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A general dispersion law has been derived for a cubic„ ferromagnetic, elastic, and conductive medium

in which the magnetoelastic coupling and the magnetic anisotropy energy parameters can be large.

Also, the direction of the external field is taken to be arbitrary and it is not assumed to be collinear

with the internal field and the magnetization. Maxwell's equations and the equation of motion for the

magnetization and the elastic equations of motion have been combined in a consistent manner without

the assumption of collinearity of the fields to yield a general dispersion law which is of seventh order
in the square of the propagation constant k, and contains three acoustic and four magnetic branches.
All of the seven values of k' belonging to a fixed frequency and bias magnetic field have been

calculated numerically by computer. The calculations are applicable to the rare-earth —transition-metal

alloy systems which have large magnetic anisotropy and magnetostriction and, thus, may be useful for
high-frequency magnetostrictive transducers. Also, the surface impedance is calculated for some simpie

field configurations.

I. INTRODUCTION

In this paper we are concerned with magnetoeias-
tic interactions in a cubic ferromagnetic conduc-
tor. The phenomena of coupling spin waves to lat-
tice vibrations in magnetic isotopic insulators
have been studied in a number of papers. ' ' %e
have generalized the dispersion law so that it is
applicable to magnetic conductors with large mag-
netocrystalline anisotropy and magnetoacoustic
coupling. In a magnetoelastic insulator it is
found" that the dispersion relation which relates
frequency f and propagation constant k, contains
five branches (Fig. I). Three branches correspond
to the iwo degenerate transverse modes (TE) and
to the one longitudinal mode (I E) of the lattice
motion. The other two are magnetic branches and
correspond to a bulk spin-wave branch and a sur-
face spin-wave branch.

For a pure magnetic conductor (with no coupling
to the lattice) it is found' ' that there are four
branches, one of which is nonmagnetic and re-
quires different rf field excitation. %hereas the
three magnetic branches require that the rf mag-
netic field be perpendicular to the static applied
field, the nonmagnetic branch requires the rf field
to be along the static field. The dispersion curves
for the four branches depend on the direction of
the applied bias field H, . If H. is in the plane of
the plate, there is one nonmagnetic branch, re-
ferred to as the pure electromagnetic or skin-depth
mode, and three magnetic branches (Fig. 2). Al-
though two of the branches are common to both an
insulator and metal, one of the branches, which is
referred to as the exchange-conductivity branch'
occurs only in metals. Physically, the exchange-
conductivity branch arises from the fact that in a

metal the internal rf fields attenuate with depth,
and thereby induce an extra exchange field torque
on the magnetization. For the case that H, is at
an oblique angle, ' but in a plane which is perpendi-
cular' to the plane of the plate, the pure electro-
magnetic mode is admixed with the other three
magnetic branches so that it is no longer a pure
skin-depth mode.

Although it is expected that for the general case
of a metallic magnetoelastic medium there ought
to be seven branches (three acoustic and four mag-
netic branches), it is not clear which of the mag-
netic branches couples to the elastic branches for
a given direction of H, . Since the coupling de-
pends" on the direction of H, , we have obtained a
dispersion relation for arbitrary directions of H, .

In order to calculate the general dispersion re-
lation, the equilibrium position of the magnetiza-
tion is required. The omission in previous calcu-
lations of the effect of magnetic anisotropy but the
inclusion of anisotropic magnetoelastic interaction
and elastic self-ener~ "is somewhat inconsistent.
The implicit assumption previously made, that
H, and H, (the effective internal static field) are
collinear, is not valid in magnetically anisotropic
media. The effect of this assumption is to pre-
dict an erroneous frequency for "crossing. " Be-
cause we have included the effect of magnetic an-
isotropy of arbitrary strength with no assumption
of collinearity between H, and H„our calculation
should be applicable to systems where the magne-
tic anisotropy and magnetoelastic interaction en-
ergies are unusually'" large in metals.

In a magnetic metal the pure electromagnetic
branch and the exchange-conducting branch co-
alesce as k-0 (Fig. 3). It is possible that repul-
sions occur between the above two branches and
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the acoustic branches as 4 -0 for the general case,
and, in fact, one might force such interactions to
occur by the correct choice of the conductivity,
the exchange constant, and the acoustic velocities.
%'e have adopted a more realistic approach to in-
vestigate the region of k-0 for a recently studied
material, Tbo. i5Ho0. 85Fe

The method of calculation is basically the same
as that introduced in Ref. 11. In Ref. 11 we used
the variation principle to determine the rf effective
magnetic fields from the free energy. We take
small or virtual displacements of the magnetiza-
tion away from its equilibrium position. However,
in this case an rf effective magnetoelastic field
must also be calculated by taking small lattice dis-
placements from the equilibrium position of the
lattice displacement. Whereas in Bef. 11 only an
anisotropic magnetic metal is considered, in the
present paper the elastic self-energy, the mag-
netoelastic interaction, and interaction energy
terms which reflect change in volume as the sam-
ple is strained, are also included as part of the
free energy of the system.

II. THEORETICAL FORMULATION

In this section a functional relationship between
frequency and the propagation constant 4' is derived
for a given magnetic bias field H, . The propaga-
tion constant vector k is assumed to be normal to
the metal plate. One surface of the plate is at y
=0 and the other surface at y = —~. M@netostatic
and elastic wave propagations in the plane of the
plate are not considered. The procedure for ob-
taining the dispersion law is as follows:

(i) Magnetic, elastic, and magnetoelastic energy
terms are included in the free-energy expression.
(ii) The equations of motion for the magnetization
M and the elastic displacement u are obtained
routinely from the free-energy expression. There
are three unknown field variables (M, u, and H)

and two sets of equations. One set of equations
relates M to H and u, and the other set u to M.
Maxwell's equations form the third set of equa-
tions which relates M to H. Thus, the required
number of equations is obtained which gives rise
to nontrivial solutions for M, H, and u.

The total free energy is the sum of elastic (Fz),
magnetic (F„), magnetoelastic (F„x), and induced
magnetoelastic energy terms (F,):

I'" = F~+I'~+I'ME+I'q .

The elastic energy is given as

1F =—c„ge„'„Pfc„e„'„2c„e„,e „)) .
n=l n&m

C„, C„, and C„are the elastic constants appro-
priate for a material with cubic symmetry and

~Q„8Q„8Qe="e=, "+
nn g& t nm

n

where u„ is the lattice displacement along the n

direction and x„ is the coordinate axis. The mag-
netic free energy is given as

F„=-H, M+2'', a', +K, g(a„a }' +K,( a, a, a)'

(3)
In Eq. (3), the a's are the directional cosines of
M with respect to the cubic (100) axes so that n,
= sin8cosy, a, = sinssiny, and a, =coss (see Fig.
4). K, and K, are the first- and second-order
anisotropy constants. The first term on the right-
hand side represents the magnetizing energy, the
second the demagnetizing energy, and the third and
fourth the magnetocrystalbne anisotropy energies.

Re(k)

FIG. 1. Sketch of the dispersion curves for a ferro-
magnetic insulating magnetoelastic medium.

Re (k)

FIG. 2. Sketch of the four branches of the propagation
constant as a function of f/y for a ferromagnetic con-
ductor.



For exam
rgy (dEO) i

samp" '
d mag etizi"g8IQ

given as

].0

3), the de-term 1n Eqf the seco
r having

forIQ
dictated by our

t
magneti W

axis to be a ( . Further,

i energy' is
OOen the 2 (o &

wn in»g].at, e as s
~ the IQag

lane of the p
ti situation,8 assume that»

e
in, the s a

Sa,IQp le is in-
w

s saturated, an„et1zation is s
directions, sofinite in the

etizing factor is 4m.

r ' l the lowest-or eConsider ngri on y -or 8

m for
nt on the orien a 1

eto ' interaction".
tr consi era

etoelastic nthe magneto '
n

(3a
3

Q Q~ ~E 1 @2+9, e„e„r = 8, enn&n
ll +ill

AED =— 4@AM dM

which gives

'o, 'V u.aF =-2', ,D

a ' e direction 4EDating in the y iFor waves propaga
' e

comesbe

= 4ED = —2n'Moa2e, 2.

t of them is of the same o oT eh above term me o

r ' . r conve-
first tterm in E„s [

toelastic inter ' . re to a magne oerise o oe

B lib dforth, the prime on

c on s length s
compared to 9~-

etic anisotropys changes in magnefrequencies c a
e ies due o

efore these
Zeeman energ agn
ax'8 SIQ

effects have been ne

(5)

M

es in the y directiontion of elastic waves in eFor propagation o e
t

~ era+&2(niu2en+ ~2oseas .~ME Bx aa. 2

etoelastic 1nand B, are the mag e8, an

me of the
eters.

'
m the volumm 1 stic med1u mm netoe a

tized.sample c ngha es as
ents raus athat the density of IQa

o first order, t echange. To r t e
tion 1s approximately

(Sb)

(4)

C CU»C'A ERROMAGNERSI ON QA

E . (4)

ENE RAT- O'Sp

's under stress) using
ene

im lications of Eq.The physical imp i
he total number o sp elow s: the o sp
n a sample

m' (M) can v
ments in a

oments per cm
%'hen

m netic mom
ression.m leisin en'

is in tension (V u &

Therefore,
e is true w en

increased.
The converse

nowis compressed (V u&the sample is c
nergy is modl,estimate how the free en

ions of motion for Mrive the equations o8 fore we derive8 0
determine 1

ii the di-
and u we must de e

q
rection in which t e
given H~.

lib ium conditionsA. Static eqw ri

of a strongresence ole is in the pp
field, the sampbias magnetic 1e

z , Loop

/
Ho, Mo

I

kp

Xm(ky) &Q

x, t.ipog

re on near. 2, except the r giSame as in Fig.FIG. 3.
A= 0 is expanded.

fieldsi ration of the various. 4. Geometrical configu
vrith respect to the cu



3948 C. V'ITTORIA, J. N. CRAIG, AND G. C. BAII E Y

some direction and, consequently, the sample is
strained. The equilibrium configuration of the
crystal may be found by minimizing I" with respect
to e„„and e„. The solutions at equilibrium are
readily found to be'

(0) Bl[C12 nn(C11+ 12)1
(C„-C„)(C„+2C„)'

parallel to H, only for a =0 ([001]axis) and a =v/4
([101]axis}. For H, in the (100) plane, H, and H,
are parallel to each other only for a =0 ([001]
axis) and a =m/2 ([010]axis).

B. Dynamic ferromagnetic equations of motion

In this section the equations of motion for the
rf magnetization and the lattice are derived. The
classical equation of motion for M is

Substituting e„„and e~ into I' gives rise to an en-
ergy term of the same symmetry as the first-order
anisotropy energy. Thus, it is found that although
the sample is strained when magnetized, the sym-
metry of the magnetic anisotropy is still cubic.
This amounts to changing R, into E, + 4K where'
4K = B',/(C» —C») —B,'/2C«. Higher-order terms"
in the magnetoelastic interaction terms are re-
quired to modify K, as in the case of K,. In sum-
mary, one needs to redefine the free energy after
the sample is magnetized. In this case only &, is
redefined, and for our particular case ~R ~Kg.

Since the equations of motion are written in
terms of the internal field H„ the direction of H,
is required for all directions of H, . For a given
direction of H, the direction of the static magne-
tization Mo, or the internal field H„ is uniquely
determined from H, = (V F)/—M, where M, =—

l Ml.
The gradient operator V is defined with respect
to the direction cosines measured from the crys-
tal axes. Thus, we have

H, = H, —4aM, a,i, —2K, [n, (a', + a',)i,
+ a, (n', + a', )i„+a, (n', + a', )i,] /M,

~2(nln2n3ax 2 la3at a3 1n2a+)/MO '

(8)

H, is the applied bias field; the second term is the
demagnetizing field. The last two terms are the
magnetic anisotropy fields. The magnetoelastic
static fields due to straining of the sample are in-
cluded through the redefinition of Ky From Eq.
(8) it is readily shown that the equilibrium condi-
tion is

H, sin(a —8O) = 2mM, sin28O+ (K,/2M, ) sin480

for H, in the (100) plane. For H, in the plane of
the plate the first term in the right-hand side is
omitted. In Eq. (9), a and 8, are the angles be-
tween H, and M, and the [001]axis, respectively.
The equilibrium conditions can also be obtained by
setting BF/88 = BF/scp =0 and by solving for both
8 and y.

For H, in the (010) plane (plate plane), Ho is

(10)

where H, ff is an effective field which includes con-
tributions from all possible static and rf effective
field sources. In Eq. (10) the Landau-Lifshitz
magnetic damping mechanism characterized by an
isotropic damping parameter A. is assumed.

Hcff Ho + h + hex + hg +h MF. s

where H, is the effective static internal field and
it is assumed to be spatially uniform in the plate.

The Maxwellian rf magnetic field h is related"
to m via Maxwell's equations by

Qh„+m„= 0, h, +4am, =0,

Qhg+mg=0, Q= (1+—,
' j50}t')/4w,

6', = e'/'2m',

where c is the velocity of light and v the conduc-
tivity. For an iso' opie exchange interaction be-
tween magnetic moments in a cubic material, the
rf exchange field is given as

h,„=(2 A V'm}/Mo

where A. is the exchange stiffness constant. The
gradient operator V is defined with respect to the
rectangular coordinates. The above form of h,„
is valid in the long-wavelength approximation. '
The rf magnetic anisotropy field h„can be derived
from

F„=—(I/M, )8(V„F„)

where E„ is the magnetic anisotropy energy con-
tribution to I'„. The analytical expression for h~
is found in Ref. 11 and is readily obtained by taking
virtual displacement of M about its equilibrium
position M,. In the same manner, the rf magneto-
elastic field h„E is obtained from

h„F = —(I/Mo)5(V FME) .

To first order in the lattice displacement, hME is
found to be

hME IB2aae 12a + [2Bln2e2

+B,(n, e»+n, e„}]i,+B,a,e „a,}/M, . .
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The above expressions for the rf fields K„and
fi„z apply only to small rf field perturbations or
small deviations of M and u away from M, and
e~", respectively. However, Eq. (10) is a nonlin-
ear differential equation and it is linearized by
collecting linear terms in m and u. %'e write M
and H as

2
+le22 2+~2(+1+2e12 +2+3e23) 1

where p is the crystal density, and w„ is the crys-
tal momentum along the n direction. The equation
of motion for the lattice is obtained from the time
rate of change of the lattice momentum

X ~ 83C
pg„=it„= — + — —,n=1, 2, 3.

fi X en 2

(13)

Again by collecting terms to first order in u and

m, Eq. (13) leads to

pu = O'A2u —kA, m, (14)

C„0 0"
A, = 0 C

0 0 C4i

B2n2

A, = 0

0

B2e, 0

2B,O.2 0

N= Mo+m, H= Ho+h

«~ H, ~
so that quadratic terms of the form m, ma,

m+8, m~„, etc. can be omitted. Thus, after lin-
earizing Eq. (10) and assuming an exponential var-
iation of the components m„, u„of the form
e' ' ", we have

~ dm = (A+IQ)m —kA,u. (11)
y dt

Here, A is a (3 &&3) square matrix which was de-
rived in detail in Ref. 11, I is the unit (3x3) ma-
trix, 0 = j~/y, and A, is a square matrix which
contains elements proportional to By and B2 Def-
initions of the matrix elements of A, and A are
given in the Appendix. It should be pointed out that
Maxwell's equations have already been included
through the 5 term in Eq. (10), and, therefore,
A contains elements which are proportional to the
conductivity. " The Hamiltonian for the lattice
motion is given as

n 11e22 + ~44(e12 e2$) 3P
ff = 1

For H, in the plate plane (a, = 0), there is no

coupling between the magnetic spin system and the
longitudinal wave u„. However, one of'the trans-
verse waves (u)~ M,) is coupled to m, . Thus, we

would expect that for this configuration, the spin
wave and the longitudinal acoustic branches inter-
sect each other without any repulsion, but repul-
sion will occur between the spin wave and one of
the transverse acoustic branches. For H, perpen-
dicular to the plate (o., = 1) there is coupling be-
tween the spin system and the transverse wave

but not with the longitudinal wave, since m, = 0.
Closer examination of A, reveals that the longitu-
dinal wave couples to the spin system for JI, at
oblique angles to the plate.

Equation (14) contains no provision for elastic
damping. Elastic damping can be introduced phe-
nomenologically by making A, complex or, equiv-
alently, making C» and C,4 complex. The full set
of coupled elastic and magnetic equations of mo-
tion for the system are displayed by combining
Eqs. (11) and (14):

DX= BX,

where D is a (6& 6) diagonal matrix

noo 0 0 0

on0 0 0 0

00@ 0 0 0

0 0 0 -pu)' 0

0 0 0 0 -p~'

0 0 0 0

X is R six-dimensional vector whose components
are m„m„, m„u„u„u„and 8 is a (6x 6) ma-
trix which can be written in terms of A, A„A„
and A„namely

A+IQ ~ -kA,

-kA, i k'A2

By our choice of the Landau-Lifshitz form of the
equation of motion, Eq. (10), the magmtude of M
is necessarily conserved. In the linear small-fiel. d
approximation this requires that M, m =0. As a
result m„, m„, and m, are linearly dependent. %e
now introduce a transformation to a five-compo-
nent vector X' whose components are linearly
independent. Obviously u„, u„, and u, are indepen-
dent of each other. The six-component vector is
connected to the five-component vector by trans-
formation which reflects m„m„m, into the two
components of m (me and m&) which are orthogonal
to M, (see Fig. 4). Thus write
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or

X=S-'X' . (15b)

The matrix representation of this linear transfor-
mation is given as

equations of motion for the five components of X'
in the following manner. Defining D' as D' = SDS ',
where D' is a (5X5}diagonal matrix, and using
Eq. (15a) write

O'X'=D'(SX) .

where

0 0 -1
n2 + n2) Vz

-a, n,

&1.~3 -z
n2n~ n~ (n)+ Q2)

Since O'S =SD,

D'X'=SDX= SBX.

Substituting Eq. (15b) into (1 I) and defining 8'
=ST ', we get

(D' —8')X'=0.

The matrix 8' is a (5'& 5) matrix whose elements
are defined in the Appendix. There exists nontriv-
ial solutions of X' if

det(D' —8') = 0.

—(n', + n,') 0

These transformations now allow us to write the

The resultant secular equation which results from
expanding the determinant relates frequency and
propagation constant 4:

((u'+ C„'k/ p(}(u' +C„k'/p)'V( f, k) —n,'((u'+C„k'/p)'(28, /M, p)'M, pk'((I —n,'}[5+q(Q+a)]+8,]
—(ru'+ C„k'/p)(&o'+ C,,k'/p)(8, /M, p)'M, pk'[(1 —8n', +4n', )qQ + (ry + b)(1 —4n', + 5n', }+(c + 7)d) n,'(1 —n', }+8,]

+ n,'(1 - 2n', )'P (&o'+ C»k' Ip) (8,/M, p)'(M, pk')' + n', (1 —n', )P(~'+ C«k'/p}(28, /M, p)2(8, /M, p}'(M,pk'}' = 0,

where V(f, k) is the magnetic dispersion relation for a pure magnetic conductor as found in Ref. 11:

V(f, k) = (a-'+ b'+ 2Qa) n,'+ (1 —n,') [ad + bc +Q(a+d)]+Q'+ [(c„c„+c„c„+c„c„)—(c„c„+c„c„+c„c„))
—(a»c»+a, 3c»+ a„c» +a»c, , +auci2+ ai2c»} [d(1 —n', )(c»+c») +a(1 —n', )c»+ a(1 —n', )c»
+a(2 —n', —n', }c„]—Q(c„+c„+c„).

A simple method by w'hich the secular determinant
can be expanded with the above form is shown in
the Appendix. All of the parameters in Eq. (18)are
defined in the Appendix and in Ref. 11.

The first term in Eq. (18) represents the uncou-
pled magnetic and elastic wave dispersion rela-
tions. The second term represents a coupling be-
tween the spin waves and a LE wave (longitudinal
magnetoelastic coupling), and the third term rep-
resents a coupling between spin waves and a Te
wave (transverse magnetoelastic coupling). The
fourth and fifth terms represent couplings between
two TE waves and between a TE wave and the LE
wave. As suggested by Eq. (18), the coupling
strength between the elastic and magnetic waves
depends on the product of B, or Jj„ the C&, 's and
an effective magnetic field which includes H„ the
damping fields, and conductivity, as well as 2K,/
M, and 2K,/M„ through the 8,andft, terms (see the
Appendix). The two major roles of magnetic crystal-

line anisotropy are (i) the selection of the crossover
frequency between the elastic and magnetic branch-
es [see Eq. (8) and V(f, k)] and (ii) the influence on
the coupling strength between the waves [see Eq.
(18}]. We now take various limits and show that
the present form for the dispersion relation re-
duces to expressions derived by previous authors.
In the limit of By B 0 the secular equation re-
duces to the product of the uncoupled elastic and
magnetic dispersion relations. Further limits on
V(f, k) are discussed in Ref. 11. For the elastic
dispersion, the f /y versus k relation is trivial.

In the limit of 8, 40, 8, 40, a =0 (insulator) and
A, =&,=0 (isotropic magnetic medium) Eq. (18) re-
duces to that of Kobayashi et al. ' In the general
ease that we are considering where F 40 and K,
~0 and K, 0, the secular equation is seventh or-
derink', since V(f, k) isfourth" orderink andthe
elastic dispersion is third order ink'. Although the
solutions for all the roots of k' for a given bias
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field and frequency appear to be complicated, the
solutions are trivial for frequencies away from
crossover regions between spin waves and elastic
branches. In this region four of the roots can be
approximately obtained from V(f, k) as has been
done already, "and the other three can be obtained
from the uncoupled elastic dispersion relations.
Near the crossover regions, computer solutions
have been obtained for 0' using a Newton iteration
procedure. Convergence is improved considerably
by selecting a small increment of frequency, since
the guess for the new root (in the iteration proce-
dure} is the root for the previously selected fre-
quency. In the following section, plots of f/y(Oe)
versus & are presented for a recently' character-
ized rare-earth transition-metal alloy.

III. MSPERSION CURVES

The solution of the 4 values for a given value of
f/y(Oe) in Eq. (18) are given in Figs. 5 and 6 for
the case of Tb, »Ho, »Fe, and for which the fol-
lowing parameters were used:

Mo= 'f00 6 (measured') „

A=0.9x10 ' erg/cm,

2K,/M, =600 Oe (measured' ),
2K,/M, = 3400 Oe (measured' ),
x =3.75~10' Hz,

8, = 0 (measured'),

8, = 10' erg/cm' (measured'},

C» = 2X 10"(1+0.1j) dyn/cm',

C«= 10"(1+O.lj) dyn/cm',

o = 0.37 && 10' mho/cm,

g = 2.20,

p =9.4 (measured') .

For the purpose of illustrating the calculations we
have assumed reasonable values for the rest of
the parameters which are not measured. The roots
or branches are identified in each graph by the
numbers 1-7. Figure 6 serves the purpose of ex-
panding the scale for k -0.

In Fig. 5 the dispersion curves were obtained
for 8,=0„45', and 90' and q, =90' [Mo in the (100}
plane] for the purpose of comparison. The mag-
nitude and direction (a) of II, was chosen so that
the three sets of dispersion curves overlapped
each other for k -0. This is achieved by requir-
ing that for all three angles of 6IO the dispersion
curves have the same intercept (Kittel uniform
mode of fjy = 8418 Oe). The required values of
H, and o.' are calculated by using V(f „k)=0 in the

limit of o = X = k = 0 simultaneously with Eq. (9).
Table I shows the required biasing conditions.
Branches (1}, (2}, (3), and (4) are the magnetic
branches and (5), (6), and (I) are the acoustic
branches as identified in the two figures. Of
course, in the region of strong coupling the mag-
netic and acoustic branches are admixed and lose
"character. "

Branch (1) as shown in Fig. 6 is recognized as
the skin depth or the electromagnetic branch which
is simply given as

k, = (1/6, }(1+j ) .
This branch in Fig. 6 is plotted only for 8, = 0,

since little deviation from the above expression
occurs for 8, =45 and 90 . There is small cou-
pling between 0, and the other branches for 8 10.
For 6), =0 this branch is uncoupled from the rest
of the branches, since V(f, k) can be written as
the product of a cubic equation in 0' and Q'.

Branch (2} is often referred to as the exchange-
conduetivity branch. ' This branch is highly disper-
sive near f 0/y = 8418 Oe. The attenuation of the
rf magnetic fields varies sharply near f,/y, since
He(k, ) changes rapidly. The exchange rf field corn-
ponent induced by attenuation of m goes through a
rapid change as f/y is varied near f, /y. As a re-
sult the ferromagnetic resonance linewidth in
metals is broadened by this mechanism. For
f/y» f, /y, as in the excitation of higher-order
standing-spin-wave modes in films, the exchange-
conduetivity linewidth broadening mechanism' is
negl. igible. At low frequencies so that f/y «f, /y,
this branch assumes similar features to those of
the skin-depth mode.

The spin-wave branch (3) couples with one of the
transverse acoustic branches. The repulsion or
splitting between the two branches increases with
increasing 6,. The coupling interaction is angular
dependent as suggested by the third term in Eq.
(18}. Since 8, =0, there is no coupling between the
spin-wave branch and the longitudinal acoustic
branch. For values of Im(k) below the interaction
region the spin-wave branch behaves in the usual
manner

f/r [Im(k, }]'.
However, the spin-wave branch does pg0I; intersect
the f/y axis as k, -0, since spin waves are as-
sumed to be damped. The other spin-wave branch
(4) is referred to as the surface spin-wave branch,
since Re(k, ) is large. For large values of Be(k,)
the rf fields are confined to the surface. The two
spin-wave branches are approximately separated
by

[Be(k,) ]' —[Be(k,) ]' =4v M g(2A/M, )
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h„= ho, , (19a)

(19b)

Qk„h„=Z,ho„,
n=l

(19c)

(-1)~k„h„=Z,ho, , (19d)

gq„I„=0, (19e)

Q (-1) Q„h„=0.
n=l

(19f)

Because of the special symmetry of this field ge-
ometry, it is well known that the normal modes are
circularly polarized. The normal modes are

The problem becomes one of expressing Z in the
proper combination of the four 4' values. There are
two ways of selecting the proper combination of
k values to obtain the surface impedance for right
and left circularly polarized modes. One way is
to determine which & values correspond to right
and circularly polarized modes as it was done in
Bef. 6. The surface impedance can then be ex-
pressed in terms of 4' values with the same corre-
sponding "sense" of polarization. '

It is instructive to use the approach of setting
up an eigenvalue problem for which the resulting
eigenvalues are the two surface impedances, and
demonstrate that each surface impedance is, in
fact, expressed in terms of the proper combination
of k values. Since we are setting up an eigenvalue
problem for the surface impedances, the boundary
conditions at the surface can be expressed in terms
of rf fields which are not necessarily normal
mode field solutions. Thus Eqs. (19a)-(19f) are
expressed in terms of a convenient set of vari-
ables, m„and m, or h„and h, . For this geometry
m~= -m„and me = -~,. In the first four equations
we require the total rf magnetic (h„and I4) and
electric (e„and e,) fields to be continuous at the
surface. The last two equations represent m =0.
The rf component of m normal to the plate (m, ) is
zero. In Eqs. (19b), (19d), and (19f) we have made
use of the fact that m, /m„=+ j for &, and k, and

m, /m, = —j for 0, and 0,. Thus, k, and k, corre-
spond to left circularly polarized normal modes
of m, while k', and &, correspond to the right cir-
cularly polarized waves. The value of P =0 for
n = 1 and 4 and P =1 for n = 2 and 3. We have as-
sumed that the surface impedance may be anisot-
ropic so that it is defined by

Z, = (4w o/c )(e„/h„),
Z, =(-4no/c)(e„/h„).

h„are the magnetic field strengths corresponding
to the &„root. There are six unknowns (h„h„h„
h„-h, „, and —h„) and six equations. Nontrivial
solutions are obtained if

f/y {Qe)

————Re(t), Im(L. }&Q

Re(;-), Zm();) & 0

FIG. 6. Same as Fig. 5,
except the region near
4'= 0 is expanded.

I
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I'ABLE I. Required biasing conditions.

H
(oe)

free boundary condition, ' which implies that the
lattice is free to vibrate at the surface, is given as

~u 82
44 ey

t010]
[010]
I 010)

[010]
t011)
[001)

1 0 1

0
67.83

90

4500
ll 334
16615

where u and m are the circularly polarized ampli-
tudes of the lattice displacement and magnetic rf
field or u=u„- ju, and m=nc„- jm, since 8,=90'.
If the lattice is "clamped" at the surface the bound-
ary condition (deformation free) is given simply as

@=0,
0 1 1 -1 -1 1 After some algebra Z' is found to be

Qi 0, Q~ Qc where

k, (v, —v, )/Q, +k, (v, —v, )/Q, +k, (v, —v, )/Q,
(v, —v, )/Q, + (v, —v, )/Q, + (v, —v, )/Q,

0 0

Expanding the determinant, one obtains

Z,Z., ——,'[(Z, +Z, )(Z'+Z )]+Z'Z =0,

where

(20)

(21)

v„=B,[1 —C,P2/(C~k'„+ p&a') ]/M,

for traction-free boundary condition. For the de-
formation-free boundary condition, v„ is defined as

v„=82[k„/(C«k„+puP)]/Mo.

(22)

In seeking the characteristic polarizations of the
system, we look for vectors h and e on the sur-
face, where e is a known linear function of h. This
implies that Z, = ~, = Z and leads to an eigenvalue
problem for the determination of Z, and Eq. (20)
becomes quadratic in Z, There are two values for
Z, since the vector space is two dimensional.

The two solutions of Z, ~=Z' and Z, represent
the condition" that the incident and reflected waves
from the surface have the same polarization. In a
magnetic resonance experiment Z = Z' gives rise
to the resonant response of the system while the
Z = Z solution the "flat" response (nonresonant).

For oblique angles' Z' and Z are a function of

~3 and 44 instead of only 4', and 43 or
and k4. However, reasonable" approximate solu-
tions of Z' at oblique angles can be obtained using
only two roots (k, and k, ) instead of all four roots.
For in-plane resonance, 8,=0, 4'„&„and &4 are
required' to calculate Z, since &, is the nonmag-
netic branch (the skin-depth branch).

For our case 8, 10 so that Z' will also be a func-
tion of &, and, therefore, the magnetoelastic pa-
rameter. The other two acoustic branches are
not coupled to the magnetic system and, therefore,
are not included in the expression for Z'. The
boundary conditions are the same as that given in
Eq. (19) except a new boundary condition on the
elastic motion must be introduced. The traction

The same procedure as outlined in Ref. 16 can be
used to calculate acoustic power generated in a
rod by a magnetic metallic fOm. The basic idea"
is to set up an acoustic standing mode in a film
with finite thickness. The acoustic impedance of
the rod is purposely" chosen to be mismatched to
the acoustic impedance of the film so that only part
of the acoustic power is launched into the rod.
Maximum acoustic power transfer is realized when
the deUcate balance of (i) "tapping" as much of
acoustic power out of the film and (ii) still main-
taining an acoustic standing wave resonance is
achieved. If the rod and film acoustic impedances
are matched, an acoustic standing mode cannot be
set up. Thus, the thickness is chosen to be half an
acoustic wavelength. A material with a high mag-
netostriction constant is desirable, since the
acoustic wave is generated via the magnetic sys-
tem. For our case the maximum transverse
acoustic power is generated for 8,=90', and only
three branches are necessary and they are (k„k„
and k, ), since k, and k, are magnetically inactive
and 0, and )t,', are not coupled to the magnetic sys-
tems. However, it may be possible to generate
acoustic waves by tuning the frequency of operation
to the cross over region. For this type of experi-
rnent the substrate, or the rod acoustic impedance,
and the thickness is required to be l.ess than the
skin depth.
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From a practical point of view the rare-earth-
transition-metal systems appear promising in
view of recent" experimental. results where an
acoustic wave was generated at -1 GHz.
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~l 1 11 12 l2 ~13 13

A — Q21+C21 Q2 +C22 823 +C2

I +31+C31 ~32+C32 @33+C33

The elements a;,. and c,&
have been defined in the

appendix of Ref. 11 and in Ref. 1S except the a and
d coefficients are defined as

1 8,-(2A/M, )e'
Mo

The matrix elements of A A~, 8', and D' are
defined in this section. The matrix A is defined as

in order to include the effect of the exchange field
in the magnetic damping terms.

The magnetoelastic matrix A, is given as

8,[a,a, —q(1-2a', )a, ] 28'(a, n, +pa, a'. ) -8,[(a,'—a', )+2qa, a,n, ]

A, = -8,[a,a, + q(1 —2a', )a,] —28,'rl(1 —a,')a, 8,[a,a, —q(1 —2a', )a, )

g-82[(a', —a', ) —2@a,a,a, j -28,'(a, n, —ga', a, ) -8,[n,a, +g(1 —2a,')a, ]

where 8,'=8, —2wM'„rl=X/yM„and p =1+re
In obtaining the secular equation, it was required to expand the determinant

det(D' -8') =0,

where

0 0 0 0 0

0 n 0 0 0

D' = 0 0 -p(d2 0

0 0 0

0 0 0 0

-n, (n,A~, +nQ»)+l As,

—ning(a~A~~ + a+~2)

+ a ~as(a~Am~ + a+»)

-835 -436

nm(n+gg- a,A») -nQ, ~/1+a, A~4/1 n+,pl+a-, A~,/1 -nQ, Jl+n, A26/1

+ a,(a,A» —a+»)
+ l (aQ„—a,A»)

D' —8'-—
l -( 28/ n, a, nP) /Mp

-(28,'la~n~k) /MO p

8~la~(1 —2 a~)k/M0 p

where

B,l(a,' — )0aj Mp

(28,'la, aP)/M-, p

-8,1 , Pa/aM pO

C»k jp+w

C44lP /p + (g

l= sln60 „

+gg = Q]g +C ~~

IAf+ 3( i)&JAN .1~2 1s 2y 2
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It is noticed that the 5&5 matrix (D' —B') is of the
form

(Dl Bi)—
Z

It is found that the determinant expansion can be
simplified by using the identity

det(D'- B'}=[det(W-XZ IY)]detZ.

The advantage of using the identity is that it re-
duces the 5 & 5 determinant expansion to a 2 & 2 de-
terminant expansion, since Z is a diagonal matrix.
Finally, the parameters R, and R, in Eg. (18) are
defined as

2 2 2 3Rl — iQIQSQS(CSS Cll) 2( IC13 3C31)+ I 3CSI 123

1[ I 33 SQSCII Ql 3(C31+QSCIS) BIB SQ 3(Q CS21 ICSS)])/(Pl+@2) )

RS =[QIQS(1 —3(XS)(CRSCII —~ICSI+7/CSI)+ &2(1 —/Xl —4CPSRS) [CSI+'g(QICSI —QSCII)]

+(1 —RS(1+OS) —4QI(XS)(QICSS —QSCIS 'gCSS)+ BIO/2(XS(1 —4~2)['g(QSCIS —~ICSS) —CSS]

&2&3(QSCI2 &IQ2C22 lQSCSS} 102[1(2C12 QICSS) CSS])/( I 2)'
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