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The magnon bound-state spectrum recently observed in the anisotropic magnetic salt CoCl, 2H, O is
discussed in terms of analytic expressions. The transverse energy spectrum including the coupling to an
optic phonon and the longitudinal energy spectrum are evaluated to all orders in j'/Ho, j' is the
transverse anisotropy tj' = {j"—j')/2] and H, is the applied magnetic field, and to second order in
the transverse mean exchange j" fj" = (j" + jy)/2] and expressed in terms of Bessel functions. In the
low-field limit the spectrum is analyzed by means of the quasiclassical method. The transverse and
longitudinal intensity spectra have the form of infinite continued fractions and can be expressed in
terms of Bessel functions. The low-field and zero-field limits are discussed in detail.

I. INTRODUCTION

The recent results of far-infrared transmission
measurements on CoC1, 2H, O (CC2) at helium
temperatures and in high magnetic fields by Tor-
rance and Tinkham' utilizing a monochromator and
by Nicoli and Tinkham' employing a laser have
strikingly demonstrated the existence of a multi-
magnon bound-state spectrum in this highly aniso-
tropic magnetic salt.

Utilizing the broad-band far -infrared radiation
from a monochromator, Torrance and Tinkham'
mapped out the magnetic excitation spectrum in
fields ranging up to 55 kOe. The limited energy
resolution and weak intensity inherent in the mono-
chromator techniques make it difficult, however,
to obtain good data on the magnetic intensity spec-
trum.

The laser combines an intrinsic small linewidth
with a high intensity and is therefore ideally suited
to perform relative intensity measurements, Em-
ploying a cyanide laser, Nicoli and Tinkham mea-
sured the magnetic intensity spectrum at fixed
energies and in fields ranging up to 90 kOe.

The above authors' ' have shown that the mag-
netic properties of CC2 can be interpreted in terms
of Ising-like chains of strongly exchange-coupled
Co" ions. Neighboring chains are weakly bonded
by the waters of hydration.

The multimagnon bound-state spectrum is ac-
counted for by the following spin--,' nearest-neigh-
bor exchange Hamiltonian pertaining to an indi-
vidual chain of X Co" ions:

H„= -2Q [j*SfS'„+(-,
' j")(S,'S„,+H.c.)

+ (—
' j')( 'SS,'„+ .H)c] H+QS'.

The longitudinal exchange constant j* (the Ising

coupling) is of order 13 cm ', whereas the trans-
verse mean exchange j" (the Heisenberg coupling)
and the transverse anisotropy j' are of order 2.1
and 1.3 cm ', respectively. The applied magnetic
field in the z direction, H„ is measured in units
of g'Iti, ~, where g' is the longitudinal g factor and
ILL~ is the Bohr magneton. For CC2 g'p~ is of order
0.35 cm '/kOe.

The strong longitudinal anisotropy of the system
(j "/j * and j '/j ' are both of order —,', ) makes the
Ising model in an applied field a good zeroth-order
approximation. The excitation spectrum of the
Ising model is conveniently discussed in terms of
clusters of adjacent spin deviations with respect
to the aligned ferromagnetic ground state. The
lowest multiplet corresponds to a single cluster of
spin deviations and has the energies E'„=2j'+nH„
where n, n =1, 2, . . . , N —1, is the number of spin
reversals in the cluster. The higher-lying multi-
plets consist of two or more clusters of spin de-
viations and have the energies 4j'+nH„6j '+nH„
etc. In a plot of energy versus field the multiplets
are depicted as fans of straight lines converging
at the points 2j', 4j', ete. , in the limit of zero
field (see Refs. 1 and 3).

The spin clusters of adjacent spin deviations are
simple kinds of multimagnon bound states, albeit
bound states without spatial motion and in the ab-
sence of continuum states.

The transverse mean exchange j" introduces
spatial motion and transforms the localized spin
clusters of the Ising model into traveling wave
packets, the well. -known multimagnon bound states
and bands of the anisotropic Heisenberg magnet.
The zero field degeneracy of the lowest Ising
multiplet is partially lifted (to lowest order in
j"/j') and the states are transformed into multi-
magnon bound states. Similarly, the higher -lying
Ising multiplets become multimagnon bands.

The transverse anisotropy j' breaks the rota-
tional invariance about the z axis (the axis of
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Ho„=Ho„b b+
( ), /, Q(S,'b+H. c.)

k=1
(I 2)

to (1.1). The first term in (1.2) is the unperturbed
phonon energy in the Bose representation; the sec-
ond term describes the phenomenological coupling
to the single magnon mode. The full Hamiltonian
describing the magnetic chains interacting with
an optic phonon thus assumes the form

H = -2Q [j 'S& S&„+(-,'j ")(S;S„,+H.c.)

magnetization} and gives rise to transitions be-
tween the multimagnon bound states. Since the
parameter characterizing the transitions within
a multiplet is j'/Ho, the effect of even a small
transverse anisotropy is greatly enhanced at low
field. Experimentally the presence of j' is of
crucial importance. The transverse anisotropy
relaxes the selection rule ~b.en~ = I on the transition
probabilities and makes it feasible to observe the
multimagnon bound-state spectrum in a ferro-
magnetic resonance exper iment.

The above authors' ' investigated the magnetic
excitation spectrum of (1.1) in detail and solved
numerically the secular problem which arises
from treating the transverse mean exchange j" and
the transverse anisotropy j' as perturbations on
the Ising model in an applied field.

The exchange forces between the chains due to
the waters of hydration are typically an order of mag-
nitude weaker than the exchange forces within a chain.
The weak interchain forces are predominantly
antiferromagnetic and give rise to various meta-
magnetic phases. ' ' Above 45 kOe the system
chooses a ferromagnetic arrangement with all the
chains aligned in the direction of the field. In the
present paper we shall confine our attention to the
ferromagnetic phase. The magnetic field in (1.1)
is thus measured relative to the ferromagnetic
transition field.

A field-independent excitation was observed in
CC2. This mode, which only becomes far-infrared
active through hybridization w'ith the single magnon
mode, was interpreted as an optic phonon by the
authors. ' ' The phonon appears at the energy E»,.
Ep)i is of order 29 cm '. In the numerical study
of the secular problem the coupling of the phonon
to the single magnon mode was accounted for by
introducing a phenomenological off -diagonal matrix
element A of order 1.3 cm '.

The optic phonon can be included in the Hamil-
tonian description by adding the term

In a preceding paper' this author computed the
transverse and longitudinal frequency-dependent
magnetic susceptibilities to second order in j' and
j"for the Hamiltonian (1.1}. Since the charac-
teristic dimensionless parameter is j'/H„ this
calculation was essentially a high-field expansion
and therefore did not lend itself to a useful com-
parison with experimental data. In two other pre-
vious papers" the energy spectrum and intensity
spectrum were obtained analytically (i.e., to all
orders in j '/H, }for the lowest multiplet in the
absence of transverse mean exchange (i.e., j"=0)
and neglecting coupling to higher multiplets.

The purpose of the present paper is to utilize
the analytic solutions obtained in II and III in order
to compute the energy spectrum and intensity
spectrum pertaining to (1.3) to all orders in j '/H,
and to second order in j". %'ith the previous au-
thors' ' we continue to confine our attention to
the lowest multiplet plus optic phonon and neglect
transitions to the higher multiplets.

En Sec. II we discuss the spectrum of (1.3) in
some detail and compute energy shifts to leading
order in j". In Sec. III we set up the secular prob-
lem for the lowest multiplet plus optic phonon and
obtain an analytic solution to all orders in the
transverse anisotropy j' and to second order in j".

%'e obtain the following implicit expressions
for the energy spectrum in terms of Besse1. func-
tions:

- &8+Ho 2/o /&&log (-j /-Ho) /1

- &8 Il o/ o-/&&/28o( -j /Ho) @ Hoh

for the odd manifold including the optic phonon,
and

J &s-o/&-/»/o» (2j-/H, )2j' . +b, —b, =0
~- &E oH o' o-&/o» -(2j-'/Ho}

for the even manifold, where 4, =-2j", b,,
2j '(j "/j ')', an«-= j'(j "/j ')'. -

In Sec. IV w'e formulate the transverse and lon-
gitudinal frequency-dependent magnetic suscep-
tibilities y„and y~t in terms of continued fractions.
In Sec. V we sum these continued fractions and
obtain analytic expressions for the intensity spec-
trum.

The transverse susceptibi1. ity is given by

~- &o+&&o o/' &» /o&&o(2 j'-/Ho-}
X (~) = 2j'

g -*)A &22 /0 &)

+ (-,'j')(S('S,'„+H.c.)]+Hog S;

+E, b b+
( ), /, Q(S,'b+H. c.). (1.3)

+2
+ +6

p)1

The longitudinal susceptibility has the form

(1.6)
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The results reported in the present paper cor-
roborate the numerical results obtained by the
previous authors. ' ' The availability of analytic
expressions, however, permits a more complete
discussion of the spectrum, in particular of the
interesting low-field limit.

II. ANISOTROPIC I.INEAR CHAIN

A chain of Co" ions interacting with an optic
phonon is described by the Hamiltonian

ff = -2 [j'S',S;„+(-,
' j'}(S,'S-„,+H.c.)

=1

+ (2j')(S(S)~, +H.c.)]+HOQS(
)=1

+g,„h'b ~
( ~„, p(S;(t ~ H.t. .). (2 (&

Following the previous authors' ' me introduce as
basis set the unperturbed states of the Ising model
pertaining to the lowest multiplet plus a state
characterizing the unperturbed phonon, i.e.,

8" = — ) ]8],+H.c. . (2 2)

Utilizing the Bloch states (2.2} in evaluating the
energy Shift AEo1, We arriVe at the reault

b, E0, = -2j"cos(ka}. (2.4)

( )~~2 exp[f4(x(+~(n 1)a)j
~1

xS)'S,', ~ ~ ~ S,',„,(0},
eo = 5'~0&.

The Bloch states 4„' have the energies E„'=Ij'+nHo
and are orthonormal provided (0(0}=1,where ~0}
denotes the aligned ferromagnetic ground state as
well as the empty phonon vacuum (i.e., S, (0}
=b~0}=0). The normalized phonon state @' has the
energy E~h and is orthogonal to 4„.

As discussed previously, the effect of j~ does
not change the energy spectrum in any substantial
way. %e shall therefore include j~ to lowest non-
vanishing order by means of simple perturbation
theory. Since j"/j' is of order —,', such an approxi-
mation should be adequate in describing the ex-
citation spectrum of CC2.

Following Torrance and Tinkham' the energy
shift of the Ising state Co1 is to lowest order given
by Eo1 +o1*~+o1 where H is the Heisenberg part
of (2.1), i.e.,

)& cos'(-,'ka) + 2', . (2.7)

The higher-order corrections to the energy shift
again fortuitously vanish, and (2.7) is the exact
two-magnon dispersion law of the anisotropic
Heisenberg chain.

The shifts of the higher-lying Ising states 4'„'

(n& 2) are to second order in j"given by

(2.S)

We notice that to leading order (j"/j*}' the energy
shifts are the same for n&2 and furthermore are
0 independent.

We conclude that to order (j"/j')' the Heisenberg
part of (2.1}only partially lifts the zero field de-
generacy. The states of the multiplet for n&2
remain degenerate at zero field whereas the single-
magnon state and the two-magnon state are subject
to negative shifts with respect to the higher multi-
magnon states. In our treatment of the secular
problem in Sec. III, we include the effects of j" to
second order by shifting the Ising levels by the
amounts b Eo.

In a far-infrared resonance experiment the wave-
length of the incoming radiation (&.02 A) is much
larger than the lattice distance a, i.e., ka «1.
Vfe shall therefore in the following confine our
attention to the zero-wave-number part of the
spectrum.

In Fig. 1 we have depicted the energy spectrum
of the lowest multiplet plus optic phonon, including
the corrections due to j". For CC2 the shifts are

Eo1 4 Cm 1
&2 &Eom -0.6 Cm ' and

5, =A,Eo»--0.3 cm '.

Hence, the dispersion law for the single magnon
mode is to lowest order,

E, =E,'+aE,' = 2j*—2j "cos(ka)+H„(2.5)

where a is the lattice distance (of the order 4 A
in CC2) and the wave number k is restricted to the
first Brillouin zone, -v/s & k & v/a. For accidental
reasons the higher-order corrections to the energy
shift vanish identically, and (2.5) is the exact
single magnon dispersion law of the anisotropic
Heisenberg chain.

The evaluation of the shifts of 0''„(n&1) to lowest
nonvanishing order in )" requires the introduction
of a more elaborate Ising basis including the higher
multiplets. This calculation was performed by
Torrance and Tinkham' and we shall simply quote
their results.

To lowest order the shift of 4", is given by

~E,' = -2j'(j"/j')' cos'(-,'ha). (2.6)
The two-magnon dispersion law is consequently
given by

E, =E,'+n.E,'=2j'-2j '(j "/j')'
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III. SECULAR PROBLEM -ANALYTIC SOLUTION

O'=pc„g'„+a@'.
n=1

(3.2)

Inserting the expansion (3.2} in (3.1) and evaluating
the appropriate matrix elements using the Hamil-
tonian (2.1) and the basis (2.2) (for h =0) we arrive
at the following equations for the expansion coef-
ficients c„and a:

E,ha+ AC

(E', + b, )c, + Aa —2j 'c, =Ec„

(E,'+ b, ,)c, —2j 'c, = Ec„
(E„'+t&.)c„—2j '(c„„+c„,) = Ec„.

(3.3a)

(3.3b)

(3.3c)

(3.3d)

The effect of the transverse mean exchange j" is
taken into account to second order in the eigenvalue
equations (3.3a)-(S.3d) by means of the shifts t&„
A„and h.

By inspection of the equations (3.3a)-(3.3d) we
notice that the states for even values of n, the
even manifold, are dynamically decoupled from the
states corresponding to odd values of n, the odd
manifold. This is due to the fa.ct that the trans-
verse anisotropy j' induces transitions governed
by the selection rule ~4m~=2. The optic phonon
only interacts with the odd manifold. It is directly
coupled to the single-magnon mode by the matrix
element A and indirectly coupled to the rest of
the odd manifold by j'.

The boundary condition for the odd multifold
including the phonon is most conveniently expressed
by first introducing the expansion coefficient c,
as a particular linear combination of the phonon
amplitude a and the magnon amplitude c„

c,=-(A/2j')a —[(t&, —t&)/Sj']c, . (3.4}

From (3.3a) we then obtain the boundary condition

2j'c, = -A'/(E-E, „)+(t,—n)c, . (3.5)

Furthermore, with the definition (3.4) of c, the
recursion formula (S.M) is valid for n& 0. The
boundary condition (3.5) and the recursion formula
(S.M} together determine the eigenvalue problem.
Since E'„=2j'+nH, we recognize (S.M) as the re-
cursion formula'

Z„„(e)+Z„,(e) = (2n/e) J'„(e) (3.6)

The secular problem is set up along conventional
lines. %'e consider the eigenvalue equation

(3.1}

where H is the Hamiitonian (2.1}. Confining our
attention to the lowest multiplet including the optic
phonon we expand the eigenstate 4' on the basis
E~„,+ I,

c.= [(n t, )/2j—') c, (3.9)

With the above definition of c the recursion for-
mula (3.3d} is valid for n&1. By means of the
solution (3.7) and the boundary condition (3.9) we

obtain the following expression for the energy
spectrum of the e&jen manifold:

.) ~ /. ,(2j'/H. )

&e .H. ./ -~)/-. H, (-I'/tf. )

(3.10)

The expressions (3.8) and (3.10) yield the energy
spectrum of the loudest multiplet including the
phonon in terms of tabulated Bessel functions. '
Vfe notice that for A =4, =h, =~ =0 the expres-
sions (3.8} and (3.10) are in agreement with the
results obtained in II.

E5+4

E~+6,

E3+A

E, +&,

2j +D
2jz+Q
2j ++&

Ep~

E, +Q„

FIG. 1. Energy spectrum of the lowest multiplet
including corrections due to j" (arbitrary units).

for the Bessel function. As in D we immediately
obtain the explicit solution to the recursion for-
mula (3.3d},

c~ = J- &e-e„a- u h«(2j '/H, ), (3.7)

where B is an arbitrary constant. By means of
the solution (S.V) and the boundary condition (3.5)
we arrive at the following expression for the ener-
gy spectrum of the odd manifold including the
phonon.

2ja o o-&e+« -2/~-~&/2«('j /+o}
- &e «0 2/' &u-/2« -'-/ 0)

A'
+ +6, -6 =0. (3.8)

ph

In the case of the coen manifold we introduce the
expansion coefficient c„
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A. High-field limit (weak coupling }

In the high-field limit we can, as emphasized
in I, D, and III, do perturbation theory in the
transverse anisotropy j'. The effective coupling
characterizing the transitions within a multiplet
is determined by the dimensionless parameter
j '/H, . A perturbation expansion in powers of j'
thus leads to an expansion in powers of 1/Ho, i.e.,
valid at high field.

Inserting the well-known power series expan-
sion' of the Bessel function,

in (3.8} and (3.10}and utilizing the recursion for-
mula, ' I'(z+1) =zI'(z), for the I' function, we are
led to the following expressions for the energy
spectrum:

(-()" ()')'

„H -&z.+ i -&. —&'/(& -&pb) 0 (3 12)I'((E,'„„+~ —Z)/2H, }
for the odd manifold including the pLMnon, and

z —(zo, +z ) (3.15)

~2(n+1)
I'((S' +a -Z)/2H )

for the even manifold.
The expressions (3.12) and (3.13) give the solu-

tion the eigenvalue problem in terms of power
series expansions in j '/H, To finite .order in
j'/H0 the energy spectrum is determined by the
roots of two polynomials. The polynomials are
equivalent to the finite-order secular determinant
arising from the eigenvalue equation (3.1). For
purposes of illustration we consider (3.12) to
zeroth order in j'/H„

[H -Ho- ~, —~'/(H -Z,„)]/I'((Z', +~ —S)/2H, }=0.

(3.14}

The first factor in (3.14) corresponds to the secu-
lar determinant

The evaluations of (3.12) and (3.13) to higher
order in j '/H, rapidly become unmanageable ana-
lytically. Torrance and Tinkham' diagonalized
numerically a 40&40 secular matrix and obtained
excellent agreement with the experimental data
even in the low-field regime.

E =2/ +6 —4J cosAy 0~+A, ~~77

c„=asin(-,"W+ (L)),

(3.16a)

(3.16b)

where 8 is an arbitrary constant (to be deter-
mined by normalization requirements) and Q an
arbitrary phase (to be determined by the boundary
condition). In the vicinity of the lower continuum
edge, i.e., for X«1, the expansion coefficient c„
is a slowly varying function of n. Assuming that
this behavior also holds for a small but finite
field, we replace the difference term c„„+c„,
in (3.3d) by 2c(n)+4c" (s), where we have treated
c„=—c(n) as a continuous function of n. In the pres-
ence of the field the values of n for which c„ is
slowly varying depend both on the field and the
energy. By inspection of the recursion formula
(3.3d) we notice that provided (E —2j ' —n. +4j

'
-nH )«4j' the recursion formula can be written
in the form

8. Low-field limit (strong coupling)

In the low-field limit the unperturbed multimag-
non levels approach the degeneracy point 2j'+b, .
The effective coupling j '/H, characterizing the
transitions within the multiplet becomes large and
the perturbation expansion (3.12) and (3.13) cea,se
to be useful. As the field approaches zero both
the order and the argument in the Bessel function
solutions (3.8) and (3.10}assume large values and
we can as in II and III make use of a well-known
double asymptotic expansion' of the Besse) function
in discussing the low-field limit.

In the present paper, however, we shall choose
a more physical approach' and relate the low-field
properties of the eigenvalue equations (3.3a)-
(3.M) to the one-dimensional motion of a particle
of mass 1/16j' in a wedge potential consisting of
an infinite potential wall and a constant force po-
tential of slope H, .

As also discussed in II and IQ, the recursion
formula (3.3d) admits in the sero fieLd limit -the

continuum solution

describing the interaction and hybridization of the
phonon with the single magnon state. The second
factor in (3.14) vanishes at the positions of the
poles of the I' function, i.e. , for (E', +r —E)/2H,
=0, -1, -2, . . . , and thus determines the energies
E„'+6 (n & 2) of the unperturbed levels in the multi-
p1.et.

-8j'c"(n)+nH, c(n) = (E —2j ' —a +4j') (cn)

E -2j'- ~+4j' - nH, «4j'.
(3.1V)

The expression (3.1V) is the Schr6dinger equation
for a particle of mass —,', j' moving in the potential
nH, . The quantum number n plays the role of the
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position of the particle. The energy is measured
relative to the lower continuum edge 2j'+~ -4j'.

The solution of the Schrodinger equation for a
particle executing a one-dimensional motion under
the influence of a constant force is given in terms
of Airy functions'0 which, incidentally, are re-
lated to the asymptotic behavior of the Bessel
function. s For our present purposes, however, it
suffices to use the quasiclassical approximation.
For the accessible motion to the left of the poten-
tial nH, the wave function o(n) is given by the ex-
pression"

in the absence of j", i.e., for L=~, =O. The bound-

ary condition (3.23) assumes the simple form

c(0) = „, sin[16 j'p(0}'/SH, + ~v] =0, (3.25)p0t/2

i.e. , the wave function c(n) vanishes at n =0. This
boundary condition corresponds to the presence
of an infinite potential wall at n =0 and we con-
clude that the low-field energy spectrum near the
lower continuum edge of the even manifold cor-
responds to the one-dimensional motion of a par-
ticle of mass 1/16 j' in the wedge potential

&8 2fc ~+4ja) yH

&(n)=
( ),g, sm p(n')dn'+-, 'v

P kn) 5

for n& 0
Un =

[nH, for n&0. (3.26)

where p(n) is the canonical momentum

(3.16)

c(n) =
( ),g, sin[16 j'p(n)'/SH, +-,'v], (3.20)

where B is an arbitrary constant. The quasi-
classical approximatio~. holds provided the wave-
length -1/p(n) of the particle is slowly varying,
i.e., d[1/p(n}]/dn «1. Using (3.14) we obtain the
condition

16j'p(n)'/H, » l. (3.21)

The quasiclassical condition (3.21) together with

the assumption (3.1V) yield the bounds

H, /16 j'«p(n)'«1, (3.22)

which can only be satisfied provided H, /16 j'«1,
i.e., in the low-field limit.

In order to determine the energy spectrum in
the low-field limit we invoke the boundary condi-
tions (3.5) and (3.9). For the even manifold we
obtain

P(2) '~' sin[16 j'P(0)'/SH, +-,'v]
P (0)»n[16j'P (2)'/SH, + l v]

(3.23)

whereas for the odd mani fold including the phonon

the boundary condition assumes the form

(
p(1) '~' sin[16j'p(-I)/SH„+-,'w]

p (-1} sin[16 j'p (I )'/SH0+ -,' v]

1 E-E
Before we discuss the implications of the rather

complicated boundary conditions (3.23) and (3.24)
it is elucidating to consider the even manifold

p(n)=[(H-2j'-n+4j'-nH, )/Sj']'». (3.19}

Evaluating (3.18) using (3.19) we arrive at the
expression

At a nonvanishing field the motion is bounded by
the potential walls and the energy spectrum is
discrete. As the field approaches zero the motion
becomes unbounded in the right half-plane and the
discrete spectrum undergoes a singular transition
to a continuous spectrum.

The explicit form of the energy spectrum is ob-
tained from the boundary condition (3.25),

16j'P(0}'/3H, + v=v(v+1), (3.2'I )

where in the quasiclassical approximation the in-
teger v is large and positive. The expression
(3.2'I) is readily recognized as the Bohr-Sommer-
feld quantization condition for the quasiclassical
motion in the potential (3.26),

2j~ + &i ~) /00
p(n'} d'n' =r(v+-,'} . (3.28)

Solving (3.2'I} for F. using (3.19) we arrive at the
expression

E = 2j' —4j'+ 2j' [SrH, (v+ &)/2j']"' (3.29)

X —= [SwH, (v+ f)/2j']"' (3.30)

for v ~, 00-0, and «& l. Similarly, it can be

which coincides with the energy spectrum derived
in Sec. II. In accordance with the bounds (3.22)
this expression is only valid for v~~ 1 and @v+~)/

The analysis in II shows, however, that
(3.29) is valid even in the low tluantum-number
limit provided we choose the field small enough.

The expression (3.29) exhibits the singular na-
ture of the zero-field transition. The energy
spectrum in units of j' has an algebraic singular-
ity of order ——, in the coupling parameter j'/H, .
The energy spectrum is thus not differentiable in

j'/H, and could not have been obtained from finite
order perturbation theory in j'/Ho Since d&/dHo.
-0,"' the energy levels approach the lower band
edge 2j' —4j' with infinite slope. By comparison
of (3.29) with the zero-field spectrum (3.16a) we
infer the correspondence
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shown that the wave function (3.20) assumes the
form (3.10b) in the zero-field limit.

For the odd manifold in the absence ofj" and in

the absence of the phonon coupling, i.e., & =4, =A,

= 0, the boundary condition (3.24) takes the form

c(- 1)= [H/P(- 1)"']sin[16j'P(- 1)'/3H, + —,'s] = 0

(3.31)

corresponding to an infinite potential wall at n = —1.
In a similar fashion to our derivation of (3.29) we
obtain the spectrum

The density of states has a square-root depen-
dence on the energy at the lower band edge and
diverges as the field approaches zero.

In Fig. 3 we have plotted the density of states
near the lower band edge.

The presence of the transverse mean exchange
j" and the optic phonon gives rise to energy-de-
pendent phase shifts of the quasiclassical wave
functions.

From the boundary condition (3.23} for the even
manifold we infer

E =2j ' —4j '+2j'[[3n'Ho(v+ ~)/2j ']'I' Ho/2j—'f .
(3.32)

16j 'P(0)3/3Ho+ gs = Q,„,„+s(v+ 1)

E=2j'+b -4j'+2j'

(3.35)

We notice, however, that to leading order in
Ho/j' the expressions (3.29) and (3.32) are identical.
In the low-field limit the strong effective coupling
(j'/H, ~& 1) between the levels renders the spec-
trum insensitive to the boundary condition.

In Fig. 2 we have sketched the wedge potential
U(n) and the energy levels in the case of the even
manifold.

In order to examine the accumulation of energy
levels in the vicinity of the lower band edge it is
instructive to evaluate the density of s&a&es p(E)
in the low-field limit. The density of states is
given by

&& [3',((f&,„,„/s + v + —,')/2j']"', (3.36)

(3.37)

The boundary condition (3.24) for the odd mani
fold including the Phonon yields the spectrum

where & is a positive integer. The phase shift

Q,„,„ is to lowest order in (& —4,)/2j' [for CC2

(& —d, )/2j' is of order —,',] and to leading order in

H, /j' given by

P(~) =Q o(&-&.) =d@ d
1 (3.33) 2jg g 4 jQ 2jc

From (3.29} or (3.32) we obtain

p(&) = (I/2&)(I/H, )[(E 2j '+ 4j ')/2—j ']"' .
(3.34)

&&[[3sH,(@.«/v+ v+-,')/2j']2'3 —Ho/2j '].
where & is a positive integer. The phase shift Q.«
is to leading order in Ho/j

' and near the lower
band edge given by

I IG. 2. W'edge potential and the energy levels in the
case of the even manifold {arbitrary units).

FIG. 3. Density of states near the lower band edge
{arbitr ary units).
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[tt - tt, -A'/(2j'+ tt —4j' E-, ) ]2)t(3ff,/16j')"'(t + -')

t) -t), A-'/(2j'+tt. —4j'-EO„)-2j' (3.39)

The phase shifts Q,„and Q~ due to the altered
bounda, ry conditions are vanishingly small in the
low-field limit and in the vicinity of the lower band
edge. Similarly, the density of states (3.34) is un-
changed.

In Sec. 7 we continue our discussion of the low-
field energy spectrum; in particular, the hybrid-
ization of the phonon with the odd manifold and the
separation of the single magnon and two-magnon
states from the continuum states.

1V. MAGNETIC SUSCKFTISII.ITKS-
CONTINUED FRACTIONS

A convenient and compact theoretical descrip-
tion of the results obtained in a far-infrared
transmission experiment on a magnetic system
is afforded by introducing the uniform frequency-
dependent xnagnetic susceptibilities. "

The magnetic susceptibility is defineB as the
linear response" of the magnetization of the sys-
tem to a uniform oscillating magnetic field. In
order to derive an explicit expression for the sus-
ceptibility we add the dipole term

C=& tSt&

l(t ne tate-tt-)p nSn (4 1)

to the Hamiltonian (2.1). The causal character of
the magnetic response is taken into account as
usual by adiabatically switching on the m~etic
field. This is accomplished by introducing the
factor e " in the definition of the uniform oscil-
lating magnetic field,

ttn(t) = ,'(h "e t~-e "+c.c.) . (4.2)

Tt/ ~ ' +1 n ~ Qm mo Som lllO- (« +is), ~ ( ~ '«) )Bm

The magnetic fieM interacts with the total magne-
tization,

Ã

u =y s =P y"s; (4.3)
i=1

by the usual dipole coupling. y" is the effective
g factor (in units of the Bohr magneton p, tt), and
the index o. runs through the Cartesian compo-
nents x, y, and &. From ordinary time-dependent
perturbation theory' ' "we obtain to linear order
in h the following expression for the driven part
of the total magnetization".

6M" (t) =y"6s"(t)

In the expression (4.4) S „ is the matrix element
4(og";=,S,"4'„, where )it„ is an eigenstate of the
Hamiltonian H with energy E„(H4'„=E„4'„) T.he
excitation energy E„-E„is denoted by ~ „.
Since the system is initially in the ground state
4'0, we have computed the average value of the
magnetization in the ground state. From (4.4)
we conclude that the uniform frequency-dependent
susceptibility at zero temperature is given by

s s'
gN ~ (O — &O+if

ltd
mO

Om mO
SB fx

~ ( ~ ««) )
(4.5}

For future references we give here the corre-
sponding expression at finite temperature.

X "(~+tf)=
2~ g P. y

lS tt ill ll

S5
tl m lt 8

(t) „+((tP + tf }

(4.6)

In (4.6) we have averaged over the initial states
4„with the Boltzmann weighting factor

P„=exp(- E„/tts T) Q exp(- E„/tttt T),

T is the temperature and 4'~ is the Boltzmann con-
stant.

As in I, it is convenient to discuss the dynamical
properties in terms of two normalized magnetic
susceptibilities, g (z) and y(((e), corresponding to
transverse and longitudinal polarizations, respec-
tively. Consequently, we introduce

x~(~+tf}= t)( I I«„-(«+i«) +(I«+ '«) )+

(4.7)

y. )) (~+ tf) =
2~ g I s'„,I

'
m mO

j.
~ ( i«))

(4.&)

Sg8&-i ttt t (4.4) where S' =S' +iS'
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The magnetic susceptibilities g and g, are in
general complex corresponding to a phase differ-
ence between the driving field and the magnetiza-
tion. Employing the well-known relationship
I/(&o+ i~) = P(1/&u) —ivy(&u) we obtain

X . ()
(~+ i&) =X

t,
(~) + fx, „(~) (4.9)

where the real (reactive) and imaginary (dissipa-
tive) parts, X,

'
o

and X o

Is'„I (s-
Ix', (~) = & +

2N (d~ —(d C0~+
m

(4.10)

x",((u) =2 g [Is',I'5(~ —~}

These dispersion relations are associated with
the causal character of the response and express
general properties of the magnetic susceptibility.
In order to deduce the structures of g and Xll for
the particular Hamiltonian in question it is con-
venient to express X a gII a

X,(z)= [los (H E, --z) '

xs'4, +4,*S (H-Eo+z) 'S 4,]

(4.18}

Xo( )=,* '[(

-Is..l'&(~ +~)l (4.11) +(H-E, +z) ']S'q, , (4.19)

and

(4.12)

x„( )=

X[0{m o
—&u) —O(u o+&u)]

(4.13)

The phase difference &Q, II between the magne-
tization and the driving field is given by

=Xz, o /XI (4.14)

In the zero-frequency limit the response is static
and the magnetization is in phase with the driving
field. For each resonance & ={d p that we pass
through, the phase difference increases by m.

Only at resonance does energy absorption take
place, and it is easily shown" that the relative
intensity spectrum is given by the expression

f., ii(~) =~X",.„(~) . (4.15)

From the expressions (4.10)-(4.13) we arrive at
the following useful spectral representation:

x.".o(~')

In particular, we deduce the well-known Kramers-
Kronig relations for the reactive and dissipative
parts of the magnetic susceptibilities

where we have introduced the complex variable &.

In arriving at (4.18) and (4.19) we have removed
the set of intermediate states 4'„ in (4.7) and (4.8)
and instead introduced the resolvents (H —Eo+z) '.
Confining our attention to the lowest multiplet in-
cluding the optic phonon we insert as intermediate
states in (4.18) and (4.19) the unperturbed Ising
states 4'„' and the unperturbed phonon state 4'.
As in Sec. II, we include the effects of the trans-
verse mean exchange j" by shifting the Ising levels
correspondingly. By inspection of the energy
spectrum we notice that 4, ~S'4'p ls of order unity
whereas C„o*s'4'o (& e1) and qo„*s 4o are of order
j '/Eo and Co*s'4'o is of order A/E„„. We thus ob-
tain to leading order the following expression for
the transverse susceptibility:

X (z) I4~o*S 4oI ohio*(H —E z)- 4o

(4.20)

Similar arguments lead to the following expres-
sion for the longitudinal susceptibility:

x „(z)=—
I

@o*s'@ I
o4 o* [(H —E —z) '

+(H —Eo+z) ~]q'oo .

(4.21)

Notice, however, that I4oo*s'q'oI' is of order
(j /E, )'. Expressing the resolvent (H -E,+z) '
as a quotient of the cofactor cof(H-E, xz) (defined
such that A 'cofA =detA) and the determinant
det(H —Eosz} we arrive at the expressions

and

d ' {X', „( '))

(4.17a)

(4.17b)

(z) I
@oos+@

I
2 @Oo ( o } @0

det(H —E —z}

(4.22)
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x ()=
2H ' ' ' det(H E-, -~)

x )i)0+ (z - -z) (4.23)

In the basis (4/0, 4'} the operator H —E,+ z as-
sumes the form

80+a, *Z -22

E~+6 as
-22

E +has
(4.24)

It is now an easy task to express X,& and XII as continued fractions. The matrix element
@,*cof(H E,+&)+-', is obtained by deleting the second column and the second row in (4.24) and computing
the determinant of the remaining matrix. The matrix element 4', cof(H —E~+ z)4/, is found in a similar
way by removing the third column and row and evaluating the determinant of the resulting matrix. As seen
by induction the (Iuotients 4, ~ cof/det4'o, and 420* cof/det4/2 are expressible in terms of infinite continued
fractions. %'e thus arrive at the following expressions for the transverse and longitudinal susceptibilities:

(4.25)

and

(4.26)

The continued fractions (4.25) and (4.26) clearly
exhibit the admixture effects caused by the trans-
verse anisotropy j' within the Ising-Heisenberg
multiplet.

l.e.,

x = I4* 4'I'x1
0

V. ENERGY AND INTENSITY SPECTRA-
ANALYTIC SOLUTION

In Sec. IV we derived expressions for g, and XII

in terms of continued fractions. Since our aim is
to discuss the relative intensity spectrum we in-
troduce the two reduced susceptibilities:

x, )

=
2 I 4'(~)5'@2

I
'x

„

Employing the results of III we obtain immedi-
ately closed analytic expressions for X and Xtl

'.

(,) x'(&)
I+[~'/(~ -E,„)+n, -n]x', (~)

x (~)=-

x„(&)=—

(2j')'
z —E,'- n, —(2j')'/(z —E,' —4 —.)

(5.1}

(2j')'.-E, -n, -(2j')'/(. -E;-n -. )

x'„'(~)
X))( } I (~ r) 0+(g)

where

(5 5)

(5.6)*& ( )" ) )-~ .".1

2j ~ ~~+a,-~'-~ii28 (22"/H0)
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Apart from the shift 4,X' is the transverse sus-
ceptibility and X, is the positive frequency part
of the longitudinal susceptibility in the absence of
the transverse mean exchange j' and the optic-
phonon coupling A.

A. High-field limit (weak coupling)

As in our discussion of the high-field limit of
the energy spectrum in Sec. III we make use of
the power-series expansion' (3.11) of the Bessel
function.

( I)n ja 2n 1
n! H, I'(n+1-(z H, --2j' 6)-/2H, ) ~ p! H,

and

(2p+1)H„+2&'+ &, +A'/(z —E,h ) —z
I'(P+I -(z -H, -2j' t )/2H, )

( I )tl jC (- 1)'
I(n+ 1 —(z —2H —2j —d )/2H ) ~ p! H

(5.8)

2(P+ I)H, + 2j' + 6, —z
I"(p+ 1 —(z —2H —2j' —d.)/2H )

(5.9)

8. Low-field limit (strong coupling)

In order to discuss the low-field limit it is use-
ful to express (5;4) and (5.5} in the form

x, (z)= P (5.10)

where g' is the positive frequency part of the lon-
ll

gitudinal susceptibility x~~.

To finite order in j '/Ho the intensity spectrum
is determined by the quotients of two polynomials.
The polynomials are equivalent to the finite-order
secular determinant and cofactor discussed in
Sec. IV. Beyond second order in j '/H, the expres
sions (5.8) and (5.9) become unmanageable analyt-
ically. ¹icoliand Tinkham, ' however, computed
numerically the appropriate eigenvectors pertain-
ing to a 40X40 secular matrix and obtained excel-
lent agreement with the experimental data on the
intensity spectrum.

(uo =2j'+4 -4j'+2j'

x [3vH, (v+ —,')/2j']"' O+(H, /j ') (5.14)

In accordance with our discussion in Sec. III the
spectrum near the lower band edge is to leading
order in H, /j

' unaffected by the presence of the
optic phonon and the transverse mean exchange.
Similarly, the intensities near the lower band
are to leading order given by

I:„=I
~~

„=H,/I'+O((H, /f')"') .
For the trmgsve~se suscePtibility we obtain in

the low-field limit and near the lower band edge

A2
~, v =~v+ .c ~ a ~ @ ++I + Ii, v

(5.16)

I „=I', „+O((H, /j ')"' ) (5.1.'I)

(5.11)

IO
x'.(')= Q 0 '", (5.12}

where we have introduced the discrete resonance
contributions to the susceptibilities. From III we
have I

(d~ Z +Z-S
h ~O„-Z

ph

(5.18)

In terms of the two independent resonance contri-
butions to X~ we get

The hybridization of the optic phonon suith the

pth multimngmon level is easily discussed in terms
of the transverse susceptibility (5.10). For ener-
gies and fields near the hybridization point the
susceptibility assumes the form

x"(z}=Q „0 '",
v

(5.13) x„(z)= - " +(d~-Z g), —Zph
(5.19)

where to leading order The perturbed phonon and magnon energies are



MAGNETIC EXCITATION SPECTRUM OF CoCl, ~ 2H, O

(5.20)

IIE + (00 [(E ~0 )2 + 4g2f 0 ] I/2].

(5.2l}

The phonon and magnon intensities are

E22 —(00 +[(E22 —~0)2+4A2f 0 „]'"
[(E„-;)"4~'f'-, J'"

(5.22)

Eph

E)

I/ I/+( g ) II I/ (5.24}

0)'„—E22+[(E22 —(u'. )'+4A'I', „]"'
[(E 0)0)2 + 4+2f 0 ]I/2 J. , )I'

(5.23)

In a similar manner we get for the longitudinal
susceptibility in the low-field limit near the lower
band edge

FIG. 4. Low-field energy spectrum (arbitrary units).

zero-field energy band) allows a more complete
discussion of X and X], than in the low field case.

At zero fieM ere conclude from III that y and

g
' are identical. Denoting the common suscep-

]l

tibility by y we have

The intensities are to leading order given by

f)(,.=I )),.+ o((H, li ')"'& . (5.25)

0 z
z 2j' ~ -[( -2j'-~)'-(4j')']"'

(5.26)
In Fig. 4 we have sketched the low-field energy

spec trum.

C. Zero-field ligut

X0(z) has the spectral representation

.(,)
"' (/'"( ))

In the zero-field limit the simple branch cut
structure of X0~ and X )(' (corresponding to the

where the imaginary part (the dissipative part}
ls

x'"(&)= '
2(2j' ', ,[(4j'+ 2j'+ & —~)

&&(0P —2j'-6+4j')]'" for —4j'&ur —2j' r2&4j'- (5.28)

0 otherwise.

The real part (the reactive part) X0' is

..(~-2j -&)1
2(2j')'

x"(~)= ~

for -4j

-2(2j) [ -"'-
—[ ((0 —2j' —&)2 —(4j')']'"] otherwise.

(5.29)

(5.30)

The two-magnon bound state is split off from the
band and has the energy

&y means of (5.5) and (5.28 }we can express the
longitudinal susceptibility in the form

+ I x'"(~)
L~) = +

II
(dt] 2 —Z

~„,= 2j'+ r, (2j'}'y(a —a,)—,

and the intensity

(2 ')'
)( (d —2j'- ~ +(2j')2/(6 —6,)

(5.32)
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X~(4) )

Ho»&

Hc

H() )) )

Hc

FIG. 5. Transverse susceptibility as function of
energy and field (arbitrary units).

FIG. 6. Longitudinal susceptibility as function of
energy and field (arbitrary units).

The modified intensity spectrum corresponding to
the energy band has the form

and has the linewidth

(2 &)' =
[l ~/2 ..),],{[l—(4/2j')']A'8/2i')'

The transverse susceptibility has a more com-
plicated structure due to the hybxidization with
the optic phonon. Neglecting for simplicity the
split-off single-magnon state we express y, (&)

in the form

, (,) f -(-.;(-)) (5.34)

&,), [l —2 (&/2j')]-2 Q/2j')'(2i'+ &)
0 l —(&/&i')'

(5.36)

where the intensity spectrum is given by

(~ —&,h )'x'"(~)
[l —(&/2j')'] [( —,)'+ (-'f")'] '

Since the phonon falls within the band it modifies
the intensity spectrum drastically. The intensity
spectrum vanishes quadratically in the vicinity of
the unperturbed phonon energy. The continuum
states are pushed away by the phonon and result
in a modification of the intensity spectrum as
shown by the Lorentzian factor in (5.35). The
Lorentzian is situated at

(5.37)

Notice that the center of the Lorentzian coincides
with the phonon energy when the phonon falls in
the middle of th~ band.

The single magnon state is split off from the
band and gives rise to a separate resonance con-
tribution. Neglecting the presence of the phonon
the position and intensity of the single magnon
state are given by (5.31) and (5.32) with 6, re-
placed by 6

In Figs. 5 and 6 we have sketched the relative
intensity spectra pertaining to the transverse and
longitudinal susceptibilities, respectively, as
functions of energy and field.
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