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A linear hydrodynamic theory for the spin dynamics of easy-axis antiferromagnets in an applied

magnetic field is outlined, with particular emphasis on the behavior along the second-order line

including the region near a tricritical point. Expressions are obtained for the co,q-dependent spin

susceptibilities. In the paramamagnetic phase; the dynamic staggered susceptibility is characterized by a

single peak at co = 0. In the antiferromagnetic phase, at long wavelengths, a three-peak structure is

found: two narrow peaks centered at m = 0 with widths proportional to q', which are associated with

the coupled magnetization-energy fluctuations and a broad peak, also at co = 0, which characterizes the

adiabatic, isomagnetic decay of the staggered moment. The relative weight of the broad peak is equal

to the ratio of the adiabatic staggered susceptibility at constant magnetization to the isothermal

staggered susceptibility at constant field. The coupling of the magnetization-energy fluctuations also

affects the frequency dependence of the uniform field susceptibility. The temperature dependence of
~arious parameters in the theory is discussed in light of static scaling laws and a brief comparison is

made with the hydrodynamics of antiferromagnets in and near a spin-flop phase.

I. INTRODUCTION

In recent years considerable attention has been
paid to phenomena connected with so-called tri-
critical points. The term tricritical, introduced
by Griffiths, ' refers to a point in an appropriate
thermodynamic phase space which is the inter-
section of three lines of second-order transitions.
In addition to the familiar He'-He' mixtures,
Griffiths also called attention to the fact that tri-
critical points may be found in certain antiferro-
magnets which undergo metamagnetic transitions;
e.g. , dysprosium aluminum garnet (DAG), Feel„
¹(NO,) 2H, O.

Up to now the emphasis in tricritical work has
largely been on obtaining an understanding of the
thermodynamic features of the transition, as
distinct from the dynamical characteristics. Since
an understanding of the dynamics must rest in-
evitably upon thermodynamic foundations, the lack
of attention paid to the dynamics is understandable.
However, in the past few years considerable prog-
ress has been made in tricritical thermodynamics
through scaling law, 2 renormalization group, 3 4

and numerical studies. ' ' In view of this, it seems
appropriate to begin to develop corresponding
theories of tricritical dynamics.

To our knowledge, the only work on tricritical
dynamics which has appeared in the literature is
that of Kawasaki and Gunton' who formulated a
mode coupling theory for He'-He' mixtures. In

this paper we outline a theory for the dynamics
of uniaxial antiferromagnets which show' tricritical
behavior. In spite of the similarities in the tri-
critical thermodynamics, dynamical phenomena in

antiferromagnets differ significantly from dynami-
cal phenomena in the mixtures. As a consequence,
our approach and results are altogether different
from those of Ref. 7.

Briefly, our work is an extension of previous
studies of the critical dynamics of uniaxial easy-
axis antiferromagnets' ' to the situation w'here

there is a magnetic field along the easy axis. In
the analysis, particular emphasis is placed on the
behavior near a tricritical point. It is a quasi-
hydrodynamic theory which carries with it the
understanding that it characterizes only the long-
wavelength low-fret(uency response of the system.
The regions of applicability of the theory are dif-
ficult to determine precisely; however, we expect
the theory to be limited to frequencies w «min
x (ZT, &u,„), where ~,„ is a characteristic exchange
frequency, and where wavelengths are much
greater than the lattice spacing. Also, the theory
is phenomenological in spirit. That is, expres-
sions obtained for the dynamical susceptibilities
involve both thermodynamic functions, which can
be calculated provided the thermodynamic equation
of state is known, and dissipative parameters
characterizing the relaxation of the fluctuations in
the thermodynamic variables. Although formal
expressions for the relaxation rates are given,
reliable quantitative estimates appear to be im-
possible to obtain at this time. Thus the useful-
ness of the theory, in addition to giving a quali-
tative picture of the dynamics, lies in providing
functional forms which can be fit to experimental
data in order to determine empirical values of the
parameters.

Hydrodynamic theories such as ours probably
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will be most useful. in interpreting the results of
inelastic-neutron-scattering experiments. Un-
fortunately, scattering studies of tricritical be-
havior in antiferromagnets have so far been. either
difficult to interpret (DAG)" or else hampered by
experimental difficulties (FeCl, )." As a conse-
quence there are as yet no data to which we can
apply our theory. However, it is hoped that the
availability of a hydrodynamic theory will stimu-
late experiments to probe tricritical dynamics.

II. PRELIMINARY ANALYSIS

We begin the deve1. opment of the hydrodynamic
theory with a discussion of the systems to which
it may be applicable. As anticipated in the Intro-
duction, we shall be concerned with antiferro-
magn. ets which in zero field undergo second-order
transitions from a paramagnetic to an antiferro-
magnetic state. We assume that the anisotropy
is such that the system has an easy axis of stag-
gered magnetization, which is to say that in the
ordered state in zero field the electronic moments
are aligned either parallel or antiparallel to a
particular crystallographic axis, which we refer
to as the c axis. We also postulate that the (in-
ternal} magnetic field, when present, is also
along the c axis. (Hereafter, magnetic field will
be taken to mean internal magnetic field. )

It should be noted that all uniaxial easy-axis
antiferromagnets do not display tricritical be-
havior. Many antiferromagnets show evidence of
a low-temperature spin-flop phase in high mag-
netic fields. For reasons which will become ap-
parent, our theory does not apply to antiferro-
magnets in or near (in the sense of phase space)
the spin-flop phase. "

A further assumption pertains to the rotational
symmetry of the Hamiltonian. We postulate that
the dominant terms in the spin Hamiltonian are in-
variant with respect to rotations about the c axis.
This assumption, which is appropriate for sys-
tems like FeCl„has the consequence that the
longitudinal component of the total spin, or mag-
netization, is an approximate constant of the
motion. This symmetry leads to a significant
simplification in the analysis of the kinetic equa-
tions in the long wavelength limit. However, cer-
tain aspects of the analysis are independent of
this assumption, as will be made clear below. In
addition to the rotational symmetry, we assume
that the spin system is weakly coupled to the crys-
tal lattice so that we may speak of a local spin
temperature distinct from the lattice temperature.

As mentioned in the Introduction, the theory
outlined here represents an extension of earlier
theories of the critical hydrodynamics of uni-

axial antiferromagnets' ' to situations where a
magnetic field is present. Because of this it is
worthwhile to review the findings of Refs. 8-10.
This we do now.

In formulating a hydrodynamic theory it is neces-
sary to identify the appropriate hydrodynamic
variables. In the case of uniaxial easy-axis anti-
ferromagnets with the aforementioned rotational
symmetry, these are the longitudinal (i.e. , paral-
lel to the c axis} component of the magnetization,
and the energy density, both of which, being ap-
proximately conserved, have long wavelength
fluctuations which are slowly decaying in time.
In addition, near the Neel point, the longitudinal
component of the staggered magnetization under-
goes critical slowing down with the consequence
that it, too, must be counted among the hydro-
dynamic variables.

The hydrodynamic equations lead to expressions
for the dynamic susceptibilities, X„„(q,+), func-
tions of "wave vector" q and frequency ao, which
are associated with the variable A. In zero field
the magnetization of an antiferromagnet is zero
both above and below the Neel temperature T„.
As a consequence, the fluctuations in the longi-
tudinal component of the magnetization M(q}, are
decoupled from the fluctuations in the energy den-
sity E(q), and the staggered magnetization N(q)
[In the case of ~(q) and E(q), q is a measure
of the distance from the center of the Brillouin
zone. In the case of N(q), it is a measure of the
distance from the antiferromagnetic superlattice
point. ] In the hydrodynamic regime the imaginary
part of the corresponding dynamic susceptibility
has a Lorentzian form:

X»»(q ~ &) D»q
&X»»(q) & +(D»q )

where D& is identified with the spin diffusion con-
stant. [Here and in subsequent usage q' will stand
for the more general form s,q'„+a,q'„+a,q', .]

In contrast, when T & T„the fluctuations in the
staggered magnetization are coupled to the fluc-
tuations in the energy density since siq/8T 0,
N denoting the staggered magnetization. This
coupling leads to a two-component expression
for X»»(q, &u):

X»»»(q~ ~) ~X I » + I ~ D»q
~X»»(q) Xr ~'+(I'»)' Xf ~'+ (D»q')' '

where y~ is the isothermal staggered susceptibility,
g~ is the adiabatic staggered susceptibility, I'*„
denotes the adiabatic decay rate of the staggered
magnetization, and D~ is the thermal diffusion
constant for the magnetic lattice. Above T~,
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Xf =)&f. so that only the first term of (2) is present.
Equation (2) is seen to describe a decay process

characterized by two time constants, fast adia-
batic decay at the rate I"„* followed by the slow
diffusive decay of the induced energy density or,
equivalently, temperature fluctuations. Experi-
mental evidence supporting this equation comes
from inelastic-neutron-scattering studies of
MnF, (Ref. 14) and FeF, ." However, it should
be mentioned that below T~ only the slow relaxing
component of g~~ has been observed; it is be-
lieved that the adiabatic part is obscured by the
background.

A magnetic field along the e axis gives rise to
a magnetization M which is also a function of the
staggered field H* and the temperature. As a
consequence M(q) becomes coupled to N(q) in the
ordered state in addition to being coupled to E(q)
both above and below the transition. Because of
this coupling )ts„/&u}I» becomes the sum of two
Lorentzians each having a width proportional to
q', which characterize the evolution of the coupled
M(q)-E(q) modes.

Similarly, in the ordered state g„"„/rug„„ in-
volves three Lorentzians, a fast relaxing term
with relative w'eight equal to the ratio of the adia-
batic staggered susceptibility at constant mag-
netization to the isothermal staggered suscepti-
bility at constant field, and two slow relaxing
terms with w'idths proportional to q' which are
associated with the coupled M(q)-E(q) modes. In
the paramagnetic state the diffusive terms are
absent so that the fast relaxing part has unit rela-
tive weight. This form is seen to be a generaliza-
tion of the zero field result, Eq. (2), which comes
about because below T„ the staggered magnetiza-
tion is coupled to two conserved variables, the
longitudinal component of the magnetization and
the energy density.

In Sec. III we develop a mathematical description
of the hydrodynamics in the field corresponding
to the physical picture outlined above. In Sec. IV
we present the results of the analysis of a simple
model which yields analytic expressions for g~„
and y+&. In Sec. V we comment on the temperature
dependence of g' with reference to the second-
order line and the tricritical point. Finally, a
brief comparison is made with the hydrodynamics
associated with the spin-flop phase.

III. KINETIC EQUATIONS

In order to develop a mathematical description
of tricritical spin dynamics we make use of the
kinetic equations proposed by Mori. " In the Mori
formalism a set of appropriate dynamical vari-
ables is singled out along with a corresponding

inner product. Identifying the variables with the
elements of a column vector A(t) Mori showed
that A(t) satisfies the exact equation of motion

A'-i(u A+ ds j(t- s) A(s) =f(t),

The symbol + denotes the frequency matrix

i((u), ) = Q (A', At)„((A, At) ')„,

in which (A, At) ' is the inverse of the generalized
susceptibility matrix defined by

(A, A~)„=(A„Aq~),

where the dagger implies Hermitian conjugate.
The symbol («, b) will be used to denote the inner
product:

where X is the Hamiltonian, / = I/KT, and the
brackets denote a statistical average.

If a projection operator 6' onto the space spanned
by the dynamical variables is defined by

6'G (G At). (A At)-, A

where G is an arbitrary vector, and (G, At) is
defined in a manner analogous to (A, At), then

f(t), the "random force, " can be written

in which 2 is the Liouville operator associated
with the Hamiltonian 3C. The vector f(t) can be
shown to be orthogonal to A in the sense

(f(t), At)=0.

Also, in Eq. (3) the symbol P(t) denotes a matrix
defined by

In applying the Mori formalism it is necessary
to identify the appropriate dynamical variables.
The analysis of Sec. II suggests M(q), E(q), and

N(q) as the appropriate set for uniaxial antiferro-
magnets. Two comments are appropriate here.
First, by omitting products such as E(q, )M(q, },
M(q, )M(q2) we are in effect formulating a linear
theory of tricritical dynamics. Since the linear
theory appears to be a satisfactory first approxi-
mation for easy-axis magnets in zero field, in-
cluding nonlinear effects at this level of analysis,
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(&,'(q), &,(q)') = f &[&g(q), &g(q)']),

it ean be shown that with our choice of variables
the frequency matrix ro is equal to zero.

In applying Eq. (3) to the variables N(q), M(q),
and E(q) it is convenient to replace the variables
by their normalized counterparts

&,(q) = N(q)/(N(q), N(q)')'",

A, (q) = M(q)/(M(q), M(q) ~)'~',

&,(q) = ~(q)/{&(q), &(q)')'" .
Equation (3) with ~ =0 and A, as given by Eqs.

(13)-(15)are the fundamental equations in the
theory. By taking the inner product of A(t) with
At we obtain the relaxation matrix (A(f), At)
which, in turn, ean be related to the imaginary
part of the dynamic susceptibility through the
equation"

(13)

(14)

(15)

x„' „(e,e)/ex„„(e)=Re J e'"'(X((), Xx)„e(,

(15}
where Re denotes real part.

Since ( f(f), At) =0 it is evident that f(t) contrib-
utes to (A(t), At) only through Q(t). Because (t)

cannot be calculated exactly, further approxima-
tions are required. These fall into two categories.
The first pertains to the matrix (A, A ). The
diagonal elements of (A, A ) are equal to 1 since
the A. , are normalized. %e approximate the off-
diagonal elements by their limiting values as q-0.
Strictly speaking, this limits the applicability of
the theory to wavelengths which are much greater
than any of the correlation lengths associated with
the static susceptibilities g» (q). Such an ap-

seems unwarranted, The second comment per-
tains to the absence of the transverse components
of the magnetization and staggered magnetization.
%e argue for their omission on the following
grounds. The postulated absence of rotational
symmetry about axes perpendicular to the c axis
has the consequence that fluctuations in the trans-
verse components of the total spin decay rapidly
on a hydrodynamic time scale. Similarly, it is
argued that since it is postulated that the system
is not in or near a spin-flop phase, the transverse
staggered static susceptibilities do not show di-
vergent behavior. As a result, fluctuations in the
transverse components of the staggered magneti-
zation do not undergo thermodynamic slowing
down and hence are not to be included among the
hydrodynamic variables. (Note that this argument
does not rule out nonhydrodynamic transverse
spin waves. ) In addition, by making use of the
identity"

proximation is compatible with the hydrodynamic
character of the theory, and can always be re-
laxed should it prove necessary in applications.
As a result of the approximation, we can write
the off-diagonal elements of (A, At) in terms of
thermodynamic functions. %'e have

(A, At}„=1, (A, A~), ~ =(A, At)~, ,

(X, X')„=(,z) (x; x,)"

(X, Xe)„=x'e
&) (X,C„)'e,

where X~ is the isothermal uniform field suscep-
tibility, gf, is the isothermal staggered suscepti-
bility at constant field, and C~ is the specific heat
at constant field. It is also understood that 8N/8H,
8N/8T, 8M/8T, Cx(, and gr are to be evaluated at
fixed staggered field.

The second approximation pertains to the matrix
(f, f(-I) ). By construction, f is orthogonal to A.
Hence if A includes all the hydrodynamic vari-
ables, then {f,f(-t) ) will decay rapidly in com-
parison with {A(f),A ). This suggests that we
approximate the elements of {f,f (-t)t) by terms
of the form const x 8(t) with the consequence that
Eq. (3) takes the form

A'= —I' (A, At) ' ~ A, (21)

having omitted f(t). The Hermitian matrix I' is
related to {f,f(-t)t) by

(22)

Equation (21) leads to expressions for g'/~g
which are essentially Lorentzian in form with
frequency-independent widths. This approxima-
tion, also, can be relaxed in a straightforward
way by allowing for a finite decay time for
{f,f(-f) ). However, because of the success in
fitting the zero field data to Lorentzian forms"' "
such an elaboration does not appear to be required
at this time.

Although independent of time, the matrix I is a func-
tion of q. Since M(q=0) and E(q=0) are constant
apart from basal plane anisotropy and spin-lattice ef-
fects, the corresponding elements of I", I"», and
X'», j=1,2, 3, must vanish as q-0. However,
we expect I'» to remain finite in the same limit
since N(q =0) does not commute with the Hamil-
tonian.
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IV. MODEL CALCULATIONS

A. Analysis

The calculation of the relaxation functions
(A&(f ), AJ} from Eg. (21) presents no particular
difficulties. However, instead of presenting the
results in full generality we choose to make the
further approximation of neglecting the off-diagonal
elements of I". Such an approximation simplifies
the algebra while preserving the essential features
of the physics. Thus we take I" to be of the form

where the matrices U and V are defined by

U=(A, At),

V = U ' = (A, At) '.

Also we have

r„=V„I„,
D~ =(I —U23'} 'D~,

D, = (I —U„')-'D, .

The s, denote the decay rates of the coupled
M(q) E(q) -fluctuations and are given by

(26)

(27)

(28)

(29)

(30)

0 0 D~q

(23) s, =(q'/2)(D„+D ~ [(D„-D )'+4U„'D„D ]'"}.
(31)

Noting that I'» and F» are zero when q = 0 (Sec.
III), we have assumed that I'» and I'» vanish as
q'. The constants D& and D~ are identified with
the (bare) spin and energy diffusion constants,
respectively, while I"

N is the isothermal, constant
field decay rate of the staggered magnetization.
We assume that I'~, D„, and D~ are q independent,
an approximation in keeping with our treatment of
(A, At). It should be remembered, however, that
all three parameters are functions of temperature,
a point we return to in Sec. V. In addition, should
it be necessary, the effects of basal plane anisot-
ropy and the spin-lattice coupling can be included
by adding I/T, to D„q' and I/T, to Dsq', where
T, and T, are spin-spin and spin-lattice relaxation
times, respectively.

Our primary interest is in the susceptibilities
X„gq, (u} and X„„(q,(o) associated with N(q) and

M(q}, respectively. In the paramagnetic phase
N(q) is decoupled from M(q) and E(q). Making use
of Egs. (16), (21), and (23) we find

XNdq, ~}/~x&gq} = F~/[~'+(F~}'],

a result which is actually independent of the treat-
ment of the off-diagonal elements of I'.

In the antiferromagnetic phase the dynamics is
more complicated since, as noted in Sec. II, N(q)
couples to both M(q) and E(q). A significant
simplification results if it is further assumed that

q is sufficiently small so that D~q', D&q' « I'~.
In this limit we have

Xi)i))i(q, A) 1 2»
~X~~(q) V ~'+(F~)'

(Ao+s, )(ie+s )

VII (ZOO + S+)(gag + S )

Because of the uniform field, M(q) and E(q) are
coupled in both the paramagnetic and antiferro-
magnetic phases. In the antiferromagnetic phase,
when I'„»D&q', D~q', we obtain the result

i" (i, ) R ia ~ )),'))„q' ~))~')
~x (q) (~&+& )(&~+& )

(32)

where the symbols have the same meaning as in
Ecl. (25). Equation (32) also applies to the para-
magnetic state independent of the relative magni-
tudes of I'~, D~q', and D„q'.

8N
U =T—

13 r &e = (Xr Xs)/Xr ~ (33)

With the help of (33) it is readily established that
(25) reduces to (2) for H = 0, T & T„. In general,
when H W 0 all elements of U will be nonzero in
the antiferromagnetic phase.

The physical interpretation of Eqs. (24), (25),
and (32) is similar to that outlined in the discus-
sion in Sec. II. In the paramagnetic state the
fluctuations in N are decoupled from the fluctua-
tions in M and E. As a consequence, X„"„has the
simple Lorentzian form shown in Eg. (24). In the
antiferromagnetic state E couples to M and E

8. Discussion

Equations (24), (25), and (32) are the principal
results of Sec. IVA. Etluation (24) is seen to have
the same form as Eg. (2) when the latter is applied
to the paramagnetic phase. In order to establish
that (25) and (32) reduce to results obtained pre-
viously when the uniform field is equal to zero we
note that H=O i~plies M =0 so that U, 3 0 As a
consequence, Eg. (32) becomes identical to Eq.
(1). Likewise SN/SH, which is equal to eM/SH*,
also vanishes when H=0 with the consequence that
U» =0. Hence in this limit V„=1/(1 —U»'),
V»=0, and V»= —U»/(I- U»'), where U»' can be
written
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which in turn are coupled t,o each other. This
coupling shows up in the form of Eq. (25). The
second and third terms characterize the diffusive
decay of the induced M(q)-E(q) fluctuations. The
coupling between the magnetization and energy
density, which also is evident in Eq. (32), arises
from the nonzero value of U»2. From Eq. (20)
the parameter U»' is seen to be equal to (lir - y~)/
g» where y~ is the adiabatic uniform field sus-
ceptibility at constant staggered field.

Since V ~ U=1, the relative weight of the fast
relaxing term in Eq. (25) is equal to I/V». In

order to interpret this result we introduce the
free energy dI' =-SdT-Mdjj- N dM which is a
function of the intensive variables SP'(=x, ), H(=x, ),
and T(=x,). We also define the elements of a
matrix F by

(34)

In term's of F, V» can be written

11 11(s )11 ' (35)

cAV=X, dx, +X,dh, +X,dx, ,

and W' and E are connected by the equation

I" =S'- x,X,—~X2 —x~X3. (33)

Making use of (34) and (36) we obtain the result

with the consequence that the relative weight of
the fast relaxing part is equal to the ratio of the
adiabatic staggered susceptibility at constant mag-
netization to the isothermal staggered suscepti-
bility at constant field. It should be noted that
relative weight is independent of the off-diagonal
elements of I' as long as I"»» I',

~ (fj F 11).
Another feature of Eqs. (25) and (32) is the re-

normalization of the decay rates, In particular,
I"~ is renormalized by the factor V». Since
thermodynamic stability requires'9 U, &' & 1 (i sj)
and det U e 0, it follows that V» - I so that I'„& I'„.
Likewise D& and D~ are renormalized by the fac-
tor (1 —U»') ' which is equal to lir/ys. Since

Using standard thermodynamic arguments it ean
be shown that elements of the matrix 8 ' can be
expressed as derivatives of the internal energy 8'
with respect to the conjugate extensive variables
X,=N, X, =M, and X,=S. The relation is"

& lV

BX SX) ~a«, y

where

yr ~ yz we have Ds(Ds) ~ Ds(Ds) as well.
Another aspect of our results is thai the evolution

of the coupled M(q)-E(q) modes is independent of
the dynamics of the staggered magnetization when
I'„» Dsq2, Dzq'. This is apparent in Eq. (31)
where the decay rates of the coupled modes are
seen to depend on thermodynamic functions eval-
uated at constant staggered field as opposed to
constant staggered magnetization.

V. TEMPERATURE DEPENDENCE

In the studies described in Secs. III and IV, no

specific mention was made of the temperature de-
pendence of the various parameters in the expres-
sions for y~. The analysis was based largely on

the symmetry properties of the Hamiltonian. As
a consequence the applicability of Eq. (32) is not
limited to temperatures and fields near the tran-
sition line. Moreover, the presence of the second
and third terms on the right-hand side of Eq. (25)
is a general feature of the hydrodynamic region
independent of the phase transition. [The I orent-
zian form for the first term in (25) is probably
appropriate only when there is critical slowing
down of the staggered moment. When this is not
the case the frequency dependence of this term
may be more complicated; however the relative
weight will still be given by (SN/&H*), „/
(sH/aH+), „.]

Since the primary focus in this paper is on the
dynamics near a tricritical point„w'e will limit
our comments on the temperature dependence to
the region near the transition curve with particular
emphasis on the behavior along the second-order
line including the tricritical point, where critical
slowing down is expected to occur. The temper-
ature dependence of y "/&ug arises from two types
of parameters, the U, &

(and V,&) and the decay
rates I',&. We consider the former first.

Although detailed statements can be made only

for systems where the equation of state is known,
considerable information can be obtained by making
use of the static scaling laws for the critical ex-
ponents. '0 Along the second-order line we expect
singular behavior in the specific heat and the
longitudinal staggered susceptibility. In addition,
Riedel has shown that there are induced critical
fluctuations in the magnetization such that
M-M, (H)~g and sM/sH~d, , where o'
is the specific-heat exponent and d, is a measure
of the distance from the second-order line in the
physical plane H*=O.' Because of this we obtain
the important result that if scaling holds then the
nonzero off-diagonal elements of U are all char-
acterized by a critical exponent equal to zero. To
see this we associate the exponent y' with gf, ,
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~ d, '+ o. ' —1 with BX/8H, and -p+1 with 8N/BT
We then have (for o' ~0)

2 g ~ d -62( -1)+y ++&N
12 ~g~ T T c (40)

2 T ~f g ~d 2(8-0+y'+a'BN
13 8 c (41)

U23 = 7'
X qCH ~ d, . (42)

lf the static scaling laws a'=2(y'+p}, y'+2p+n'
-2=0 are obeyed, then the critical exponents of
the U, z are equal to zero. Thus near the tri-
critical point the U, &

are constant to within loga-
rithmic cor rections.

As a consequence of Eqs. (40)-(42) we anticipate
that near the tricritical point in the antiferromag-
netic phase all elements of (A, At) (or U) will be
significant, which carries with it the implication
that N(q), M(q), and E(q) remain coupled. How-

ever, if the system is moved along the second-
order line in a direction away from the tricritical
point we expect the parameters characterizing the
coupling of M(q) to N(q) and E(q) to become smal-
ler, finally disappearing in the zero field limit.
Similar behavior is predicted for (A, A )» in the
paramagnetic state so that M(q) and E(q) are
strongly coupled near the tricritical point with
the coupling becoming weaker as the system is
moved toward zero field.

The temperature dependence of the decay rates
I',

&
is a more difficult question. Experimental

evidence" as well as theoretical arguments by
Kawasaki" and Riedel" suggest that in the case of
easy-axis magnets in zero field the conventional
theory of critical slowing down should apply close
to the critical point, at least as a first approxi-
mation. " Were this to be the case in finite field
we would expect that the I,&

varied with tempera-
ture as [y+„,(0)li„.„(0)] ' ' in the critical region.
In particular we would have F„~(lier) ', D„~yr ',
and D~~ CH '. Although this behavior is plausible

in light of our current knowledge of spin dynamics,
a different temperature dependence cannot be
ruled out at this point. Another aspect of the
temperature dependence concerns the critical
slowing down of the longitudinal fluctuations in
the magnetization. Should this happen M(q) be-
comes a hydrodynamic variable independent of
the rotational symmetry about the c axis.

Our final comment concerns a comparison with
the hydrodynamics of the spin-flop phase. In the
flop phase the staggered moment is perpendicular
to the c axis. If, in addition, there is rotational
symmetry about the c axis, then the flop state
has associated with it a weakly damped hydro-
dynamic spin-wave mode. The frequency of this
mode is determined by the eigenvalues of a fre-
quency matrix involving N, (q), N, (q), E(q), and

M,(q) (z = c) and is given by'

(43}

where the staggered moment is taken to be paral-
lel to the x axis. In (43) g is the g factor, ps is
the Bohr magneton, and g,*, denotes the trans-
verse staggered susceptibility. Because of the
rotational symmetry we have y,*„o=q

' so that
w, ~ q at long wavelengths. ' The hydrodynamics
of the flop phase is thus significantly different
from the hydrodynamics in the antiferromagnetic
phase, where N is parallel to the c axis. In this
configuration only relaxational modes are expected.

In the paramagnetic phase, cross-over behavior
in the critical dynamics is anticipated near the
point of intersection of the second-order anti-
ferromagnetic-paramagnetic (AFM-P) and spin-
flop-paramagnetic (SF-P) lines. Near the (SF-P)
line we expect behavior characteristic of a planar
antiferromagnet; near the AFM-P line easy-axis
behavior is expected. In the immediate vicinity
of the point of intersection intermediate behavior
is plausible. " This will be discussed in a separate
publica. tion. "
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