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A model of a compressible n-component magnet which includes shearing forces is solved by the
renormalization-group recursion relations to first order in € = 4 — d. Four fixed points are found and
their relevance for critical behavior is discussed. The critical exponents of Heisenberg magnets have
their rigid-lattice values. The leading correction to scaling has the exponent av~' with respect to
inverse length. In Ising-like systems the transition is of the first order, but may appear as a second

order.

I. INTRODUCTION

Consider an elastically isotropic n-component
magnet which has a bulk modulus K, and a shear
modulus py. The surfaces are free. The question
is can the system have a critical point, and if so,
what are its critical exponents? The main tool in
answering the question will be the renormalization-
group equations.’

In the renormalization-group approach to critical
phenomenal!'? the first step is to set up a system
of recursion relations for the thermodynamical
fields® of the system. Then one looks for the fixed
points of these equations. Each fixed point de-
scribes one type of critical behavior. Critical
exponents can be determined by linearizing the re-
cursion relations around the particular fixed point
of interest. The fixed points differ by the degree
of instability. The degree of instability is the num-
ber of thermodynamical fields which must be held
at their critical values for the system to be at the
critical point. Such fields are called thermodynam-
ically relevant. A field which is irrelevant for
some fixed point may be relevant for another. It
may happen that the most stable fixed point does
not control the behavior of the system. What is
important to keep in mind is that each fixed point
has a domain of attraction. If the values of the
thermodynamical fields are outside the domain of
the most stable fixed point the system will typically
undergo a first-order transition, but in favorable
cases it will be controlled by another, less stable,
fixed point over a large range of experimentally
controllable relevant fields (such as magnetic fields
and temperature; sometimes there are relevant
fields which are not experimentally controllable
as we shall see below). The behavior just de-
scribed is one we shall find for a compressible
Ising model. The “critical” region is finite but
may be large. The effective critical exponents
are those of the rigid Ising model (z=1). The
analysis by renormalization group thus confirms
the results of Baker and Essam® and of Larkin and
Pikin.®

Compressible Heisenberg systems (n=3), on the
contrary, may have a genuine critical point, i.e.,
the fields can converge to a fixed point starting
from physically admissible values. Critical ex-
ponents in this case are identical to those of the
rigid Heisenberg model. The reason for the dif-
ferent effects that compressibility has on Ising and
Heisenberg models, respectively, is the difference
in the sign of the critical exponent @ of the rigid
systems. It is positive for the rigid Ising model
and negative for the Heisenberg magnet in dimen-
sion d= 3.

A fairly complete analysis of the problem is pos-
sible if the dimensionality of the system is close
to 4 and the €-expansion approximation to the re-
normalization-group equations can be used. To be
able to make statements about real systems, one
has to assume that the solution does not qualitative-
ly change as the transition from d=4 -€ to d=3
is made. (One has to be careful; for instance, in
rigid lattices the critical exponent a changes its
sign between d=4 - € and d= 3 for the Heisenberg
model with three components.)

II. RENORMALIZATION GROUP FOR
COMPRESSIBLE MAGNETS

We shall start with the following Hamiltonian®:
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The first three terms represent the rigid -
component Heisenberg model in a form suitable for
a study of the system by means of the renormal-
ization group' in the €-expansion approximation.
u(X) is the displacement vector, K and p are the
bulk and shear moduli of the underlying lattice
divided by the temperature, g is a spin-lattice

3957



3958 J.

coupling constant, and d is the dimensionality of
the system. The spin and displacement variables
are constrained by not having faster spatial vari-
ations than on the scale of the lattice constant.

In the partition function

Z=Trexp{ids, (%), WX} (@)

the integrals over the displacement variables will
be done first. For that purpose the homogeneous
deformation has to be separated from the phonon
part of the displacement®:
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Q is the volgme of the system. The integrals over
uys and u, (k) are Gaussian. The result is

Z=Z.1 trei[si(i)] , (4)

where the trace is taken only over the spin vari-
ables and the equivalent spin Hamiltonian is

-#[sk)]=3% f (r+ )2 S,(R)S(~K)
k i

vl [ [ [siRISES;E)
if

k; “kp “k3
2
X SJ(_kl -kz ’ka)"'%(lz S,(k)s,(—k)) .
i

(5)

The wave vectors are cut off from above by the in-
verse lattice constant. The parameters x and v
are defined as follows:

2

B g

U=t~ FTIK+1d - D/dln}’ ©
vt (el 2

”=‘g2‘(%1<+[(d-1>/d]u K)' v

The four-spin interaction # can be negative. Then
one has to bring into the problem six-spin (or
higher) interactions. The critical point as a func-
tion of g ends at a tricritical point, and for suf-
ficiently large g the transition becomes of first
order® (actually, it is a fourth-order point for
Ising systems; see below).

If u is positive Eq. (5) represents a Heisenberg
model with an infinite-range energy-density —ener-
gy -density coupling v. Formally this interaction
vanishes, if the shear modulus goes to zero, but
such a limiting process is illegal because Z,, in
Eq. (4) diverges for =0 and special arrangements
are necessary in this case.”

Now we apply the renormalization-group method!
to the spin Hamiltonian (5). The recursion rela-
tions® for the fields », u, v are shown in graphical
form in Fig. 1. Analytically they read
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FIG. 1. Feynman diagrams when energy-energy cou-
pling is present. The vertex u is denoted by a heavy dot
and v is represented by dashed line. Only zero momen-
tum can be carried by dashed lines. All diagrams having
loops which contain a dashed line are negligible in the
thermodynamic limit. All non-negligible diagrams have
a tree structure with respect to dashed lines.
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All integrals are over the region 1> |q| >3,
where b >1 but otherwise arbitrary.
To first order in € =4 - d recursion relations
(9) and (10) have four fixed points:

u*=0, v*=0; (11)
2
u*=2tee, v*=0; (12)
2

u*=0, v*=2%€; (13)
22 27%(4 —n)
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Linearizing the recursion relations in the neigh-
borhoods of the fixed points we obtain the critical
exponents ¢,, ¢,, and y™* of the fields u, v, and 7,
respectively. The results are shown in Table I.
Instead of v~! we give the result for a=2 -dy. The
exponent 7 is determined from the g-dependent
part of Eq. (8) and is zero to first order in €.
Three statements can be made about the expo-
nents which are valid to all orders in €. First,
the exponent n (and also 6 and ¢,) are unaffected
by the presence of the field v. This follows from
the diagrammatic expansion of the spin-spin cor-
relation function (S,(k)S,(~K)) and the fact that
dashed lines cannot carry nonzero momentum and
cannot be edges of closed loops. The only way the
interaction v can be present in a diagram is in the
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TABLE 1. Fixed points and exponents to first order in €.

Fixed
point by dy=a/v « n
Eq. (11) € € 3 0
_ 2 4-n 2y _4-n_ 2 2
Eq. (12) —€+0(€%) e € +0(€°) 2+ 8) € +0(€) 0 +0(€)
Eq. (13) € —€e+0(€) --;—+0(52) 0
_ 2y n—4 2 n—4 2 2
Eq. (14) € +0(€°) w T8 € +0(€°) 2(n+8)e+ote) 0 +0(€%)

form of a branch of a tree growing on spin lines.
Such decorations of diagrams cause a shift of the
critical temperature but do not change the momen-
tum dependence of the correlation function.

The second comment is about a relation between
the values of the exponent 2 —  (and also v and y)
at fixed points (12) and (14). Let @, and a be the
values of « at these fixed points, respectively.
The calculation to the first order in € is consistent
with the relation

2-a=(2-qa,)/(1 -q,). (15)

This is reminiscent of, but different from, the
renormalization of exponents by hidden variables
studied by Fisher.® In Fisher’s theory the re-
normalization is a consequence of a constraint im-
posed on the system, while Eq. (15) describes the
relation between two sets of exponents of an uncon-
strained system. Now we give an argument for the
validity of Eq. (15) in general. The last term in
the Hamiltonian (5) is a coupling between energy
densities of infinite range and thus can be treated
by a mean-field-theory assumption. Put another
way, the theory has no graphs with loops contain-
ing dashed lines. A theory which has only trees is
a mean-field theory. These considerations suggest
that we substitute for the last term in (5) the ex-
pression

ve('r,u,v)ZfS?(x)d‘x , (16)

where €(7,u,v) is the average energy density. The
Hamiltonian is now formally identical to one of a
rigid Heisenberg model:

fd‘x [% ;’Xi: s%(i)-l-‘;‘ ;‘( }%%)z +u(§;s,-2>2] )
where

7=v+2velr,u,v) .

Let r.(x, v) and 7,(u, v) denote the critical-point
values of » and #. By a generalization of Wilson’s
theorem!? it is possible to choose values uq and v,
of the fields »# and v such that the perturbation ex-
pansions for the renormalized coupling constant

up and for the variable 7 — 7, exponentiate to the
expected scaling behavior:

)7 (e=2n}/@2-n)

ug~ const (r -7, , (17)

7 -7~ const (r —7)'™ . (18)

The singular part of the free energy Fy,,, scales
with the variable # - #, with the rigid Heisenberg
exponent 2 — Qi Fgp,~ (7 = 7,)2 %0~ (y =y, )1 -0C-an
~(r -7,2. Thus we have 2 - u=(1 - @)(2 - @),
which implies (15).

Finally, it can be shown that ¢,= ay™. This
follows from counting dimensions in the last term
in (5), using the dimension of energy density
(1 — @)y (with respect to inverse length) and the
scaling law dy =2 — a. The naive counting of di-
mensions is permitted here because the theory has
a structure of a mean-field theory with respect to
the field » and the operator [ [ $3(x) d%x]® does not
have an anomalous dimension of its own.

III. CRITICAL BEHAVIOR OF COMPRESSIBLE
ISING AND HEISENBERG MAGNETS

At this stage we want to determine which of the
fixed points (11)-(14) gives the correct description
of the critical behavior of a compressible magnet.
The cases n=1 (Ising model) and =2 or 3 (XY or
Heisenberg model) will be discussed separately.

Consider n=1 first. The degree of instability of
a fixed point is given by the number of fields which
have positive exponents. All the fixed points are
unstable to magnetic field and deviations from the
critical temperature » —,. Table I tells us that
fixed point (11) is also unstable to # and v. Fixed
points (12) and (13) have only one additional degree
of instability with respect to v and «, respectively.
The remaining fixed point is the most stable one.
However, this fixed point cannot be approached
starting from physically admissible values of the
fields. Namely, v must be negative [see Eq. (7)].
To approach fixed point (14) v would have to pass
through zero, but that cannot happen. To see this,
write Eq. (10) in the differential form (p -1 is in-
finitesimally small):

%w(e—”—:—zz—u—z"?v) ) (19)
The rate of change of v goes to zero as v ap-
proaches zero. The physical reason for such be-
havior is that the shear modulus cannot be negative.
For the same reason we discard fixed point (13)
and are left with only two possibilities, (11) and
(12), which are just the two fixed points of an in-
compressible Ising model. The degrees of in-
stability are higher by one so that we have a fourth-
order and a tricritical point. The relevant field v
has the critical value equal to zero for any choice
of # (and higher spin interactions) but it cannot be
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manipulated to this value, since p cannot be zero
and, strictly speaking, the compressible Ising
system does not have a critical point.

Some systems, such as B-brass'! or FeF,,!2 be-
have as if the critical point existed. The reason
for this is well known. The exponent of v is small,
- @, with respect to temperature, so that if the
value of » is small it will remain small over a
wide range of temperatures (stiff lattice and weak
spin-lattice coupling are favorable) and the first-
order transition takes place so close to T, of the
rigid system that it is unobservable. Baker and
Essam® discuss B-brass in great detail.

Things are different for an isotropic magnet
(z=3). It is known that « is negative for the
Heisenberg model.'® In ¢ expansion the first order
predicts positive «, but the sign switches in the
second and third orders for €=1.1%!* The most
stable fixed point is (12) and it is accessible.

Thus the isotropic compressible magnet has the
same exponents as the rigid one. However, there
is a difference in the corrections to scaling® be-
cause p is less irrelevant than #, which provides
the leading correction for the rigid model. For
example, the magnetic susceptibility is given by
an expansion of the form

X=AtT(1+Bt™+-+), (20)
where ¢=const (» —7,) is the reduced temperature,

A and B are constants, and the dots stand for terms
which vanish faster than #* as - 0.
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The above conclusions extend also to the casen=2
(XY model) since it appears that « is negative in
this case also.!?

A word of caution must be added. Magnets with
strictly spherical symmetry do not exist and the
question arises about the stability of the fixed points
with respect to crystal-field perturbations. :6
This is a difficult problem to solve by ¢ expansion
because the answer fluctuates with increasing am-
plitude with the order of €. The Heisenberg fixed
point for n=3 and € =1 is stable to first and third
orders but is unstable in the second order.

Note added in manuscript. After this paper was
completed the author learned about the work of F.
Wegner on the same subject (to be published in J.
Phys. C). The two papers used different lines of
reasoning but the final results coincide. Dr.
Wegner pointed out that Eq. (3) does not represent
the most general deformation of a body with free
surfaces. Indeed, the first term of expression (3)
describes only such displacements which leave
the surfaces planar. “Warping” deformations
are not included. However, it is shown in Weg-
ner’s paper that these additional degrees of free-
dom do not change the critical behavior.
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