

where

G„(&)=
l $"csch$d$ .

Dp
(15)

d 1 1 ( alnlVl 3
dg» 7, $»v ~( s Ing 2 (15)

which in the absence of other effects would, on
substitution in Eq. (4), yield the result

(17)

Electron-phonon umklapp processes have not been
included in this expression, as they increase con-
siderably the complexity of the calculation without
qualitatively changing the final result.

The energy derivative of the inverse relaxation
time is composed of the two parts that arise from
the terms in I 7', I and He T, T, in Eq. (13). The
first part is readily calculated with the aid of ap-
proximations similar to those used in deriving Eq.
(14). One finds a contribution of

—=Z —
(~ 1',"'~'+2Rer,""r,"')

~k

x [1v tanh(PE&, /2&s 7'H(1 —cos8»»'}

The second part, to which attention was first drawn
in Ref. 5, requires more careful consideration.
Combination of Eqs. (10), (11), and (13) yields a
contribution to the inverse relaxation time of
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Cza

x csch ' (1 —cos8».), z, „5(b,—b„,~ k&u, ),
8

when the same approximation of an isotropic Debye model is made for the phonon system. The summation
over q is easily performed; one finds

q' ~ (q-q')q (q-q') — '& (h. - h...)2M%(u~

where g is the cosine of the angle between q' and

k, and qL) is the Debye radius and k„ the Fermi ra-
dius,

The summation over q' is then seen to require
evaluation of a set of terms of the form

e'"n'f (&z" )
(&z- hz,. )'-(~~, )' '

These are most easily evaluated in the geometry
shown in Fig. 2, in which one coordinate is mea-
sured normal to the surfaces of constant electron
energy. To an adequate approximation we then find

( —I)'mQ
n1 21+2 zpzy1+1 ' ( I )

p g p

f(&z+ &)
X '

3 ] qdg .. Z, 8 —(q'kz8/q11)

At this point we note that the energy derivative
(s/sh, ) (I/r)z of the partial inverse relaxation time
found in this way may itself vary appreciably within
the thickness of the Fermi surface, and so Eq. (4)
ceases to be strictly accurate. It is then advan-
tageous to return to an earlier stage in the theory
of the thermolectric coefficients' to find that these
higher-order processes can be expected to contrib-
ute to the parameter $ an amount

(2o)
Substitution in Eq. (20) of Eqs. (14), (1S) and (19)
then yields

approaches —4z T'/38'p . In this limit, the inte-
grations over p are trivial and yield a correction
to $ that is temperature independent and of a mag-
nitude comparable to or greater than the previous-
ly accepted result given by Eq. (17).

At intermediate temperatures the results may be
written as

z 4'1(T/8) ~

gNV m
(22)

where the dimensionless function 4', (T/8) is shown
in Fig. 3 for various valences. Because the prod-
uct of constants multiplying 4, in Eq. (22) has a
magnitude of approximately unity and an inherently
negative sign (the potential due to an ion being at-
tractive), we find $ to contain a large negative con-
tribution at low temperatures from virtual multi-
phonon processes. Because these effects are at-
tenuated at higher temperatures, one find a posi-
tive hump to be added to the Seebeck coefficient S.
An example of this for a monovalent metal is shown
in Fig. 4, in which the plotted 8 is the sum of a
contribution from multiphonon processes and a neg-
ative linear term from the familiar effects de-
scribed by Eq. (17). It will not escape notice that
just such a form for the temperature dependence
of the Seebeck coefficient has frequently been ob-
served experimentaQy, and has usually been at-
tributed to the effects of phonon drag. A current
of phonons, however, would normally be expected
to sweep a current of electrons down the crystal
in its own direction, thus giving rise to a negative
hump in 8, and it has formerly been necessary to
invoke some very particular types of umklapp scat-
tering in order to explain humps that occur in a

tanhu
Z sech ZdZ

( )z (~/2T)z ds .
(21)

The integrals over z and u are evaluated in the Ap-
pendix, and yield a function that at low temperatures

FIG. 2. Geometry used
xn reducing Eq (].9)
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5" cesses is then calculated to be

2F
Q(k, k') = —CN5($« —$«)(%.A+ KB+ N, C) pt (23)

where

RA =
I U» -«I

2h 2

I.s = — ~ U««U««" U«" «(k' —k"}~ (k —k")
MN

I

0.5

t = T/8

}.0 }.5 k» i

(&»- h«")'-(~~, )' '

FIG. 3. Temperature dependence of the contribution
to the thermoelectric parameter $ of virtual phonons in
a pure metal for various values of the valence Z. The
temperature is measured in units of the Debye tempera-
ture O~.

positive direction. ' The recognized presence of
virtual multiphonon processes thus considerably
modifies the interpretation of experimental data.

V. EFFECTS IN ALLOYS

In a dilute substitutional alloy, the total thermo-
power will be the sum of contributions from a num-
ber of effects. In addition to the processes dis-
cussed in the previous section, there will also be
scattering at the impurity sites, and some of these
scattering events may be accompanied by the emis-
sion of a phonon as the impurity atom recoils. In
second order, the possibility of processes involv-
ing virtual phonons arises; it was in studying this
phenomenon of virtual recoil that the importance
of second-order phonon interactions to the thermo-
electric coefficients was first noticed.

The scattering processes involving impurity ions
may be either elastic or inelastic. The contribu-
tion of the inelastic scattering to the thermoelec-
tric coefficients will be negligible as a consequence
of the fact that the amplitudes for these processes
will not be coherent with either of the lowest-order
processes represented in Figs. 1(a) and 1(b).
While the process of Fig. 1(a}conserves wave
number and that of Fig. 1(b) conserves energy,
inelastic scattering at impurities will in general
conserve neither. Terms in the scattering prob-
ability involving virtual intermediate phonons can
thus only occur in higher order, and may be safely
neglected.

Second-order elastic scattering processes in-
volving virtual phonons will be of two kinds-those
involving repeated scattering at an impurity and
those involving one scattering at an impurity and
one by a wave-number-conserving phonon interac-
tion. The former are depicted in Figs. 1(g} and
1(h), while the latter are shown in Figs. 1(i)-l(1).
The total elastic scattering from all these pro-

4h
kc =

M ~U««l'«, «„U«„,«Ct (k'-k-4)
a

k+4f

(~«„-&«)' —(+~.)' '

The lowest-order term &A is sufficient for a
calculation of the partial inverse relaxation time
due to impurities, and one finds

5 81nj Ul
(24)

The contribution from the term &~, representing
double scattering at an impurity, may eventually
be reduced to the form

NUg m iV' -6 V', "8/2~"='(f.e)2 M ~
(25)

l.0-

0.5

FIG. 4. Typical form of the negative of the Seebeck
coefficient 8 to be expected in a pure meterial in the ab-
sence of phonon drag. Here $T/8, which is proportional
to -8, is plotted for the case where )=1-2@g(T/0) ina
monovalent metal.

when Ukk. is taken as constant and the Born approx-
imation assumed adequate. In the absence of in-
elastic scattering this would yield a thermopower
parameter $2 of magnitude
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where 4 (y) is the function discussed in the Appen-
dix. The expression in square brackets reduces
to unity in the limit of low temperatures. The con-
tribution from the term ~, representing mixed
scattering, is similarly found to be

Nvk (2N)"' —24 (T|f I'
~'4(r) e,

(26)
where again the expression in square brackets has
a low-temperature limit of unity.

At finite temperatures, the Seebeck coefficient
of an alloy will exhibit these effects as well as the
pure-material effects described in the previous
section. It is easily shown that the contribution of
each effect to the thermoelectric power is approxi-
mately proportional to its contribution to the re-
sistance; so if the impurity and lattice contribu-
tions to the resistivity are p& and p~ respectively,
one finds a resultant Seebeck parameter $ given by

PR((2 + ~hB + ~(C) + PT(51+ ~51)
pg+ pp

(27}

The various contributions here are those defined
in Eqs. (17), (21), (24), (25}, and (26).

VI. DISCUSSION

The most important feature of the correction
terms that we have calculated is their magnitude.
The ratio of the magnitudes of these correction
terms to those of the lowest-order terms (which
are the only ones considered in the standard works
on thermoelectric effects) is of order (m/M)(NVf/
k2s8~). The first factor is the ratio of the electron
mass to the ionic mass, and is indeed small, being
perhaps of order 10 5, a fact which no doubt ac-
counts for its previous neglect in the theory of
thermoelectric effects. The second factor, how-
ever, is of the order of the square of the ratio of
the Fermi energy to the Debye energy, and is suf-
ficiently large to compensate for the smallness of
the first factor, and yield a product of order unity.
It will thus be necessary to consider all the effects
that we have described in predicting the tempera-
ture dependence and size of the Seebeck coefficient
of any given dilute alloy.

Let us now attempt to summarize our results
graphically to give a prescription for calculating
the theoretically predicted thermopower. The dis-
cussion proceeds most simply in terms of the pa-
rameter $, but is easily converted to a discussion
of the Seebeck coefficient S through the relation

ture-independent term

elnl Vl

calculated from the energy dependence of the ionic
pseudopotential. To this must be added the inher-
ently negative temperature-dependent term

tNV m
a 4'i(T/0),

B

where the function C~ is shown in Fig. 3, and

NV= A&' V r dr,
with f}, the volume of a unit cell, and V(r} the
screened pseudopotential of a single ion.

Adding a small concentration of solute to this
pure material involves three nem terms in the See-
beck parameter. There is the familiar term

5
2

Blnl Uj

due to the energy dependence of the density of
states and of the impurity scattering potential, to
which must be added the two terms

ue'MN
fNU m N'

gNV ~~ 2N '"
c=

(~ O)a M N 3( /-) ~

B

The functions C2 and 4'3 are shown in Figs. 5 and

6, and the ratio N'/N is the valence. While h$c is
inherently negative, the sign of b, )B will be the
same as the sign of the net scattering potential of
the impurity, and may be positive or negative, de-
pending on whether the solute presents a net repul-
sive or attractive potential in comparison with the
solvent ion for which it has been substituted. These
three impurity-generated terms must then he com-
bined with the pure-solvent contributions as indi-
cated in Eq. (27).

0.5

S= Hu', Tg/sef,
0
0 I.5

with t' the Fermi energy, and e the (negative} elec-
tronic charge.

The contributions to ( to be expected in a pure
material are twofoM: firstly there is the tempera-

t= T/8
FIG. 5. Temperature dependence of the contribution

to the thermoelectric parameter $ of processes in which
an. electron is twice scattered by an impurity ion exhibit-
ing virtual recoil.



P. E. NIE LSEN AND P. L. TAYLOR 10

1.0

0
0 0.5

t= T/9

I.O I.5

FIG. 6. Temperature dependence of the contribution
to the thermoelectric parameter $ of processes in which
an electron is scattered both by an impurity exhibiting
virtual recoil and in a wave-number-conserving phonon
interaction.

Since attention was first drawn to the importance
of multiphonon processes in the thermopowers of
pure materials, the experimentabst observing a
low-temperature hump in the Seebeck coefficient
has faced a problem of interpretation in that these
effects yield a temperature dependence of 8 that is
similar to that caused by disequilibrium in the lat-
tice-wave distribution function. Indeed, the pres-
ent authors' were tempted in a euphonic moment to
refer to the mamfestation of second-order pro-
cesses as "phony phonon drag. " It is therefore im-
portant to ask in what respects these two effects
differ sufficiently to be distinguishable.

Firstly, the presence of phony phonon drag
(PPD) in pure materials will frequently be felt in
the form of a Positive hump in S, while true phonon
drag (PD) in its most direct form yields a negative
hump. In anisotropic materials, however, um-
klapp processes may invert the sign of the PD com-
ponent, 6 and so this test alone is insufficient. A

feature of PD is that its low-temperature contribu-
tion varies as T', and yields a form of S(T) that
is initially convex, changing to concave as the
maximum of the hump is approached, while PPD
effects give rise to a form of S(T) that, in an
ideally Pure material, varies from linearity as
Ts lnT, but which is also initially convex. How-
ever, caution is required in interpreting experi-
ments on "pure" metals, as the criterion p~ » p„
must be obeyed if alloy effects are to be negligi-
ble. 7 This is seldom the case for helium temper-
atures, and the value of many measurements in
allegedly pure materials is compromised by the
fact that the Seebeck coefficient is then determined
by scattering from mdrnown impurities at all tem-
peratures below 10K.

Any decisive method of separating PD and PPD
contributions in pure metals must rest on the dif-

TABLE I. Comparison with experiment of the theoreti-
cal prediction of the thermopower parameter $ at low
temperatures for dilute alloys of alkali metals in potas-
sium. Experimental results are from Ref. 22.

Solute $ (theory)

0. 86
—0. 27
—0, 46

$ (expt. )

0. 86
—0. 19
—0.43

ferent physical mechanisms involved, and would
require measurements on several samples, or at
least on more than one state of the same sample.
For exlunple, it might be possible to alter the PD
contribution by further annealing of a sample while
leaving the PPD contribution unaltered. In some
materials it might be possible to see a shift in the
position of the maximum in the PPD hump by work-
ing with a sample of a different isotope of a met-
al

In dilute alloys the presence of virtual-recoil
terms is more readily confirmed, the recent dis-
cussion by Dudenhoeffer and Bourassa" of the
thermopower of dilute aluminum alloys being par-
ticularly persuasive. The interpretation of the
low-temperature thermopowers of dilute alloys of
alkali metals in potassium is facilitated by the
presence of the term 4(c, which was absent in our
preliminary publication~ on this subject. While too
many uncertainties remain for a precise compari-
son of theory with experiment to be meaningful,
the general behavior of $ in these alloys is readily
interpreted in terms of the dominating effect of

Our present results differ from those of Ref.
4 in a number of respects. At the time that the
preliminary account of the importance of the term
b, $~ was published the effects of consecutive scat-
tering by a phonon and by a recoiling impurity
atom had not been considered, and so the term 4/&
was missing. This omission has been corrected.
as has a numerical error in the treatment of the
scattering in Ref. 4. In addition, two suggestions
made by Meyer and Young3 in a comment on the
preliminary calculation have been followed; the
parameters Uand Vwere taken to be the Animalu-
Heine pseudopotentials'0' ' evaluated at q = -', k~ and
suitably renormalized, and the energy dependence
of the d-wave component of the scattering was al-
lowed for by attributing a value of 0.9 to the term
S ln I Ul js in@. The results are shown in Table 1,
in which the theoretical predictions are compared
with the experimental results of Guenault and Mac-
Donald. It must be emphasized that the contribu-
tion of b, $~ to the theoretical result is extremely
sensitive to the choice of potential, , and leads to an
uncertainty of at least + O. 5 in $.

The complete temperature variation of the See-
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beck parameter $ has been shown to be due to a
number of effects. In addition to the effects of
true phonon drag (which are undoubtedly a large
contribution in many measurements, although per-
haps not quite so many as has been hitherto be-
lieved) there are the contributions n4 and d,"~
which a.re important (and frequently dominant) at
low temperatures, but which decrease in magni-
tude as the temperature is raised. At tempera-
tures sufficiently high that the phonon resistivity
p~ is comparable with the residual resistivity p„
the parameter $ begins to change from its impuri-
ty-dominated form to the phonon-dominated form,
which itself has the temperature variation of A$y.
A large variety of behaviors of S(T), even involv-
ing several changes in sign over the complete tem-
perature range, is readily obtainable when the
various constants take on appropriate values.

To complete this paper, we recall the approxi-
mations that have been made, and draw attention
to improvements that are necessary if more de-
tailed comparisons of theory and experiment are
to be made. Firstly, we note that terms to second
order in the perturbation expansion of the T ma-
trix have been calculated and found to be impor-
tant, but that higher-order terms have been ig-
nored. This appears to be reasonable on the
ground that advancing to higher order would intro-
duce terms smaller by a further factor of m/M
without increasing the energy dependence in any
compensating way.

Of the second-order terms, no account has been
taken of the effect of the coherent interference be-
tween the first-order effect of intrinsic two-phonon
processes and the second-order effect of one- pho-
non processes. The justification for this is that,
within the framework of the Boltmmann equation,
both phonons are real rather than virtual, and thus
too sparse to be important at low temperatures.
On the other hand, more exact transport formal-
isms in which these scattering processes occur as
part of a ladder sum, might well pick up an appre-
ciable contribution from such scatterings.

A more serious shortcoming of the present anal-
ysis has been the assumption of a free-electron
model and the neglect of ~~~&lapp processes; these
must undoubtedly be important in polyvalent ma-
terials and could well introduce further factors of
two or three into the final results. The assumed
constancy of the Fourier transforms of the ionic
potentials U and Vof solute and solvent is not a
serious defect of the theory, as the detailed form
of these functions may readily be inserted in the
formalism at the cost of some additional numerical
integrations. The assumption that solute and sol-
vent ions had equal mass was necessary to allow
the motion of the solute atoms to be described sim-
ply in terms of the phonon coordinates of the pure

FIG. 7. Contour used in deriving expression for 4 (p).
The line AB lies along the real axis.

solvent lattice. While this will be a reasonable ap-
proximation for many systems, it may introduce
error when the masses of the two constituents are
markedly different. The limiting cases of very
light and very heavy solutes present few difficul-
ties, and lead to results broadly similar to those
presented here, an example being the P~ system. s

One thus might expect an alloy of which the compo-
nents are only moderately different in mass to be
reasonably well described in the present approxi-
mation; this must remain a conjecture for the time
being, however, in view of the difficulties associ-
ated with describing the dynamics of disordered
systems.
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APPENDIX

Reduction of Eq. (21) requires evaluation of the
integral

1
4 (y) = —

~

z sechzz tanhu
2y 4~~ 4~

1 1
X dz du ~

u —z —y u- z+y

The poles of tanhu occur at u = (n+ ',)iz wher-e n is
any integer, and one accordingly performs the in-
tegral over u to find

N

C(y) =—~ zsech z
2y ffuQ 4 ~OO (n+ z) iz —z —y

1 1
(n+ 2) iv+ z+ y (n+ &) iz —z+ y

1
l dz ~

(n+ 2) iv+ z —y

The uyper limit N of the summation is a large in-
teger that will tend to infinity at a later stage of
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the calculation.
The poles of the integrand in the z plane are at

z = (m+ —,') im, with m any integer, and at z = +y
+ (n+ 2) i&. For simplicity, the contour may be
closed in the half plane that does not contain the
isolated pole, as illustrated in Fig. 7 for the term

zsech z
dz

~(n+-, ) im —z- y

which is the integral along the line AB. Along the
line DC the variable z has the value x- Nim. Only
the component odd in y survives in the final ex-
pression for C, and so from the integral along DC
we retain only the contribution

—2¹iry
[(X+n+-,')im]' '

When the residues at (m+-,') im are included, one
finds

4N g 4m

(N+n+~) 0 (m+n+1) m +y

N

p 8m (m+ 2)(m+ n+ 1)
0 [(m+n+1) m +y ]

In the limit N- ~ this reduces to

(y/w)~ue(H= —& 4Z
( ( )),

which at high temperatures may be replaced by the
power series expansion for small y

C(y) = —2+4(y/m)'t(8) —8(y/~)'t(5)+ ~ ",
where t'(n) is the Riemann zeta function. At low
temperatures one requires an approximation for
C(y) when y is large, and this may be obtained by
use of the Poisson summation formula. One finds

"
(y/m)2xcos2mpx „

0 [~'+ (y/~)']'

7t' m4

a 4 ~ ~ +& (y) ~

3y 15y
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