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A general dispersion law has been derived for a cubic, ferromagnetic, elastic, and conductive medium
in which the magnetoelastic coupling and the magnetic anisotropy energy parameters can be large.
Also, the direction of the external field is taken to be arbitrary and it is not assumed to be collinear
with the internal field and the magnetization. Maxwell’s equations and the equation of motion for the
magnetization and the elastic equations of motion have been combined in a consistent manner without
the assumption of collinearity of the fields to yield a general dispersion law which is of seventh order
in the square of the propagation constant k, and contains three acoustic and four magnetic branches.
All of the seven values of k? belonging to a fixed frequency and bias magnetic field have been
calculated numerically by computer. The calculations are applicable to the rare-earth—transition-metal
alloy systems which have large magnetic anisotropy and magnetostriction and, thus, may be useful for
high-frequency magnetostrictive transducers. Also, the surface impedance is calculated for some simpie

field configurations.

I. INTRODUCTION

In this paper we are concerned with magnetoelas-
tic interactions in a cubic ferromagnetic conduc-
tor. The phenomena of coupling spin waves to lat-
tice vibrations in magnetic isofropic insulators
have been studied in a number of papers.’”* We
have generalized the dispersion law so that it is
applicable to magnetic conductors with large mag-
netocrystalline anisotropy and magnetoacoustic
coupling. In a magnetoelastic insulator it is
found3+* that the dispersion relation which relates
frequency f and propagation constant 2, contains
five branches (Fig. 1). Three branches correspond
to the two degenerate transverse modes (TE) and
to the one longitudinal mode (LE) of the lattice
motion. The other two are magnetic branches and
correspond to a bulk spin-wave branch and a sur-
face spin-wave branch.

For a pure magnetic conductor (with no coupling
to the lattice) it is found®~” that there are four
branches, one of which is nonmagnetic and re-
quires different rf field excitation. Whereas the
three magnetic branches require that the rf mag-
netic field be perpendicular to the static applied
field, the nonmagnetic branch requires the rf field
to be along the static field. The dispersion curves
for the four branches depend on the direction of
the applied bias field ﬁa. Iif ﬁa is in the plane of
the plate, there is one nonmagnetic branch, re-
ferred to as the pure electromagnetic or skin-depth
mode, and three magnetic branches (Fig. 2). Al-
though two of the branches are common to both an
insulator and metal, one of the branches, which is
referred to as the exchange-conductivity branch®
occurs only in metals. Physically, the exchange-
conductivity branch arises from the fact that in a
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metal the internal rf fields attenuate with depth,
and thereby induce an extra exchange field torque
on the magnetization. For the case that ﬁa is at
an oblique angle,” but in a plane which is perpendi-
cular® to the plane of the plate, the pure electro-
magnetic mode is admixed with the other three
magnetic branches so that it is no longer a pure
skin-depth mode.

Although it is expected that for the general case
of a metallic magnetoelastic medium there cught
to be seven branches (three acoustic and four mag-
netic branches), it is not clear which of the mag-
netic branches couples to the elastic branches for
a given direction of ﬁ,,. Since the coupling de-
pends” on the direction of ﬁa , we have obtained a
dispersion relation for arbitrary directions of ﬁa.

In order to calculate the general dispersion re-
lation, the equilibrium position of the magnetiza-
tion is required. The omission in previous calcu-
lations of the effect of magnetic anisotropy but the
inclusion of anisotropic magnetoelastic interaction
and elastic self-energy®is somewhat inconsistent.
The implicit assumption previously made, that
H, and H, (the effective internal static field) are
collinear, is not valid in magnetically anisotropic
media. The effect of this assumption is to pre-
dict an erroneous frequency for “crossing.” Be-
cause we have included the effect of magnetic an-
isotropy of arbitrary strength with no assumption
of collinearity between ﬁ,, and ﬁo, our calculation
should be applicable to systems where the magne-
tic anisotropy and magnetoelastic interaction en-
ergies are unusually®:!° large in metals.

In a magnetic metal the pure electromagnetic
branch and the exchange-conducting branch co-
alesce as £~ 0 (Fig. 3). It is possible that repul-
sions occur between the above two branches and
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the acoustic branches as £ -0 for the general case,
and, in fact, one might force such interactions to
occur by the correct choice of the conductivity,
the exchange constant, and the acoustic velocities.
We have adopted a more realistic approach to in-
vestigate the region of # -0 for a recently studied
material, Tb, ,sHo, s;Fe,.°

The method of calculation is basically the same
as that introduced in Ref. 11. In Ref. 11 we used
the variation principle to determine the rf effective
magnetic fields from the free energy. We take
small or virtual displacements of the magnetiza-
tion away from its equilibrium position. However,
in this case an rf effective magnetoelastic field
must also be calculated by taking small lattice dis-
placements from the equilibrium position of the
lattice displacement. Whereas in Ref. 11 only an
anisotropic magnetic metal is considered, in the
present paper the elastic self-energy, the mag-
netoelastic interaction, and interaction energy
terms which reflect change in volume as the sam-
ple is strained, are also included as part of the
free energy of the system.

II. THEORETICAL FORMULATION

In this section a functional relationship between
frequency and the propagation constant # is derived
for a given magnetic bias field ﬁ,,. The propaga-
tion constant vector k is assumed to be normal to
the metal plate. One surface of the plate is at y
=0 and the other surface at y =— . Magnetostatic
and elastic wave propagations in the plane of the
plate are not considered. The procedure for ob-
taining the dispersion law is as follows:

(i) Magnetic, elastic, and magnetoelastic energy
terms are included in the free-energy expression.
(ii) The equations of motion for the magnetization
M and the elastic displacement u are obtained
routinely from the free-energy expression. There
are three unknown field variables (M, 1, and H)

try(0e) o/ &
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FIG. 1. Sketch of the dispersion curves for a ferro-
magnetic insulating magnetoelastic medium.

and two sets of equations. One set of equations
relates M to H and U, and the other set & to M.
Maxwell’s equations form the third set of equa-
tions which relates M to H. Thus, the required
number of equations is obtained which gives rise
to nontrivial solutions for M, H, and 4.

The total free energy is the sum of elastic (Fg),
magnetic (F,), magnetoelastic (Fyg), and induced
magnetoelastic energy terms (F)):

F=Fg+Fy +Fys +F;. (1)
The elastic energy is given as

1 3 3,3
Fg =§<Cu Ze:n+ Z(c44e§m+2C126nnemm)> .
n=1

n*m

(2)

C,,, C44 and C,, are the elastic constants appro-
priate for a material with cubic symmetry and

o _bu, e =8u,,+au
"oax,” "™ ax, ox,’

where 1, is the lattice displacement along the »
direction and x, is the coordinate axis. The mag-
netic free energy is given as

3,3
Fy=-H,-M+2tM3a3 +K, Z (apa,) +K,(a,a,0,)

n#m (3)

In Eq. (3), the o’s are the directional cosines of

M with respect to the cubic (100) axes so that a,
=sinfcosy, a,=sinfsing, and a,=cosb (see Fig.
4). K, and K, are the first- and second-order
anisotropy constants. The first term on the right-
hand side represents the magnetizing energy, the
second the demagnetizing energy, and the third and
fourth the magnetocrystalline anisotropy energies.

Re (k) Im(k)

FIG. 2. Sketch of the four branches of the propagation
constant as a function of f/y for a ferromagnetic con-
ductor.
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The form of the second term in Eq. (3), the de-
magnetizing energy, is dictated by our having
taken the 2 (or y) axis to be a (100) axis normal to
the plane of the plate as shown in Fig. 4. Further,
we assume that, in the static situation, the mag-
netization is saturated, and that the sample is in-
finite in the x and 2z directions, so that the de-
magnetizing factor is 4.

Considering® only the lowest-order terms de-
pendent on the orientation of IVI, we may take from
symmetry considerations the following form for
the magnetoelastic interaction:

3 3,3
= 2
FME - BIZ €nny +Bzzenmanam‘ (33)
n=1

n#m

For propagation of elastic waves in the y direction
this becomes

Fyg = Byaje,, + By(@,0,e,, + 0,058,,) - (3b)

B, and B, are the magnetoelastic interaction pa-
rameters.

In a magnetoelastic medium the volume of the
sample changes as it is magnetized. This implies
that the density of magnetic moments must also
change. To first order, the change in magnetiza-
tion is approximately

AM=-MV-3. 4)

The physical implications of Eq. (4) are as fol-
lows: the total number of spins or of magnetic mo-
ments in a sample does not change, but the num-
ber of magnetic moments per cm® (M) can vary as
the sample is in tension or compression. When
the sample is in tension (V-1 >0), the volume is
increased. Therefore, the total magnetic moment
per cm® decreases. The converse is true when
the sample is compressed (V- <0). Let us now
estimate how the free energy is modified (when a

f
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FIG. 3. Same as in Fig. 2, except the region near
k=0 is expanded.
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sample is under stress) using Eq. (4). For exam-
ple, the change in demagnetizing energy (AF)) is
given as

AFp= f 41 AM-dM
which gives
AFp =~ 2TM%a3V 1.

For waves propagating in the y direction AF)
becomes

F,;=AF,=-2tM%aze,,. (5)

The above term is of the same form as that of the
first term in Fyg [Eq. (3b)]. Effectively F, gives
rise to a magnetoelastic interaction. For conve-
nience B, is redefined as B|= B, - 27M3 Hence-
forth, the prime on B, will be dropped. The same
conclusion has been reached using a different cal-
culating approach.®* Usually, F;<Fy;. For ex-
ample taking 27M ,~4400 G, the induced magneto-
elastic interaction strength is ~3 x10° erg/cm?
(compared to B, ~10% erg/cm®). At microwave
frequencies changes in magnetic anisotropy and
Zeeman energies due to changes in magnetization
are smaller in magnitude, and therefore these
effects have been neglected in the free energy.

Before we derive the equations of motion for M
and 1 we must determine (i) the amount of strain
imposed at equilibrium on the sample; (ii) the di-
rection in which the sample is magnetized by a
given ﬁa.

A. Static equilibrium conditions

When the sample is in the presence of a strong
bias magnetic field, the sample is magnetized in

Y, [010]

X, [100]

FIG. 4. Geometrical configuration of the various fields
with respect to the cubic axes.
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some direction and, consequently, the sample is
strained. The equilibrium configuration of the
crystal may be found by minimizing F with respect
to e,, and ¢,,. The solutions at equilibrium are
readily found to be®

e,('g)"Bl Clz—a;(C”+Clg) (6)

T(Cy, = CR)(C, +2Cy,)
el == B0y, /Cyy . (7)

Substituting (> and e{? into F gives rise to an en-
ergy term of the same symmetry as the first-order
anisotropy energy. Thus, it is found that although
the sample is strained when magnetized, the sym-
metry of the magnetic anisotropy is still cubic.
This amounts to changing K, into K, + AK where®
AK=B/(C,,~-C,,) - Bi/2C,,. Higher-order terms
in the magnetoelastic interaction terms are re-
quired to modify K, as in the case of K,. In sum-
mary, one needs to redefine the free energy after
the sample is magnetized. In this case only K|, is
redefined, and for our particular case AK <K,.

Since the equations of motion are written in
terms of the internal field H,, the direction of H,
is required for all directions of H,. For a given
direction of ﬁa the direction of the static magne-
tization M,, or the internal field H,, is uniquely
determined from H,=- (V,F)/M, where M, = | M|.
The gradient operator _(7& is defined with respect
to the direction cosines measured from the crys-
tal axes. Thus, we have

Hy=H, - 47M (0,3, - 2K |[a,(a? + a2)E,
+a,(a? +a?)a, + a (el +ad)a, ]| /M,
- 2K (o 05024, +a,0}0fa, + a,05028,)/M .
(8)

ﬁ,, is the applied bias field; the second term is the
demagnetizing field. The last two terms are the
magnetic anisotropy fields. The magnetoelastic
static fields due to straining of the sample are in-
cluded through the redefinition of K;,. From Eq.
(8) it is readily shown that the equilibrium condi-
tion is
H, sin(a - 6,) = 21M ;sin26, + (K ,/2M ;) sin4 6,
(9)

for H, in the (100) plane. For H, in the plane of
the plate the first term in the right-hand side is
omitted. In Eq. (9), @ and 6, are the angles be-
tween H, and M, and the [001] axis, respectively.
The equilibrium conditions can also be obtained by
setting 9F/86=0F/3¢ =0 and by solving for both
6 and ¢.

For H, in the (010) plane (plate plane), H, is

parallel to H, only for @ =0 ([001] axis) and a=7/4
([101] axis). For H, in the (100) plane, H,and H,
are parallel to each other only for a=0 ([001]
axis) and a=7/2 ([010] axis).

B. Dynamic ferromagnetic equations of motion

In this section the equations of motion for the
rf magnetization and the lattice are derived. The
classical equation of motion for M is

1AM i (i, —-}TI%—I—[-Z-(MXHm)), (10)
where H,; is an effective field which includes con-
tributions from all possible static and rf effective
field sources. In Eq. (10) the Landau-Lifshitz
magnetic damping mechanism characterized by an
isotropic damping parameter X is assumed.

- - &+ > o+ =
Hes=Hy+h+hg +hy +hyge,

where ﬁo is the effective static internal field and
it is assumed to be spatially uniform in the plate.

The Maxwellian rf magnetic field h is related!
to mvia Maxwell’s equations by

Qh,+m, =0, h,+4rm,=0,

Qh,+m,=0, Q=(1+3702k%)/4m,
and

83=c*/2r0w,
where c is the velocity of light and ¢ the conduc-
tivity. For an isofropic exchange interaction be-

tween magnetic moments in a cubic material, the
rf exchange field is given as

B, =(2AV2m)/M?

where A is the exchange stiffness constant. The
gradient operator V is defined with respect to the
rectangular coordinates. The above form of h.,
is valid in the long-wavelength approximation.®
The rf magnetic anisotropy field h 4 can be derived
from

hy=—(1/M)6(VF,)

where F, is the magnetic anisotropy energy con-
tribution to F,. The analytical expression for fi,
is found in Ref. 11 and is readily obtained by taking
virtual displacement of M about its equilibrium
position IVIO. In the same manner, the rf magneto-
elastic field hy; is obtained from

Hye = = (1/M )8(V o Fyg) -

To first order in the lattice displacement, hyg is
found to be

- -
hyg= - {Bzaze 1285 +[2B,@,e,5,

+By(a,e,, + ye0,) 13y + 32(228235,} /MO‘
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The above expressions for the rf fields h, and
EME apply only to small rf field perturbations or
small deviations of M and 1 away from M and
el%, respectively. However, Eq. (10) is a nonlin-
ear differential equation and it is linearized by
collecting linear terms in m and 4. We write M
and H as

M=M,+m, H=H,+h.
For small perturbations, |m|<« |M,| and |f]
«|H,| so that quadratic terms of the form mms,
mhg, mpug, etc. can be omitted. Thus, after lin-
earizing Eq. (10) and assuming an exponential var-
iation of the components m,, u, of the form
e’“P  we have

l“’—@—(Aurn)m kA 1)

Here, A is a (3%3) square matrix which was de-
rived in detail in Ref. 11, I is the unit (3%X3) ma-
trix, =jw/v, and A, is a square matrix which
contains elements proportional to B, and B,. Def-
initions of the matrix elements of A, and A are
given in the Appendix. It should be | pointed out that
Maxwell’s equations have already been included
through the f term in Eq. (10), and, therefore,

A contains elements which are proportional to the
conductivity.!! The Hamiltonian for the lattice
motion is given as

3 2 2
. T, +Ci,e
3L—-< E __.u_.zgz

Lulerei) o,
n=1

+ By, @; + By, ey, + @,05€5,) (12)

where p is the crystal density, and 7, is the crys-
tal momentum along the n direction. The equation
of motion for the lattice is obtained from the time
rate of change of the lattice momentum

il =7 = .aic.+_a-<
pu,= n__au” 3y

a3
de,,

), n=1,2,3. (13)

Again by collecting terms to first order in U and
m, Eq. (13) leads to

Pt =k%Af ~kA,m, (14)
where

Csh 0 O
A= 0 C, O

0 0 C,
and

B,a, B,a;, 0
A;=| 0 2B, O M,.
0 B,a, B,a,

For H, in the plate plane (@, =0), there is no
coupling between the magnetic spin system and the
longitudinal wave u,. However, one of the trans-
verse waves (G| M,) is coupled to m,. Thus, we
would expect that for this configuration, the spin
wave and the longitudinal acoustic branches inter-
sect each other without any repulsion, but repul-
sion will occur between the spin wave and one of
the transverse acoustic branches. For ﬁa perpen-
dicular to the plate (@, =1) there is coupling be-
tween the spin system and the transverse wave
but not with the longitudinal wave, since m,=0.
Closer examination of A, reveals that the longitu-
dinal wave couples to the spin system for H, at
oblique angles to the plate.

Equation (14) contains no provision for elastic
damping. Elastic damping can be introduced phe-
nomenologically by making A, complex or, equiv-
alently, making C,, and C,, complex. The full set
of coupled elastic and magnetic equations of mo-
tion for the system are displayed by combining
Egs. (11) and (14):

where D is a (6 6) diagonal matrix
Q 00 O 0 0
0 0 O 0 0
p-{f0 0@ 0 0 0
0 00 —pw* O 0
000 0 -pw® O

2

000 o0 0 -pw]

X is a six-dimensional vector whose components
are m,, m,, m,, u,, u,, #,, and Bis a (6X6) ma-
trix which can be written in terms of A, A, A,
and A;, namely

A+IQ | -kA,
B=|T----t---|.

By our choice of the Landau-Lifshitz form of the
equation of motion, Eq. (10), the magnitude of M
is necessarily conserved. In the linear small-field
approximation this requires that ﬁo- m=0. Asa
result m,, m,, and m, are linearly dependent. We
now introduce a transformation to a five-compo-
nent vector X’ whose components are linearly
independent. Obviously w,, u,, and u, are indepen-
dent of each other. The six-component vector is
connected to the five-component vector by trans-
formation whxch reflects m,, m,, m, into the two
components of m (m, and my) which are orthogonal
to M (see Fig. 4). Thus write

X'=SX (15a)
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or
X=8"'x". (15b)

The matrix representation of this linear transfor-
mation is given as

T'0 Tt 0
S-[} S{ (16)
07 017

where
0 0 -1
T=[—a2 a, O}Aﬁ“"g)w
and
a,a, —a,
T'= a,a, | [(a?+ad)V?,

—(a2+ad) 0

These transformations now allow us to write the

J

equations of motion for the five components of X’
in the following manner. Defining D’ as D’ =SDS™},
where D’ is a (5X5) diagonal matrix, and using
Eq. (15a) write

D'X'=D'(SX).
Since D'S=SD,
D'X'=SDX=SBX. 1m

Substituting Eq. (15b) into (17) and defining B’
=SBS™!, we get

(D'-B)X'=0.

The matrix B’ is a (5X5) matrix whose elements
are defined in the Appendix. There exists nontriv-
ial solutions of X’ if

det(D’' - B’)=0.

The resultant secular equation which results from
expanding the determinant relates frequency and
propagation constant k:

(w2 +C 1 R?/p)(W* +Cyk®/p)V(f k) = a3(w® +C 1 4k%/p)*(2B,/M 4 p)*M o pk?{(1 - a2)[b +n(R +a)]+R,}

= (W? +C,k%/p)(w® +Cyk®/P)(By/M o p)*My pk*[(1 - 3aZ +4a2)nQ + (na+b)(1 —4a2+5a2) + (c + nd)ai(l - of) +R,]

+a;5(1 = 2a3P°B(w® + C,,k*/p)(B,/M o p)*(M 4 pk?)? + ai3(1 = a2)B(w? +C,k2/p)(2B,/M 4 p)2(B,/M o p)*(M , pk?)? =0,

(18)

where V(f,k) is the magnetic dispersion relation for a pure magnetic conductor as found in Ref. 11:

V(f,k)=(a®+b>+2Qa)a; + (1 - al)[ad +bc +Q(a+d) ] +02 +[(c,,C0p +C11Css +CppCa3) = (C51C 13 +C 5, 15 +C 55C35) ]

= (@5,C 13 +a14C 5 + AypC oy +8yiC oy +8yC 15 +81Cq1) = [d(1 = @) (cy, +C53) +a(l - ai)eg+a(l - ad)ey,

+a(2 - a2 - al)c,, |- Qe +C4p +C33) .

A simple method by which the secular determinant
can be expanded with the above form is shown in
the Appendix. All of the parameters in Eq. (18)are
defined in the Appendix and in Ref. 11.

The first term in Eq. (18) represents the uncou-
pled magnetic and elastic wave dispersion rela-
tions. The second term represents a coupling be-
tween the spin waves and a LE wave (longitudinal
magnetoelastic coupling), and the third term rep-
resents a coupling between spin waves and a Te
wave (transverse magnetoelastic coupling). The
fourth and fifth terms represent couplings between
two TE waves and between a TE wave and the LE
wave. As suggested by Eq. (18), the coupling
strength between the elastic and magnetic waves
depends on the product of B, or B,, the C,;’s and
an effective magnetic field which includes H,, the
damping fields, and conductivity, as well as 2K,/
M,and 2K,/M o, throughthe R, and R, terms (see the
Appendix). The two major roles of magnetic crystal-

line anisotropy are (i) the selection of the crossover
frequency between the elastic and magnetic branch-
es [see Eq. (8) and V(f,k)] and (ii) the influence on
the coupling strength between the waves [see Eq.
(18)]. We now take various limits and show that
the present form for the dispersion relation re-
duces to expressions derived by previous authors.
In the limit of B, = B,=0 the secular equation re-
duces to the product of the uncoupled elastic and
magnetic dispersion relations. Further limits on
V(f,k) are discussed in Ref. 11. For the elastic
dispersion, the f/y versus % relation is trivial.

In the limit of B, #0, B,+#0, 0=0 (insulator) and
K,=K,=0 (isotropic magnetic medium) Eq. (18) re-
duces to that of Kobayashi et al.* In the general
case that we are considering where 0#0 and K,
+#0 and K, #+0, the secular equation is seventh or-
derink?, since V(f,k)isfourth!! orderink?andthe
elastic dispersionisthird order ink®. Although the
solutions for all the roots of 22 for a given bias
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field and frequency appear tobe complicated, the
solutions are trivial for frequencies away from
crossover regions between spin waves and elastic
branches. In this region four of the roots can be
approximately obtained from V(f,k) as has been
done already,'’ and the other three can be obtained
from the uncoupled elastic dispersion relations.
Near the crossover regions, computer solutions
have been obtained for k2 using a Newton iteration
procedure. Convergence is improved considerably
by selecting a small increment of frequency, since
the guess for the new root (in the iteration proce-
dure) is the root for the previously selected fre-
quency. In the following section, plots of f/y(Oe)
versus # are presented for a recently® character-
ized rare-earth transition-metal alloy.

III. DISPERSION CURVES

The solution of the 2 values for a given value of
f/v(Oe) in Eq. (18) are given in Figs. 5 and 6 for
the case of Tb, ,;Ho, z;Fe, and for which the fol-
lowing parameters were used:

M,="100 G (measured®),
A=0.9%x10"%erg/cm,
2K,/M,=600 Oe (measured®),
2K,/M ,=3400 Oe (measured®),
A=3.75%x10" Hz,

B,=0 (measured®),

B,=10° erg/cm® (measured®),
C,,=2x10%(1+0.1j) dyn/cm?,
C,.=10%(1+0.17) dyn/cm?,
0=0.37x10° mho/cm,
g£=2.20,

p=9.4 (measured®).

For the purpose of illustrating the calculations we
have assumed reasonable values for the rest of
the parameters which are not measured. The roots
or branches are identified in each graph by the
numbers 1-7. Figure 6 serves the purpose of ex-
panding the scale for 2 - 0.

In Fig. 5 the dispersion curves were obtained
for 6,=0, 45°, and 90° and ¢,=90° [M, in the (100)
plane] for the purpose of comparison. The mag-
nitude and direction (@) of H, was chosen so that
the three sets of dispersion curves overlapped
each other for #-0. This is achieved by requir-
ing that for all three angles of 6, the dispersion
curves have the same intercept (Kittel uniform
mode of f,/y=8418 Oe). The required values of
H, and « are calculated by using V(f,,%)=0 in the

limit of o=X=k =0 simultaneously with Eq. (9).
Table I shows the required biasing conditions.
Branches (1), (2), (3), and (4) are the magnetic
branches and (5), (6), and (7) are the acoustic
branches as identified in the two figures. Of
course, in the region of strong coupling the mag-
netic and acoustic branches are admixed and lose
“character.”

Branch (1) as shown in Fig. 6 is recognized as
the skin depth or the electromagnetic branch which
is simply given as

Ry=(1/6x)(1+j5).

This branch in Fig. 6 is plotted only for 6,=0,
since little deviation from the above expression
occurs for §,=45° and 90°. There is small cou-
pling between %, and the other branches for 6+0.
For 6,=0 this branch is uncoupled from the rest
of the branches, since V(f,k) can be written as
the product of a cubic equation in 2% and Q°.

Branch (2) is often referred to as the exchange-
conductivity branch.® This branch is highly disper-
sive near f,/y ~8418 Oe. The attenuation of the
rf magnetic fields varies sharply near f,/y, since
Re(k,) changes rapidly. The exchange rf field com-
ponent induced by attenuation of 7 goes through a
rapid change as f/y is varied near fo/y. As a re-
sult the ferromagnetic resonance linewidth in
metals is broadened by this mechanism. For
f/v>f,/v, as in the excitation of higher-order
standing-spin-wave modes in films, the exchange-
conductivity linewidth broadening mechanism® is
negligible. At low frequencies so that f/y << f, /v,
this branch assumes similar features to those of
the skin-depth mode.

The spin-wave branch (3) couples with one of the
transverse acoustic branches. The repulsion or
splitting between the two branches increases with
increasing 6,. The coupling interaction is angular
dependent as suggested by the third term in Eq.
(18). Since B,=0, there is no coupling between the
spin-wave branch and the longitudinal acoustic
branch. For values of Im(k) below the interaction
region the spin-wave branch behaves in the usual
manner

f/y < [Im(k,) 7.

However, the spin-wave branch does not intersect
the f/y axis as k,~ 0, since spin waves are as-
sumed to be damped. The other spin-wave branch
(4) is referred to as the surface spin-wave branch,
since Re(k,) is large. For large values of Re(k,)
the rf fields are confined to the surface. The two
spin-wave branches are approximately separated
by

[Re(k,) I — [Re(k,) F ~4nM o/ (2A/M o)
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for 6,=0 and f/y=0, but are degenerate for 6,
=90°. Neglecting magnetic anisotropy, conductiv-
ity, and magnetic damping, k, is given by

(2A/M k2 = Hy+ 2TM o + [(27M , cos?6,)> + (f /v)* /2.

When magnetic damping is included, %, is complex
and Re(k,) > Im(k,) (Fig. 6). A simple way to in-
clude the effect of magnetic damping on %, is to
write’® the internal field as

wenloo ()]

The magnetic anisotropy effect on 2, cannot be in-
cluded simply except for M, along a (100) axis.
For this case one needs only to redefine H, as

Hy =H,+2K,/M,.

Thus, two of the four magnetic branches can be
approximately obtained from simple analytical ex-
pression. This is very helpful in the computer
solution of the roots. Finally, it is pointed out that
for the two spin-wave branches Im(k,) and Im(k,)
-0 as f/y-0. This is in marked contrast to the
pure magnetic case'® where these two branches in-
tersect the Im(k) axis. Thus, it appears that
there is certain amount of repulsion between the
acoustic and spin-wave branches near Im(k) ~0.

As indicated in the second term in the secular
equation, there is no coupling between spin waves
and the longitudinal acoustic branch (5). Thus, the
dispersion relation for this branch is simply given
as

§=90//6=45 [8=0

I
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ky=j2mf(p/C,)"2.

The dispersion relation for one of the noninteract-
ing transverse acoustic branches (6) is given as

ke=j2mf (p/C,)Y2.

It is pointed out that both C,, and C,, are complex
quantities, and therefore, k5 and 2, can be com-
plex as indicated in Figs. 5 and 6. The acoustic
damping is introduced phenomenologically by taking
C,;and C,, as C;;=c{; +jcii, where cjj is chosen
for our case to be 10% of c/;. Finally, as expected
the other transverse acoustic mode (7) couples
strongly with spin waves. For frequencies near
the crossover region there is no simple relation-
ship between frequency and %.,.

IV. APPLICATIONS

So far we have been discussing one branch at a
time. Let us now examine the simultaneous ex-
citation of a number of branches. Whether one
calculates the magnetic resonance condition or
acoustic wave propagation characteristics, one
needs to calculate the surface impedance Z. Let
us calculate Z for a special field configuration,
as an example. For simplicity let us assume a
semi-infinite plate whose surface is at y=0, B,
=B,=0, and ﬁa perpendicular to the plate (we will
also consider the case of B,+#0). Further, the rf
magnetization is assumed to be pinned at the sur-
face so that m,=0 and m,=0 at y=0. The boundary
conditions are written as

f/y (Oe)

FIG. 5. Quantitative plot
of the seven branches of
k for a ferromagnetic mag-
netoelastic conductor.
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zhﬁho,, (19a)
n=1

("l)phn =hge, (19b)
n=1
Zq:k"h"=Zlh0“ (19¢)
n=1
i (=R, by = Z ko s (194)
n=1

4

> Q.h,=0, (19€)
n=1
24: (-1YQ,h,=0. (191)
n=1

Because of the special symmetry of this field ge-
ometry, it is well known that the normal modes are
circularly polarized. The normal modes are

mo=myxjm,.

The problem becomes one of expressing Z in the
proper combination of the four & values. There are
two ways of selecting the proper combination of

k values to obtain the surface impedance for right
and left circularly polarized modes. One way is

to determine which % values correspond to right
and circularly polarized modes as it was done in
Ref. 6. The surface impedance can then be ex-
pressed in terms of 2 values with the same corre-
sponding “sense” of polarization.®

~———Re(+), Im(:}<0

Re(i), Im(x) >0

L It
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It is instructive to use the approach of setting
up an eigenvalue problem for which the resulting
eigenvalues are the two surface impedances, and
demonstrate that each surface impedance is, in
fact, expressed in terms of the proper combination
of £ values. Since we are setting up an eigenvalue
problem for the surface impedances, the boundary
conditions at the surface can be expressed in terms
of rf fields which are not necessarily normal
mode field solutions. Thus Eqs. (19a)-(19f) are
expressed in terms of a convenient set of vari-
ables, m, and m, or k, and %,. For this geometry
m,=-m, and my = -m,. In the first four equations
we require the fotal rf magnetic (k, and %,) and
electric (e, and e,) fields to be continuous at the
surface. The last two equations represent m=0.
The rf component of m normal to the plate (m,) is
zero. In Eqgs. (19b), (19d), and (19f) we have made
use of the fact that m, /m,=+j for k, and k, and
m,/m,= - j for k, and k,. Thus, k, and k, corre-
spond to left circularly polarized normal modes
of m, while k, and k, correspond to the right cir-
cularly polarized waves. The value of p =0 for
n=1and 4 and p=1 for =2 and 3. We have as-
sumed that the surface impedance may be anisot-
ropic so that it is defined by

Z,=(4n0/c) ey /Ry
Z,=(~4n0/c) ey /hoe) -

h, are the magnetic field strengths corresponding
to the &, root. There are six unknowns (h,, h,, h,,
hyg, =hyy, and - hg,) and six equations. Nontrivial
solutions are obtained if

FIG. 6. Same as Fig. 5,
except the region near
k=0 is expanded.
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TABLE I. Required biasing conditions.

b0 6y a H,
(deg) (deg) (deg) (oe)
[010] {010] 0 4500
[010] [011] 67.83 11334
{010] [001] 90 16615

M o 1 1 1 1]

o 1 1 -1 -1 1

Zl 0 kl k? k3 k4
etlo 2z, b, -k, -k, k[

0 0 @ @ @Q; Q4

B 0 Qx "Qz "Qs Q_q_

Expanding the determinant, one obtains

Z.Z,-3[(Z,+Z N2 +27))+2*Z" =0, (20)
where

Z" =(k,Q;~Q:R,)/(Q;- Q) , (21)

Z7=(kQ, - Qsk)/(Q, - Q). (22)

In seeking the characteristic polarizations of the
system, we look for vectors h and € on the sur-
face, where & is a known linear function of h. This
implies that Z,=Z,=Z and leads to an eigenvalue
problem for the determination of Z, and Eq. (20)
becomes quadratic in Z. There are two values for
Z, since the vector space is two dimensional.

The two solutions of Z, Z=Z* and Z~, represent
the condition® that the incident and reflected waves
from the surface have the same polarization. In a
magnetic resonance experiment Z=Z" gives rise
to the resonant response of the system while the
Z =Z~ solution the “flat” response (nonresonant).

For oblique angles' Z* and Z~ are a function of
k,, k,, ks, and B, instead of only %, and %, or &,
and k,. However, reasonable'® approximate solu-
tions of Z* at oblique angles can be obtained using
only two roots (¢, and k,) instead of all four roots.
For in-plane resonance, 6,=0, k,, R;, and &, are
required® to calculate Z, since #, is the nonmag-
netic branch (the skin-depth branch).

For our case B, #0 so that Z* will also be a func-
tion of k2, and, therefore, the magnetoelastic pa-
rameter. The other two acoustic branches are
not coupled to the magnetic system and, therefore,
are not included in the expression for Z*. The
boundary conditions are the same as that given in
Eq. (19) except a new boundary condition on the
elastic motion must be introduced. The traction

free boundary condition,* which implies that the
lattice is free to vibrate at the surface, is given as

where u and m are the circularly polarized ampli-
tudes of the lattice displacement and magnetic rf
field or u=u, — ju, and m=m - jm, since 6,=90°.

If the lattice is “clamped” at the surface the bound-
ary condition (deformation free) is given simply as

u=0.

After some algebra Z* is found to be

7+ =k2(v7 = 1)/ Q, +Ry(v; = 03)/ Q4+ (V3 —,)/Q,
(U-, - Ug)/Qz + (1)2 - U-])/Qa + (1)3 - Uz)/Q7 ’

where
v,=By[1 - C«k:/(cgki +pw?) /M,

for traction-free boundary condition. For the de-
formation-free boundary condition, v, is defined as

Un = Balk,/(Cygkes +pw®) |/ M, .

The same procedure as outlined in Ref. 16 can be
used to calculate acoustic power generated in a
rod by a magnetic metallic film. The basic idea’®
is to set up an acoustic standing mode in a film
with finite thickness. The acoustic impedance of
the rod is purposely’® chosen to be mismatched to
the acoustic impedance of the film so that only part
of the acoustic power is launched into the rod.
Maximum acoustic power transfer is realized when
the delicate balance of (i) “tapping” as much of
acoustic power out of the film and (ii) still main-
taining an acoustic standing wave resonance is
achieved. If the rod and film acoustic impedances
are matched, an acoustic standing mode cannot be
set up. Thus, the thickness is chosen to be half an
acoustic wavelength. A material with a high mag-
netostriction constant is desirable, since the
acoustic wave is generated via the magnetic sys-
tem. For our case the maximum transverse
acoustic power is generated for 6,=90°, and only
three branches are necessary and they are (k,, k,,
and k,), since k, and k, are magnetically inactive
and %k, and k¢ are not coupled to the magnetic sys-
tems. However, it may be possible to generate
acoustic waves by tuning the frequency of operation
to the cross over region. For this type of experi-
ment the substrate, or the rod acoustic impedance,
and the thickness is required to be less than the
skin depth.
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From a practical point of view the rare-earth-
transition-metal systems appear promising in
view of recent!” experimental results where an
acoustic wave was generated at ~1 GHz.
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APPENDIX

The matrix elements of A, A,, B’, and D’ are

defined in this section. The matrix A is defined as

J

The magnetoelastic matrix A, is given as
B,[a,a, - n(1 - 2a3)a,] 2B)(a,a, +na,a?)

A, =| -B,[a,a,+7(1 -2ad)a,] -2Bin(1 - ad)a,

3955

) +Cyy G +Cp Q13 +C
A=| @y, +Cy, Gy +Cpp Ay +Cyy
Q31 +C3; Q3 +C3p Q33 +C3y

The elements a;; and c;; have been defined in the
appendix of Ref. 11 and in Ref. 18 except the a and
d coefficients are defined as

a=§<HQ-(2A/MQ)k2 . 1) ,
Y M, Q

2
4 A(Baz GAIMIE ),
Y M,

in order to include the effect of the exchange field
in the magnetic damping terms.

~B,[(af - 03) +2na,0,0,]
By[a,a, - n(1 - 203) ay] »

-B,[(a? - a3) - 2na,a,a,] - 2Bj(a,a, - naia,) ~B,[a,a, +1(1 - 202)a,]

where B{= B, - 2tM2, n=\/yM,, and B=1+17.

In obtaining the secular equation, it was required to expand the determinant

det(D’-B")=0,
where
0 o o o |
0Q O 0 0
D'=[0 0 —pw? 0 0
00 0 -puw?* O
LO 0o o0 0 —pwz_
and
[— (@A, + @A) + 124y, @Ay, - Ay,
- aya5(aA,, + A ) ay(aA,, ~ a,A,,)
+ a,0(a,4, +a,4,,) +a,(a,A,, - a,A,,)
1 +13(aA 3 —a,A,,)
D'—_B_"—‘F
-(2B,la,a,a.k)/Mqp B,l(aZ - a?)k/M,p
—(2BilaZak)/M,p —(2Bjla,ak)/M,p
_leaz(l -2ad)k/M,p -B,la,a.k/Myp
where
l=siné,,

Aj=ag+cy;

Ai.!+3 ‘=‘(Al)ih i,j=1,2,3.

AL 1+ 0, A, /1 —aA )1+ @Ayl A/ 1+, A/

-A,, -A,s —Aze

C k2 /p+w? 0 0
0 C,,#*/p+w? 0
0 0 Cydk®/p + w?]
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It is noticed that the 5x5 matrix (D’ - B’) is of the
form
—_—
(2’—2')5[ X].
Y Z
It is found that the determinant expansion can be
simplified by using the identity

R,=- {alazaa(caa —cy) + ap(ade ;- ofcy,) + 0f e, — alcs,

det(D’' - B’) = [det(W- XZ ~'Y)]detZ .

The advantage of using the identity is that it re-
duces the 5x5 determinant expansion to a 2X 2 de-
terminant expansion, since Z is a diagonal matrix.
Finally, the parameters R, and R, in Eq. (18) are
defined as

+nlafess + agade y = ayay(esy,; + afe ) — @, 005 (aCyy — @1055) ]}/ (0 +03)

and

Ry ={a,a,(1 = 3a2)(@yc,; ~ @,Ch1 +1Cqy) + y(1 = 02 = 402a2)[c,, +naycay — axcyy)]

+(1- @31 +05) - 40703) (@655 = AyC 15 = MC35) + @y A0y (1 = 405) M0z 13 = @1C35) = C55]

+ 05 (A5C 1 = @ UCap +MAaCa7) + 01 A [M(0C 1 = A1Coa) = €52 ]/ (0] + 03).
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