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In microscopic theories of phase transitions occurring in itinerant-electron systems, physical phenomena
are generally considered in the random-phase (RPA) or mean-particle-field approximation. We describe
here a many-body theoretical method of calculating the appropriate order-parameter susceptibility
function y{q,co+) which goes beyond the RPA. A diagrammatic analysis of the equation of motion for
a quantity related to g(q, co+) is made, and it is shown how one can systematically and self-consistently

include the effect of order-parameter fluctuations on g(q, co+). The method is applied here to the

paramagnetic phase of an itinerant-electron ferromagnet. A mean-fluctuation-field approximation (MFFA)
which includes the contribution of one internal spin fluctuation to X{q,co+) is discussed in detail. Its
temperature-dependent contribution to g

' goes roughly as (k~T p, ) . A self-consistent solution of the
MFFA equation for g(0,0) leads to a Curie-Weiss-like behavior for it. We make an explicit comparison
of our results with experimental values for Ni, and find good agreement in the range
0.1 ( (T —T,)/T, = e & 0.6. In the Stoner or RPA theory the Curie-Weiss law is ascribed to the
T' part of the particle-field term —UJ f '(E)p{E)d E. This is smaller than the MFF term by a
factor {k~Tp, ) "', and for Ni, is only 5% of the latter. The Curie-Weiss-like law observed in

metallic paramagnets is therefore due to the mean spin-fluctuation field, as also realized by Murata and

Doniach, and by Moriya and Kawabata. Going beyond the MFFA, we calculate the contribution of the

simplest spin-fluctuation correlation diagram. The contribution of this diverges logarithmically as c ~ 0.
When this term becomes comparable to the MFFA, we are well in the critical regime which cannot be

conveniently discussed by this method. This criterion is used to provide a first-principles estimate of the

static and dynamic critical regimes in Ni. The former obtains for e S 0.05 and the latter for
c ~ 0.06(q/k„). We show how spin fluctuations suppress ferromagnetism in a two-dimensional system

and plot g2d(0, 0) vs T for a Ni-like film in the MFFA. The method developed here can be applied to
discuss fluctuation effects in the ferromagnetic phase, in superconductivity, and in itinerant-electron

antiferromagnetism.

I. INTRODUCTION

Microscopic theories of phase transitions in

itinerant-electron systems generally use the ran-
dom-phase (RPA) or mean-particle-field approxi-
mation (MPFA}. Well-known examples are the
Gor'kov-Anderson' theory of superconductivity,
the Stoner' model for ferromagnetism, and the
Fedders-Martin' model for antiferromagnetism.
This approximation is most successful for super-
conductors, the physical reason being the large
zero-temperature order-parameter coherence
length $0 (in tin, t'0 =2.3 x 10' A), which con-
siderably reduces fluctuation effects. In a ferro-
magnet, however, the coherence length is small,
of the order of atomic dimensions (-2 A).4' We
thus expect magnetic fluctuations to affect sig-
nificantly the properties of itinerant-electron
ferromagnets. The same can be said of itinerant-
electron antiferromagnetism. We present in this
paper a many-body theoretical method of calcu-
lating the effect of order-parameter fluctuations
on the dynamic (order-parameter) susceptibility
X(g, z ) using the example of itinerant-electron
ferromagnetism. A mean-fluctuation-field ap-

proximation (MFFA) is described in which the
average effect of spin fluctuations on y(t|, z ) is
considered. This effect is shown to be significant
over a wide temperature range, and to lead to the
observed Curie-Weiss behavior ' behavior above

T, . A first-principles estimate is also obtained
of the critical regime, i.e., the temperature range
around T, where fluctuation interactions become
important. The method is not suitable for de-
termining critical behavior. "The work de-
scribed here therefore connects the RPA or
mean-particle-field theory results which are valid
far away from T, and the interacting classical
magnetic- fluctuation-field results' which are valid
very close to T, . The middle ground is charted
here for the paramagnetic phase (T & T,). In a
later paper, we will discuss corresponding results
for the ferromagnetic phase. ' In the remainder of
Sec. I, we outline the method used and the results
obtained.

W'e are interested in calculating the wave vector
(q} and frequency (z ) dependent order-parameter
susceptibility (correlation function}. In the ferro-
magnetic case, this is the spin susceptibility func-
tion }t(q),z„)= g'(q). This is well known to be re-
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lated to a two-particle Green's function G" [see
Eq. {2.2)J. The equation of motion for G" relates
it to a three-particle Green's function G" (see
Sec. D). We make a diagrammatic spin-fluctuation
analysis of G "t

(p) and hence of }t(q). This means
the following. 6 can be written, in principle,
as a sum of an infinite number of diagrams; these
diagrams will involve as basic units the single-
particle Green's function 6 and the two-particle
spin-singlet and spin-triplet scattering amplitudes,
I"' and 1"' (Fig. 1). Since near the phase transi-
tion the static spin susceptibility or the long-wave-
length, low-energy spin-triplet scattering ampli-
tude I"' is large, we separate out from the dia-
grams for G"' (q) those (coherent) parts which
are proportional to I' (q) (q is the momentum
energy transfer in the particle-hole channel 13}.
The diagrams left out form an incoherent remain-
der which does not strongly depend either on the
temperature or on the interaction strength We.
further analyze the coherent part. Retention of
the term containing only one I' leads to the
BPA result. Since spin fluctuations are large and
their amplitude depends strongly on temperature,
one should investigate coherent diagrams which
involve more I"s [see, for example, Fig. 2(b)J.
Ne examine in detail and evaluate diagrams for
G'" [and thence for X(q}J which have one more I"'
or spin fluctuation in addition to I'(g). If we also
include such terms in the equation for X(g), we
have self consistently included the effect of the
mean particle field (RPA), and the effect of one
internal spin fluctuation on the spin susceptibility
}t(q). This approximation is called the mean-
fluctuation-field approximation ',MFFA).

The spin susceptibility X(q) is evaluated in the
MFPA in Sec. III. It is found that the contribution
of the fluctuation field to }t(0,0) '}tr is of the form
A+B(ksTp, )"' (here X~ is the Pauli suscepti-
bility, A. and B are constant, and 9 is positive;
p, is the density of states at the Fermi energy).
The RPA contribution is + Ujf '(e)p(e)de where

U is the zero-range Coulomb repulsion between
electrons. %e see that spin fluctuations tend to
suppress ferromagnetism. The contribution of
the constant part (A term) can be included by
suitably redefining the T =0 RPA term -Up,
i.e., by changing U to U,«. Since we are discus-
sing here a degenerate electron gas, we have
kI,Tp, «1, and thus the temperature-dependent
spin-fluctuation contribution is small in compari-
son to the RPA term which (with U,«replacing U)
gives the correct zero-order contribution —U,ff pg
However, since in the vicinity of the phase tran-
sition, }t(0,0) '}i~-0, the spin-fluctuation term
contributes a very important correction, and in-
deed determines the temperature dependence of
g(0, 0) '}t„. We make a numerical calculation for
Ni, and show that in a relatively wide temperature
range, 0.1 sksTp, s0.15 (AsT, p, =0.090) the
observed susceptibility is well described in the
MFFA (Fig. 3). We suggest, therefore, that the
Curie-gneiss law observed for the temperature
dependence of }t(0,0) in itinerant-electron ferro-
magnets above T, is due to the presence of this
spin-fluctuation term. In the Stoner model or
RPA, the observed Curie-%eisa lave is explained
through the temperature dependence of the mean
particle field, i.e., the temperature dependence
of ff, 'p(-s} de This .is proportional to (ksTp, )'
and is thus, in principle, smaller than the spin-
fluctuation term. In the case of Ni, calculation
(Sec. III) shows this "Stoner" term to be only 5/g

I(+g+q

of 4+g

or k-q

k+q c)

(a)

p 0
2 2

FIG. 1. The two-particle scattering amplitude I
(p&a&,p20&,p303,p404) with energy momentum and spin
indices labeled.

FIG. 2. Some coherent diagrams for GI, Ltt} [see Eti.
(2.4)]. As is evident from the definition, the diagrams
consist, in general, of incoming electron-hole pairs
(k+g+g'&, k &) (0~ k+g t, k-g' &) and (k'o k'+q'0),
and an outgoing electron-hole pair (k" +g &, k" &). The
four-momenta k' and k" are summed over. Some
examples are shovtro, above. (a): an BPA diagram.
Here the blob represents the spin-triplet scattering
amplitude I"'(g). (b) and (c): diagrams with one more
I"'. These are among the one-spin-fluctuation terms
[Eq. '(2.13)]. (d): a three-spin-fluctuation term.
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of the spin-fluctuation term. Thus the explanation
of a Curie-%'eiss law using the temperature de-
pendence of the RPA contribution is not tenable,
in view of the existence and magnitude of the tem-
perature-dependent spin-fluctuation contribution
to lt(0, 0). Further qualitative differences between
the predictions of RPA and the MFFA show up in
the spin susceptibility of a two-dimensional itin-
erant-electron system. The RPA predicts a phase
transition at an appropriate value of U,ff . In the
MFFA, we find, in accord with general results,
that the phase transition is suppressed by fluctua-
tions. Furthermore, we can explicitly calculate
XM(T). We perform such a calculation for a film
with the band parameters of Ni (see Fig. 3).

From the above it may appear that for three-
dimensional systems an expansion for the temper-
ature-dependent properties of G'" [or g(q)] in
powers of the spin fluctuation is rapidly conver-
gent, the expansion parameter being (ksTp, )'"
«1. It is true that in general an nth-order dia-
gram (i.e., one with n internal I"s) contributes
terms of order (AsTp, ) ' (0 &m &n) relative to
the RPA term. The m =0 term modifies the RPA
condition, i.e. , Uis modified to U,ff. Them=1
term influences the coefficient of the one-spin-
fluctuation term for the Curie-gneiss temperature
dependence of g. The terms with m ~ 2 ean be
neglected. There is however a class of diagrams
(spin-fluctuation correlation diagrams) which

contribute singularly as T —2', . Their contribu-
tion diverges as ln(T —T,) or powers thereof.
These diagrams, representing correlations be-
tween spin fluctuations, determine the critical be-
havior. The microscopic theory used in this paper
is quite cumbersome and cannot be (easily) used
to evaluate, for example, the critical indices. "
We perform (Sec. IV) a calculation of the terms in
G~~~ having four I"s, one of them being I'(q) and
the other three being internal spin fluctuations
whose momentum and energy are integrated over.
This represents the first significant fluctuation
correlation correction to the MFFA. Che is well
in the critical regime when the contribution of the
former is comparable to that of the latter for

For nickel, it is found that the static crit-
ical regime sets in around e =(T —T,)/T, ~ 0.05
and the dynamical critical regime around & =0.06q,
where q is the wave vector in units of k~.

The Curie-Weiss law for itinerant-electron
ferromagnets has been obtained earlier by Murata
and Doniach, ' and by Moriya and Kawabata. ' The
former authors use a semiphenomenological Ginz-
burg-Landau functional for the itinerant-electron
system, with magnetization as the order param-
eter. The latter authors use an RPA-like form
for y(q) and estimate the spin-fluctuation contribu-
tion to it by requiring consistency between two dif-
ferent ways of calculating g(0, 0). (See Sec. V for a
more detailed description of these methods and for
their comparison with the method and results of
this paper). We present in this paper a fully
microscopic and fairly general investigation of
fluctuation effects. In the concluding section (Sec.
V) we suggest that spin-fluctuation effects are im-
portant in nearly ferromagnetic Fermi systems
and in ferromagnets below T, .

II. FORMALISM AND THE MEAN-FLUCTUATION-

FIELD APPROXIMATION

A. Formalism

The itinerant-electron system is described by
the Hamiltonian

II= ~ka& a-+'U p p -.
ka (2.1)

0.00
0.07 0.13

FIG. 3. The static inverse susceptibility g of Ni
{times the Pauli value gQ plotted against temperature
{times & ~p ~z). Solid line represents the experimental
value, the value calculated in the MFFA being shown

by the broken line. The calculated g ~{0,0) for a two-
dimensional film with band parameters of bulk Ni is
shown by the dot-dashed line.

k, o

The first term describes free electrons, the ener-
gy of an electron in the state ko being ek; ako'
ak are the creation and annihilation operators,
respectively, for an electron in the state ko. The
second term represents a zero-range repulsion
between electrons, of magnitude U. p is the
density-fluctuation operator, i.e. , p- = g k, a „-
x ak . %e are interested in evaluating the dynamic
spin susceptibility g(q). In the paramagnetic phase,
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the system is rotationally invariant; therefore
longitudinal and transverse susceptibilities are
the same. It is more convenient to evaluate the
transverse susceptibility, which is given by the
Kubo formula"

operator 8+ =a~ &a- and 8 - is its Hermitiank+q k$ q
adjoint. The operator S&can be written as 8&
=Q& Skt, where 8f-=a&~ - a)-, i. Similarly, one
can write

X(q, z.) =2i 'z X(q)

=2p2~ T 8'- v 8 0 e "'~dv.
0

(2 2)

Here (u z is the Bohr magneton and z 2m=i«/P,
~n being an integer. The spin-fluctuation creation

where

The equation of motion for y
'- -(v) is
k, q

(-'2a)

(2.2b)

(2.4}

where

k q k k+q

~, =$4. ~ ~ ~, $' +
~ q z q k+q, q*q' k+q+qs, q+q' '

The second term in (2.4) is a three-particle
Green's function, and is denoted by G„-"t(()}. The
energy transform of (2.4} can be written as

(, „g ( ) &nk+, &-&nr, & V GI), (q)
~-+z 2 ~-+zk q fft kq m

We therefore have

(2.5a}

x'(q) = x'"(q) — Q
k

(2.5b)

B. General discussion of equation for Xk(q)

fn Eq. (2.5b)

x q=~0~( )
4)kq+Z

k

(2.6}

is a quantity very similar to the free-electron-gas
susceptibility function. The difference is that the
true occupation number &s), &, i.e., the occupation
number influenced by the interaction, occurs in
Xoz(q), instead of the bare occupation number

&n), & f,-. We shall return to this difference
later, in Sec. III. The second term, involving
G ~"(q), can be expressed diagrammatically using
its definition, i.e., Eq. (2.4). Equation (2.4) speci-
fies the momenta, spina, and energies of the in-

coming and outgoing lines, and also the momenta
and energies to be summed over. The diagrams
consist of spin-triplet Bnd spin-singlet particle-
hole scattering amplitudes 1' and I', connected
by single-particle Green's functions. Some exam-
ples are given in Figs. 2(a)-2(d). Clearly an in-
finite number of diagrams constitute G'„"(q). We
describe below how the ones believed to be sig-
nificant close to the phase transition are selected
out of these.

Near the phase transition (T= T, or the effective
interaction U,«= U,'f'f'" ') the spin susceptibility
X(q, (()') is very large for small values of )q j and
&u. Since 1,(q, ~') is closely related to I' '(q, cu'),
I.e.

y

X(4', ~') = [X'"(e,~')]'F'(V, (d'),

the small-q, small-& spin-triplet particle-hoIe
scattering amplitude is nearly singular. The spin-
singlet scattering amplitude is not singular and
thus one does not expect contribution to C' in-
volving only I""s to be either very large or to be
strongly temperature dependent. Such terms can
be classed with the Pauli term X '"(q) appearing
on the right-hand side of Eq. (2.5). We shall not
evaluate these terms though, in principle„ their
value can be comparable to Xo"(q). Next we con-
sider diagrams which involve one or more I"'s.
These can be divided into two subclasses. There
is first a set of diagrams for G',"(q) involving
I'(q) (the momentum and energy transfer q, z~
are in the particle-hole channel 13, see Fig. 1).
Now since 1"'(q) is (very) large and behaves in

nearly the same way as }( '(q), these "coherent"
[i.e., same (q, z )] diagrams make the most sig-
nificant contribution to )('(q). The other subclass
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also involves I"s, but their "four-momentum" is
not q, g (incoherent terms) .In these obviously
the arguments (P, z i) of the I""s are internal
variables which are summed over. These dia-
grams again wiO not contribute significantly if
such internal summations lead to nonsingular final
values. %'e show in Sec. HI that indeed

Q }(, '(q') A '+ B'(k Tp )'" (2.8a)

(2.9)

This is exactly the term retained by Izuyama,
Kim, and Kubo' in a Green's-function decoupling
scheme.

The remaining coherent diagrams have one I'(q)
and one or more spin-triplet or -singlet scattering
amplitudes. The momentum and energy transfers
involved in these additional, internal I"', I" are
summed over. Consider first diagrams where
only internal I'"s are involved. Since nothing
special happens to I' near the ferromagnetic in-
stability, the coefficient multiplying I'(g) due to
such diagrams will be only weakly temperature
dependent. It is obviously difficult to estimate
this coefficient, but its effect can be absorbed,
for small values of (q, z ), by redefining U. Now

consider diagrams with one or more internal I'"s
(Figs. 2(b)-2(d), for example}. If they are re-
tained, clearly, from Eq. (2.6), their contribution
will have to be determined self-consistently. %'e

shall do this below in the one-internal-spin-Quc-
tuation or mean-fluctuation-field approximation
(MFFA) (Sec. III). The result is that near T,

for a three-dimensional system, where A' and B'
are constants of order unity. Therefore such in-
coherent triplet terms can be grouped together
with the Pauli and singlet terms discussed above,
and all of these taken together constitute the inter-
action-renormalized, weakly temperature-depen-
dent inhomogeneous term in the Eq. (2.6) for
y'(q). For simplicity, we approximate this by

X OA(q)

%e now discuss the coherent term in more de-
tail. As mentioned above, the coherent term is
the collection of all diagrams for G'„-"(g) involving
I'(g). Some examples are shown in Fig. 2(a)-2(d).
The simplest coherent diagram is the RPA term,
in which, for G'~'& (u), one creation and one an-
nihilation operator at time v are joined to each
other, and the remaining creation and annihilation
operators form ingoing and outcoming (particle and
hole) lines of the spin triplet scattering amplitude
I' (q). A diagram of this 'type ls shown tn Fig.
2(a). Collecting all diagrams of this type together
we find that their value is

(2.8b)

where A and B are constants of order unity (B is
positive). The zero-point term A can again be
absorbed in a redefinition of U, changing it to U,ff.
The leading temperature-dependent term is
B(ksTp, )'~' and represents the significant tem-
perature-dependent corrections to }t(T) due to
spin fluctuations. In the remainder of this sec-
tion, we obtain and write down the contribution of
all coherent diagrams with one internal spin fluc-
tuation (MFF terms).

G),~ G), e+ r G), .~ ~ .[I' (k'+ q' —k}
q 'Lf'

-I"(h '+ q'- k)]

In Eq. (2.10a),

x —I Gq Gq ~)A'(g), (2 (Db)
1

V)

&A+q') q }= Q GL(GL(+(('GL(+((+g' ~

k

(2.11)

where g~=(I/(8)Q„Q)-, . Further, the vertex
A'(q) is defined by

A'(q) = Q Gh Gh ~ .q X'(q)

Q G„('„~ I)'(I) .
~q

~ ~ I (2.12)

Equations (2.10) and (2.12) use one of the main
approximations of this paper, namely that the spin-
triplet particle-hole scattering amplitude I'
X (p„~p, p~, p~) (Fig. 1) is a sensitive function only
of the four-momentum-transfer (p, —p,}in the di-
rect particle-hole channel 13. This is physically
reasonable since the static spin susceptibility,
closely related to I' (p -p, = 0) [see Eq. (2.7)], is

C. Mean-fluctuation-field approximation

Two MFF terms are shown in Figs. 2(b) and 2(c).
Their contributions to G'„"(g) are, respectively,
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very lar ge. However, the scattering amplitude
I'(p„p„p„p,) is crossing symmetric, and thus
may be a sensitive function also of four-momen-
tum transfer in the crossed channel. The neglect

of this crossing symmetry is one of the more
serious omissions in our work. (See Sec. V).

There are 24 MFF diagrams in all for G'-"(q),
and their total contribution can be written

(('(0) 'G'-"'"(0(= GAZA'(t('){((/l(( Z P('k 1.~( l.q., — k. , (- k. , 'k. .., ( I
— 1 .(((

(2.13)

Because the coherent term for G '„"(c()is pro-
portional to A (q), it is convenient to define a fac-
tor

E (q) Grr&(~) '(q( Z G, G...)
P

(2.i4)

In terms of E&, (q}, the equation for )& '„-(g) can be
written

(2.i5)

In this section, we have essentially attempted an
expansion of Ef(q) in powers of the spin-fluctua-
tion amplitude. We have

Ep'(e) = E"„-'"(e)=2 (&sr& —&sr. -, &) . (2.10)

D. Self-energy

There is„ in addition to (2.13), another term
for )&'(q}. This arises from the RPA term (2.9)
which contains the true occupation numbers
(n&, & and (s(-„q &. These will be affected by spin
fluctuations. Theoretically, one calculates the
irreducible single-particle self-energy Z&-, (& &) in
the presence of coupling to spin fluctuations (Fig.
4}. The expression for Zk (&, ) according to Fig.
4 is

The right-hand side of Eq. (2.13) is E~@(q)
x (QPG G&,3). In Sec. IV, we shall discuss E'f'(q)
and E &»(g).

]f

III. EVALUATION OF MEAN -FLUCTUATION-
FIELD TERM

A. Analytical results

The mean-fluctuation-field term (2.13) is quite
complicated in appearance and cannot be evaluated
without further approximation. The first approxi-
mation made is that bare single-particle propa-
gators are used instead of true propagators. Since
we are mainly interested in the temperature de-
pendence of physical quantities, the approximation
is reasonable if no significant temperature-de-
pendent terms are omitted as a consequence. We
show below that the temperature-dependent part
of Z &, (& &) [See Eqs. (2.17), (3.15), and (3.17)] is
proportional to T'~'. The temperature-dependent
spin-fluctuation correction term E&»(q) is itself
proportional to T~ ', and thus including the tem-
perature dependence of Gr (v, ) will result in a
negligible correction of order T'". Thus the
single-particle propagator is sufficiently well
represented by its T =0 part. We approximate this
by the bare propagator. The second approximation
is based on the fact that I'(q, &d'} is strongly
peaked near {q{=0 and +=0. The single-particle
Green's function G&-, (&,}, however, varies over a
scale k~ in momentum and e~ in energy. So, we
can make an expansion of the 6 factors multiply-
ing I"'(g') in powers {q'{and &u'. Detailed calcu-
lation shows that it is necessary only to retain
the {q'I=0, &d'=0 term to obtain the leading tem-
perature dependence. With the above approxima-
tions, Eq. (2.13) is easily simplified, and we have

Z(, {v,) =2 g 1" '(k —k')Gk. (&(&.}. (2.17)

The most significant temperature-dependent part
is to be extracted out of Z&, (v&) and thence (n„-&.
We do this in Sec. III, and show that this self-
energy contribution to X(q)

' is qualitatively and

quantitatively similar to that of E &-"(g). In con-
trast, for superconductors, the self-energy term
is larger by a factor (Tz/T, )2. FIG. 4. Diagram for the irredUcible self-energy Z&.
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(3.1) g( ) ~x d y(&/qv»)

where x (e8~ —1 (3.8)

g(Gxx)8

g (GO)4 +p xx

6

(3.3)

Using (3.1) and (2.15) the spin susceptibility func-
tion X'(g) can be written

(3.2)

In (3.2), p(e) = p is the density of electronic states,
and the derivatives [as well as p(e)] are evaluated
at e = e». In writing the Eq. (3.2) we have used the
identities

The integral (3.8) can be split up into two parts, a
zero-point part and a thermal part. The former
is given by

(y~w/qv») d(o

p ~ " ' ~
xeric px w, (a+6q~)~+(y(ow/qv»)

(3 ~)

The upper limit of integration in this term is ac-
tually (~/qv») = 1 and thus the term is convergent.
This term is only weakly dependent [through a(T)]
on temperature. The term is positive and thus for
positive A, , inhibits ferromagnetism. As stated
earlier (Sec. I) its effect can be absorbed in U,«.
The thermal or temperature-dependent term is

(3.4)

„.(g )
k

(dye+ QP~

'I CO
=P

QV~
(3.5)

The small (I[ ) and &u region is obviously the most
important. We therefore use the form (3.5}, as-
suming it to be valid throughout. The error thus
introduced is not large. %'ith the approximation
(3.5) and p"=p, =p (see Sec. IIIB) Eq. (3.2) be-
comes

In order to obtain an explicit expression for X'(g)„
Eq. (3.4) has to be solved self-consistently. We
do this below.

In order to calculate Q „.X'(g') the explicit de-
pendence on q' and co' is n~eeded. From E|ls. (2.15)
and (2.16) we see that it is determined by
X'"(g, co'). This Lindhard function has a fairly
complicated dependence on its arguments. But
for q «h» and (&u/qv») «1 we have

X»
" (y~w/qv»)(e' -1) '

( )
n ~ (o. +5q')'"+(y(dn/qv„)'

= —„C,'[Iny —(23') '- k(y)] (3.11)

C, =(yw/qv»), y =[a(T)+6q'](2wksTC, ) '.
g(y} is the digamma function. We need the sum
of (3.11) over all values of q. A very good ap-
proximation for [lny- (2y) ' —g(y)j is (2y+12y') '.
Using this, the integration over q can be carried
out. The resulting expression is rather compli-
cated and depends mildly on the upper q cutoff
q, . Defining 6=5/h2» and 5 =w'ykeT/3k»v»6, the
integral simplifies for & a(T)/6b" «1, and

q, 5 '~'~ k~. Both these conditions can be expected
to be well satisfied if ksTp«1 and a(T) is small,
i.e., for a degenerate itinerant-electron gas not
far from T,. Then the quantity g „X'(q) has the
value

X'(tl, ~') = X»[~(T)+6q'+ f(wy~/qv») j ', (3.6)

Q T I@
Q

I/

a(T) =[1—U,ff p+ Q X'(cl'}] .

In order to obtain a(T), we have to calculate
Q &.X'(q') using (3.6). This is done below.

The energy integration in +&X (g) is easily
carried out. %e have

(3.7)
(3.12)

In Eq. (3.12}, q, =(q,/k»)(ksTp)'I'. We notice that
the amplitude of thermal spin fluctuations is
roughly proportional to (heTp)'". This is quali-
tatively understood as follows. (keT p) is the
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relative volume in energy space of fluctuations
with energy less than k~T, this cutoff arising from
the thermal occupation factor (es —1) '. The
volume in q space of these fluctuations contributes
a further factor (hsTp)'~'. Using Eqs. (3.V) and

(3.12) a(T) can now be calculated self-consistently.
Before proceeding to the actual calculation, we
evaluate the temperature-dependent contribution
of the self-energy term.

(3.13)

will depend on temperature through the spin-fluc-
tuation amplitude. We have

G&(v }[I+Z-(v )G'-(v }+~ ~ ] .1

(3.14)

It is enough to retain the term proportional to g
for evaluating the leading temperature-dependent
correction. Using the expression (2.1V) for
Zt-, (v, ) in (3.14) we find that

P =P 1-HAPP Xg, (3.15)

B. Self -energy correction

In the RPA term (2.9), and its approximate form
(3.5), we see that

with these results. We take p=1.6 states/(eV atom
spin} and n~ =0.6 per atom. We also choose 6 =1,
y=2, p"/p'=-0. 5, p'/p'=0. 4. From the observed
T„A~T,p =0.087 and with these parameters
1 U ff p = 0.2. The value of g(T) 'g r, i.e., of
a(T), is plotted in Fig. 3 as a function of hsTp
We see that our results agree well with experi-
mental values" over a relatively wide range of
temperatures 0.10~ k~TP ~ 0.15. In view of the
uncertainty in the constants and the consequent
flexibility, the agreement with experiment may
not be very surprising. However, the following
points need to be noted. The agreement is not
greatly impaired by small ad)ustments in the con-
stants. It is good over a wide range of temper-
atures, i.e., from 1.1 to 1.7 T,. There is a defi-
nite dip in X '(0, 0) very close to T,. These quali-
tative features are independent of the constants
used. We shaQ see in the next section that higher-
order contributions to y

' become large in the
temperature range 0.09 & 7,~ 0.1 and fill up this
dip. The temperature-dependent part of the Stoner
term is +v~(ksTp)'( p /p'). Evaluation with the
parameters given above shows this term to be very
small, nearly 5% of the spin-fluctuation term dis-
cussed in detail above. This is to be expected,
since the Stoner term is qualitatively smaller by
a factor (ksTp) '"- 5. Other coefficients con-
tribute a further factor of 4. We thus see that the
Stoner or RPA term is too small to explain the
temperature dependence of ){(T),which is con-
ventionally fitted to a Curie-Weiss formula g(T)
=C/(T —8). The MFFA leads analytically to an
approximate form [see Eqs. (3.7) and (3.12)]

This leads to a self-energy contribution

-'Up 'p"'

to x (Eq. 3.2).

(3.16)

C. Numerical results for Ni

We now numerically evaluate a(T) [Eqs. (3.6)
and (3.V)] and thence X(T) for Ni. The band-struc-
ture parameters needed are g„, p, p', p~, Q, and y.
These are not accurately known. Various band-
structure calculations differ considerably in their
estimates. "The quantities p" actually occur as
f'„p"(e}f, 'd-e. Since the density of states p(e)

and its derivatives vary rapidly as a function of
energy, f+„p"(e)-f, 'de may not equal p"(0) and
may depend on temperature. We ignore this pos-
sibility. The constants 5 and y are even less
reliably known. Lowde and Windsor" have calcu-
lated the Lindhard function for Ni, using the band
structure results of Hubbard and DaMon. " %'e

take for our constants values which are consistent

[X '(T)X~] A(ksTp, )'"-8, (3.17)

where A and B are known constants. This is close
to a Curie-Weiss-like dependence provided T is
not too far away from T, . The self-consistent nu-
merical solution of Eqs. (3.V) and (3.12) differs
from Eq. (3.17), especially near T, and describes
the observed y(T) quite well in the range 0.10
& T~ p, &0.16.

D. Two-dimensional systems

We conclude Sec. III with a calculation of the
static spin susceptibility for a two-dimensional
system, in the mean-fluctuation-field approxima-
tion. The calculation illustrates clearly the ef-
fect of spin fluctuations in destroying ferromag-
netism in one- and two-dimensional systems. We
evaluate the susceptibility using the self-con-
sistent equation (3.V) for a(T) =X(0) 'X~. The only
qualitative difference from the three-dimensional
case discussed before is in the momentum sum-
mation on the right-hand side of Eq. (3.V), which
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is now over a two-dimensional space. The result
of energy summation and momentum summation in
Eq. (3.7) can be well simulated by keeping only
the z„.=0 term in the right-hand side of Eq. (3.7)
and having a q' cutoff q,'= kt, (ksTpz )'t3. The rea-

g
son for this is the following. If the energy sum-
mation is carried out, the Bose factor (ez —1) '

effectively restricts the contributions to those from
spin Quctuations of energy (d'- k~T. Thus in a
discrete sum over z s, the terms of which are
spaced -k~T apart, it may be sufficient to retain
only the z„.(or ttt() = 0 term. Now spin fluctuations
of energy (d'- k~T have characteristic q'
- k„(kt(Tpz )'I'. Thus, a consistent approxima-
tion for thermal spin fluctuations is to consider
only the z ~ =0 term and take q,'= kt, (ksTpz )'
One can, in fact, obtain the result of Eq. (3.12)
by this approximation, which may be called the
classical (statistical mechanics} approximation
for the spin fluctuations. We now use this simple
approximation to calculate (222(T) =)(22(T) ')(~for
a two-dimensional system using Eq. (3.7) and

find

n(T) = 1 —V.„p'"+(k,TP~/25) in(1+ 552(2(T)-') .
(3.18)

It is clear from (3.18) that we cannot consistently
have a(T)-0, i.e. , the effect of the last (one-spin-
fluctuation) term in Eq. (3.18) is to suppress the
ferromagnetic instability. We have calculated
)t(T) for a substance with the band parameters of
Ni (Fig. 4). This calculation has some meaning,
since the density of states, etc. depend largely
on the short-range disposition of Ni atoms. So
the band parameters of a thin film may not be
very different from those of the bulk. We see
that at high temperatures, i.e., T between 1.5 and
2 T,', (y ')' is fairly close to (y '}', though

somewhat less than it. As T approaches T,'d

(y ')'d decreases but not very rapidly. The be-
havior of X

' at very low temperatures cannot be
reliably estimated in the MFFA, since spin-Quc-
tuation interaction effects become important then.
It is unlikely that higher-order fluctuation effects
make X singular at T 0 0, No experimental sus-
ceptibility results on two-dimensional films are
known, but in intercalated Mo compounds" with

large interlayer separations, )((T) starts off at
high-temperature being Curie-Weiss like, but
then slowly curves parallel to the temperature
axis. The behavior is not dissimilar to that shown

ln Flg. 3.

IV. HIGHER-ORDER TERMS

We now investigate the effect of coherent dia-
grams with more than one internal spin fluctua-

—~ P pl12 g Ft(q )Ft(q )

x r'(q —q, —q,). (4.1)

One limiting case of interest is z -~' -0
(static limit). If q also tends to zero, this gives
us the three-spin-fluctuation contribution to static
spin susceptibility. The quantity of interest is the
temperature-dependent part. This is most simply
obtained in the classical limit, "and leads to

(&x ')("x~=
38 ~.(((kzTP)'(P "P ')'7

1 1 1~ (2+5q2, (2+5q22 a+5(q, +q2)2
q12 ~2

(4.2)

This is"

(dl( t)(3$ (2(3)(T) U p(~

(ted)(

p It2p 2k T)

x 5-3 In[525/~(T)]. (4.3)

The general effect of this term is to increase
)( '(T) over the MFF value, especially for T
close to T, . This will improve agreement with
experiment. For the case of nickel (Sec. III 8)
(2("(T)= o('"(T) for e = (T —T,)/T, =0.05. We are

tion. It can be shown that in the classical limit, "
for (q ( -0, the contribution of two internal spin
fluctuation diagrams to [)(t(q)] ' vanishes identi-
cally. Their contribution is negligibly small for
small jg( and (tt. The first significant correction
thus arises from the three-spin-Quctuation term
[Fig. 2(d)]. Three-spin-fluctuation terms in
which the fluctuations are uncorrelated contribute
to )tt(0) ' a quantity of the type

[X X'(0} ']'" =[&+&(kttTp)'"]'.

This clearly leads to corrections to U, to the size
of the thermal MFF term, and to negligible higher-
order corrections of order (kt(TP)3" and (ksTP)'.
The effect of the first is absorbed in the redefini-
tion of U,«. The effect of the second correction is
also to some extent included if U is replaced by
U ff There is, however, a remaining effect
which we are unable to estimate. To this extent,
our estimate of A, is not exact.

The qualitatively different three-spin-fluctuation
diagrams are those like Fig. 2(d) in which there
is a correlation between fluctuations. Considering
both longitudinal and transverse intermediate spin
Quctuations, we find that

(3)
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then well in the critical regime Mere fluctuation
interactions are quite important. This estimate
accords well with experiment. "

One can similarly calculate the effect of spin-
fluctuation interactions on the dynamic spin sus-
ceptibility. The first significant term arises from
Eq. (4.1}. The imaginary part of this for small
values of q is proportional to u and is given by

=(7I/32va)(k Tp"p~)2 Ulf, pyb -Si2a-a~a((op)

(4 4)

In Eq. (4.4), I is an integral of order 5. In the
calculation of Eq. (4.4) we have assumed that
1m[X'(q„~+)] '=vyru/qvr, i.e., the collisionless
RPA value (Eq. 3.5). Therefore, when Eq. (4.4)
becomes comparable to say/qv~, we are in the
collision-dominated critical regime. Again for¹i,this happens for e=(T —T,)/T, =0.06q/k~.
Thus the size of the dynamic critical regime de-
pends on the q value for which Im[x'(q, e+)] ' is
measured, In neutron scattering, q is large,
=0.34+ and &~ 0.02." However, in some experi-
ments, '8 the quantity

is measured. From the above result it is clear
that as ~ decreases, there is a decreasing non-
hydrodynamic region in q space around q =0. Thus
&gg(e) may not obey dynamic seal'Lng. Experi-
mentally, it does not.

V. CONCLUSION AND DISCUSSION

In the work described above, we have tried to
obtain from microscopic theory the effect of spin
fluctuations on the spin susceptibility function

g(q, up+). The temperature dependence of this
contribution was found to dominate the temperature
dependence of y for small (q ( and &u, and for T near
7, . One effect of spin fluctuations (of the zero-
point part of spin fluctuations} is to modify the
atoner criterion, i.e., modify U'to U,«. This was
not evaluated. It was then shown that there is a
T ' term in the one-spin-fluctuation contribution.
The coefficient of this was evaluated in the MFFA
(Sec. Ill) and the observed Curie-Weiss law was
explained using the MFF term, a comparison being
made with Ni. There are T'~' contributions from
other diagrams [e.g. , diagrams with one I'(q),
plus one or more internal I"p, and one or more
internal P"s]. Thus the MFFA coefficient repre-
sents an approximate estimate. In Sec. IV, we
showed how fluctuation interactions take one into

the critical regime. We now compare our results
with earlier work on this problem and discuss the
application of these ideas to related problems.

An equation similar to (3.4) has also been ob-
tained by Moriya and Kawabata. ' They assume
that the RPA expression for X'(q) ' is modified by
an additive constant. This additive constant is
determined by requiring that the susceptibility y
satisfy the identity }t=(O'F„/8M')z 0, the free
energy being determined as the sum of ladder and
bubble diagrams. Our method is more direct and
constitutes a general many-body theory for order-
parameter fluctuation effects on susceptibility. As
such, it can be applied to discuss a number of
properties outside the purview of the Moriya-
Kawabata method, for example higher-order (or
critical) static and dynamic susceptibility terms
(Sec. 1V), effect of spin fluctuations on spin waves,
fluctuations in superconductors and itinerant-e&ec-
tron antiferromagnets. There are also specific
differences. The final value for A, (including the
self-energy-term contribution, [see Eqs. (3.2)
and (3.16)] is different from the Moriya-Kawabata
value of

~MK 3 p p

Murata and Doniach' have applied a semiclassical
approximation to the functional integral method
and obtain a classical free energy functional suit-
able for describing magnetic fluctuations. Our
fully microscopic method has a much wider range
of applicability, as described above. For the
paramagnetic phase, our results differ (e.g. ,
there is a natural cutoff b [see Eq. (3.12)] and

X„n =-p~p ' is not the same as ours}. Since our
method is direct and enables one to systematically
locate all contributions to A. we feel that our value
of A, , x.e. , A. =-~GUpp~p '+3Upp'2p, ~s correct.

A number of Fermi systems are nearly ferro-
magnetic, i.e. , have large spin susceptibilities
(compared to X~}. Examples are He', "Pd, "
Ni, Ga,"HfZn„" etc. It is also found that their
susceptibilities are strongly temperature depen-
dent. The theory described here explains the
strong temperature dependence of y(T), if we

assume U,«p 51. The observed Curie-Vfeiss law
for y(T), with a characteristic temperature
Tr(1 —U,«p}, is in quantitative accord with the
results of MFFA (Sec. Ill). We had earlier ex-
plained this2' using microscopic Fermi-liquid
theory. The essential idea there is to use the
fact that I"' is large and sensitively q and (d de-
pendent, plus the crossing symmetry of I"'. The
resulting temperature dependence of y(T) is in

good agreement with experiment for He'. The
work here provides an alternative dynamical
explanation for the strong temperature dependence
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of X(T). Crossing symmetry has not been main-
tained or assumed in the calculation of the MFF
term. In Fermi-liquid-theory language, the dy-
namical model used here shows that the spin-
triplet Landau parameter E0 is strongly temper-
ature dependent. This effect cannot be seen in a
formal microscopic Fermi-liquid theory which is
based on T =0 parameters, and needs a dynamical
model. Both the temperature dependence of Eo
and the crossing symmetry of F(p„p„p„p,) are
contributing factors, probably of comparable sig-
nificance.

Recently, Heal-Monod" ef g/. have attempted to
explain the temperature-dependent resistivity of
some nearly ferromagnetic metals by invoking the
temperature-dependent Stoner term in X '(T).
Clearly the MFF term is much more important.
Its inclusion is seen to increase the range of tem-
peratures over which agreement is obtained. It
is also not necessary then to use for the Fermi

temperature of the 5f band (known to be fairly
wide) such abnormally small values as 280 'K
(Pu) and 620 'K (Np).

Ne have extended the method to the ferromag-
netic phase'0 and have obtained the longitudinal
and transverse dynamic spin susceptibilities in
the MFFA. The latter has poles (spin-wave poles)
whose positions are shifted with respect to the
Stoner value. We find in general that the spin-
wave stiffness decreases due to spin fluctuations.
The effect of spin fluctuations on magnetization
and on thermodynamic properties is being com-
puted. The results will be presented in a subse-
quent paper.
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