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Most renormalization groups studied heretofore are linear, in that the block-spin variables are linearly
related to the old spin variables. These renormalization groups all require an adjustable parameter that
must be properly fixed in order that the renormalization-group transformation have a useful fixed point.
Niemeijer and van Leeuwen, however, have investigated the critical behavior of the two-dimensional

Ising model with a nonlinear renormalization group, and find a fixed point without introducing such a
parameter. %'e introduce here another nonlinear renormalization group and study it in detail for the
Gaussian model. %'e find that (i) within certain limits, no such parameter need be adjusted in order to
reach a fixed point; (ii} an eigenvalue of the linearized transformation with no physical significance
depends on the nonlinearity of the transformation; and {iii) a physically significant eigenvalue is

unchanged {to the order examined).

I. INTRODUCTION

A successful renormalization-group approach'
to the determination of the singular behavior of a
physical system near its critical point requires
the construction of a renormalization-group trans-
formation appropriate to the problem, and the lo-
cation of a fixed point of the transformation re-
lated to the original Hamiltonian of the physical
system. %e shall discuss here an element com-
mon to the structures of many renormalization
groups, a parameter in the transformation whose
value must be properly chosen in order to find an
interesting fixed point for the transformation.

It will be convenient to speak in terms of a spe-
cific physical system, a system of interacting
spins 0 on a lattice which undergoes a ferromag-
netic transition at some critical temperature. To
determine the critical behavior of such a system
with the renormalization group, one first con-
structs a transformation C that converts the old
Hamiltonian of the system, 3C[cr] (assumed to in-
clude the factor I/keT), into -a new Hamiltonian
x'[s],

x'[ s] = r [x[o]j,
where 3C'[S] represents the effective interactions
between blocks of old spins now treated as single
new block spins $. This transformation has two
important properties. First, it must preserve the
p8.rtition function of the system; that is, the par-
tition function calculated from X'[ S] must equal
the partition function for 3C[o]. Second, it must
have a nontrivial fixed point, a local Hamiltonian
X* (without long-range interactions), satisfying
the equation

x*=&[x*j,

with the same critical behavior as the original
Hamiltonian, and to which the original critical
Hamiltonian is carried by repeated applications of
the transformation T'.

One example of such a transformation is dis-
cussed in Hef. 1. The old Hamiltonian is ex-
pressed as a function of the spin variables cr~ in
momentum space (Fourier transforms of o-, ). The
transformation consists in carrying out the config-
uration sums for the partition function only over
the spin variables with ~@&—,', leaving unintegrated
the longer wavelength components. The new block-
spin variables S-„are defined to be the unintegrated
old variables multiplied by a constant factor ( '.

This transformation is of the type that we shall
refer to as linear, because the transformation re-
lates the block-spin variables to the old spin vari-
ables linearly. More importantly, the spin-spin
correlation functions for 3C[o] and 3C'[ S] are also
linearly related. At the critical point of the sys-
tem, the behavior of both correlation functions is
characterized by the critical exponent q, and if the
transformation has a nontrivial fixed point, then
this relation fixes the adjustable parameter & in
terms of g (another example is given later in this
paper). Thus, a fixed point cannot be found unless
g is appropriately fixed.

Another example of a renormalization-group
transformation appears in the work of Niemeijer
and van Leeuwen. ' They define a. transformation
for Hamiltonian functions of Ising spine (o =+I) on
a triangular lattice. The lattice is divided up into
blocks containing three old spins each, and a block
spin is defined to be the sign of the sum of the old
spins in a, block. This transformation is of the
type that we shall refer to as nonlinear, because
the block spins are not linearly related to the old
splns.
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Linear and nonlinear renormalization-group
transformations differ considerably in their behav-
iors. For instance, although the linear transfor-
mation requires an adjustable parameter in order
to function properly, Niemeijer and van Leeuwen
succeeded in finding a fixed point without introduc-
ing such a parameter. In order to elucidate some
of these differences, we have examined a nonlinear
renormalization-group transformation whose qual-
itative differences from the linear transformation
can be determined from perturbation theory.

First, we introduce a linear transformation re-
lated to the transformation in Ref. 1. The trans-
formation has an adjustable parameter b that must
be fixed at a particular value b* in order that the
transformation have a fixed point. The transfor-
mation then has a line of fixed points (as did the
transformation in Ref. 1), parametrized by the
over-all normalization of the spins in the Hamil-
tonian, a pa, rameter that has no physical signifi-
cance.

Next, a nonlinear transformation is introduced
with a second adjustable parameter c in addition
to the parameter 5, defined so that the transfor-
mation is linear for c =0. When the behavior of
the new transformation is examined to first order
in c, two situations can be distinguished:

(i) For c & 0, the parameter b may take any value
in region I of the para. meter space indicated in Fig.
1, and a fixed point will be reached without trou-
ble. The transformation now has a single fixed
point for given 5 and c rather than a line of fixed
points.

FIG. 1. Parameter space for the nonlinear renormal-
i2:ation group transformation. For c =0, the transforma-
tion is Iinear, and for b =b ~ it has a line of fixed points.
In region I, c &0, the transformation has a single fixed
point that is reached without trouble, starting from the
original critical Hamiltonian. In region II, c & 0, the
fixed point can be reached only by appropriately ad)usting
an unphysical parameter in the original Hamiltonian.

where the numbers A, ~ A, ~ ~ . are eigenvalues
of the transformation, and $,*[o], $,*[o), etc. ,
are eigenoperators. The terminology arises from
the behavior of the fixed point when perturbed in
the direction of an eigenoperator S*:

1'[3C*+e(R*]=3C*+Ae6t~ (1.4)

(to order e).
Ordinarily, one expects to find an eigenvalue

greater than 1 associated with changing the tem-
perature of the original system. The eigenvalue
may be used to determine some of the critical ex-
ponents of the system. ' The linear transformation
also has an eigenoperater with eigenvalue equal to
1 (a marginal operator) associated with changes
in the over-all normalization of the spins in the
original Hamiltonian. It originates from perturba-
tions in the direction along the line of fixed points
of the transformation. When the transformation
becomes nonlinear, this unphysical eigenvalue is
increased or decreased depending on the sign of
c, although the physically significant eigenvalue is
unaffected (to first order in c). This example con-
firms a result of the general analysis by Wegner, '
who concludes that there are two classes of eigen-
operators, one physically significant, the other
with eigenvalues that depend on the choice of re-
normalization group. The eigenvalue's change is
responsible for the qualitative differences in the
behavior of the nonlinear transformations.

The nonlinear renormalization group tra.nsfor-
mation offers some noteworthy advantages over
the linear transformation in its application to sys-
tems like the Ising model. ' The ability to locate
a useful fixed point without necessarily having to

(ii) For c & 0, the parameter h may take any val-
ue in region II of Fig. 1, and the transformation
will have a fixed point, but it can in this case only
be reached by fixing a second, unphysical parame-
ter in the original Hamiltonian, the over-all nor-
malization of the spins. 4 Alternatively, one may
leave the original Hamiltonian alone, and adjust
the parameter b until a fixed point is found, as for
the linear transformation. Again, once b and c are
chosen, the transformation will have a single fixed
point rather than a line of fixed points.

These conclusions follow from an examination of
the stability of the fixed points. If X* is a fixed
point of the transformation f', and a, small pertur-
bation e8[&r] is added to 3C"[a], then under the re-
peated application of the transformation, denoted
symbolically by W', we expect to observe behavior
like'

& [3C~+e8) =3C" +e(A, 6t,*+A, 6(,*+ ~ . )+O(~'),
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adjust a parameter in the transformation (as one
must in the linear case) is an obvious one. How-

ever, as we have seen above, one is not guaran-
teed success in this respect, and may in fact have
more trouble here than with the linear transfor-
mation. The freedom to adjust the parameters in

the transformation in order to minimize the
amount of interaction between distant spins in the
fixed-point Hamiltonian is another advantage,
since this can improve the accuracy of approxi-
mate calculations confined to a finite portion of
the lattice, as was the calculation of Niemeijer
and van Leeuwen. ' On the other hand, the linear
renormalization group transformation is easy to
manipulate and its behavior readily predicted.
Which are the decisive factors for a renormaliza-
tion-group calculation will probably have to be de-

termined case by case.
In the following sections, we show in detail how

the above results were obtained. In Sec. II, the
linear continuous-spin renormalization-group
transformation is presented, and the line of fixed
points with mean-field behavior is located. In Sec.
III, the nonlinear transformation is introduced and
its fixed points examined to first order in c. Fur-
ther discussion of the results appears in Sec. IV.
Some details of the calculation are exhibited in the
Appendix.

II. LINEAR RENORMALIZATION - GROUP
TRANSFORMATION

We shaD study renormalization-group transfor-
mations that act on the space of Hamiltonians used
in Bef. 1, assumed to have the form

z}al=t:onst--,' J. ,())b-rr -, —
J J( J(,}4„ij,ij„c,)w-, rr-v-(r- ))(a, 0, ~ i4 i),)-

q q& q2 q ~ q&

(2.1)

with cr -=o*- taking all complex values, where g is
a momentum vector in d dimensions, and with

it when a is taken to infinity, aside from normal-
ization factors, which will be consistently ignored
throughout this paper, since they do not affect any
of the results. Half of the old spin variables 0-q

(those with ~q ~&-,') are integrated out, and the other
half are associated with new spin variables Sq,
with 0 ~ ~g ~

& 1. Finally, the transformation has
the desired property of preserving the partition
function of the system; that is, if one calculates
the partition function corresponding to the new

Hamiltonian X', by integrating over all of the spin
variables S~ on the left-hand side of Eq. (2.3}, one
finds

(2.2a)

(2.2b)

(2.2c}

As explained in Ref. 1, the requirement that X[o]
contain only local interactions between spins in co-
ordinate space imposes some constraints on the
analyticity of the functions u, (g), M,(fl„ f4, g„g,),
etc. In particular, the function u, (Q) must be an
analytic function of the components of fi at g =O.

The transformation that we shall examine first
is parametrized by a and 5:

exp X' S =constx exp & g
gg 0

where the constant comes from performing the in-
tegrals over the transformation kernel on the
right-hand side of Eq. (2.4) with respect to 8-„. The
value of the constant is independent of 3C [cr], and

has no effect on the calculation of thermodynamic
averages.

In order to find a fixed point of the transforma-
tion, we shall iterate it. The effect of repeated
application of the transformation to an arbitrary
Hamiltonian is easy to discover, since it only in-
volves integrals of Gaussian functions. It is rep-
resented by an effective transformation of the form

))l' [8] T [ S] x[a] (2.3)

x exp(3t [g]], (2.4)

where J denotes integration over the real and
imaginary parts of aQ spin variables o q. ' A few
points should be noted about this transformation.
First, the parameter a is to some extent super-
fluous, since results obtained for one value of a
may be related to results for another value of a
(and a different Hamiltonian} by an appropriate
scale change in the spins a and S. We shall never-
theless keep it. Second, the transformation in Eq.
(2.4) is a simple extension of the renormalization-
group transformation of Bef. 1, and equivalent to

[ T, ,]'exp(X[o] ) = T', , exp/X[e] )- (2.5)

exp --,', )s-, -i. -„„,l')
0 q

x exp (X[o]], (2.6)

with

&., , }&Iaxy[z}v)}-=exp -la Is-, I~ i I)-
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a„=a(1 —2~ 5*}/[I—(2"5')']

L, —2

(2.7a)

(2.7b)

(2.7c}

The quantity L,, is just the size of one of the blocks
nom represented by a spin S.

The transformation of a Hamiltoniaa quadratic
in the spin variables,

&[o]=-k)l p(C&-„o;, (2.8}

may be carried out exactly, since the problem
separates into a product of Gaussian integrals.
After I' transformations, the Hamiltonian (2.8)
becomes

exp(X"'[S]}-=7', ,exp{X[o]}
I a p(4/Le)AS-q

; &', c', "+c',p(ClI. ,)/a, ) '

(2.~)

The transformation should have an interesting
fixed point, the Gaussian fixed point, ' for

r'(g)5(g+g') =(Z'}-' S;S;.exp(X [S]},
S

(2.14)

where Z' is the partition function for the Hamilto-
nian X',

Z' = exp(K'[ S]}.
S

Use the definition of R [S] in Eq. (2.4) to obtain

(2.15)

variable.
That a fixed point can be found for only one

choice for 5 occurs for exactly the reason dis-
cussed in the Introduction. The transformation
(2.4) implies a linear relation between the new and
old spins. This may be made explicit by compar-
ing the spin-spin correlation functions of the orig-
inal and transformed Hamiltonians. The transfor-
mation (2.4) relates them, and this relation fixes
b when the transformation has a fixed point. To
see this, consider the correlation function for the
Hamiltonian 3C',

p(g) =Zq'+gq'+ ~ ~ ~,.

and, in fact, with the choice

y y —2 (tf +2) /2

(2.10)

(2.11}

r'(Q)5(g+LI'} = z ' sqsq-
& S

x exp --', a [s-, -Irr-„.„~' z[ I).a

x't~l Jp (e)u= v-=-'. '-,
With

p*(q) = ~q'/[I +«q'/(8e)].

(2.12)

(2.13)

The fixed point is parametrized by the coefficient
z of q' in p(fI), and so we have, in fact, a Line of
fixed points. The factor z in the original Hamilto-
nian determines to which fixed point the Hamilto-
nian is carried by the renormalization-group
transformation. The fixed points do not depend on
the value of w in Eq. (2.10); cv is an irrelevant

we are indeed led to a nontrivial fixed point in the
limit k- ~. If b should be chosen larger than b*,
the limit of X~" mould vanish and its spin-spin
correlation functions diverge; if 5 should be chosen
smaller than b*, the limit of 3C~'~ mould be a Ham-
iltonian describing a completely noninteraeting
system of spins, and the correlation functions
trivial constants. In neither case mouM the fixed-
point Hamiltonian be of any use for obtaining criti-
cal exponents; for example, the large-distance be-
havior of the spin-spin correlation function for the
original critical Hamiltonian is deduced from the
similar behavior of the correlation function for the
fixed-point Hamiltonian. Kith b =5*, the nontrivial
fixed point is

+a '5(g+j'}. (2.16)

Using the definition of r(g), we have the relation
we mere seeking:

r'(g) =2'5'r(C/2)+& '. (2.17)

At the critical point, if the correlation function
falls off with a power of the distance between the
spine, as r ~ ""', then r(fl) will have a singular-
ity at q = 0, r(g) -q

"". ~nation (2.17) requires
that r'(g) likewise have such a behavior, and will
require such behavior of the spin-spin correlation
functions for each succeeding Hamiltonian gener-
ated by the transformation. When a fixed-point
Hamiltonian is reached, its spin-spin correlation
function must have such a singularity. But if Eq.
(2.17) is used at the fixed point, where I"= I', then
it fixes the value of b:

2-(~ .2- ~) (2.18)

The critical exponent q vanishes for the mean-
field theory, in agreement with our choice for b*
in Eq. (2.11).

Interchange the order of integration, and change
the integration variables S q to Sq =Sq -bcrq/2 The
integral ovex Sq may then be performed, and gives

r'(g)5($+Q') =Z b &qg2&q gmexp(X[&]}
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~{&) ~g 4{1-m) 0 g {2)+

with

(2.21)

R~ =p p+ g z g o'yy ~. 2.22
Q

fn Eq. (2.21) we have omitted terms that fall off
faster with k than the one given.

As expected, there is one relevant eigenoperator
S.,')* of the transformation, with eigenvalue Ap 43

when the temperature of the original system is

Equation (2.17) provides an example of a more
general characterization of a linear renormaliza-
tion-group transformation: A linear renormaliza-
tion-group transformation, because of its form,
relates the spin-spin correlation function of the
transformed Hamiltonian to that of the original
Hamiltonian.

%e next investigate the stability of a fixed point
X* in the manner discussed in the Introduction. As
in Eq. (1.3), for smaD perturbations of the fixed
point, we expect to see behavior like

T', ,*e~ "6 =exp[X~+e(A', gati,*+A', (R,"+ )],
(2.19)

to first order in e. For perturbations quadratic in
the spin, it is simplest to use the results of Eq.
(2.9), where the effect of the iterated transforma-
tion is determined for any initial Hamiltonian
quadratic in the spin. For p = p*+5p, assuming 5p
to have the form

(2.20)

m any non-negative integer, one finds

moved slightly above the critical temperature, the
Hamiltonian develops a term that is increased in
size with each iteration. There is also a marginal
eigenoperator 8,"*with eigenvalue A, =1. The
marginal eigenoperator originates from perturba-
tions in a direction along the line of fixed points of
the transformation (that is, for small changes in

z). Since any point on the line is fixed under the
transformation, a perturbation from one point to
another is left unchanged by the transformation,
and therefore has eigenvalue 1. Movement in the
direction of the marginal operator accompanies a
uniform shUt in the normalization of the spin vari-
ables of the original Hamiltonian, which may also
be parametrized by z. Since this is merely a
change in the integration variables o when comput-
ing the partition function, it has no physical signif-

icancee.

III. NONLINEAR RENORMALIZATION - GROUP
TRANSFORMATION

We have shown, in the derivation of Eq. (2.17),
that the form of the transformation in Eq. (2.4)
implies a relation between the spin-spin correla-
tion functions of the original Hamiltonian X and
the transformed Hamiltonian X', and that this re-
lation fixes the parameter b. %e shall now alter
the transformation so that such a relation between
spin-spin correlation functions is no longer a con-
sequence of the form of the transformation. This
may be accomplished by introducing into the trans-
formation kernel of Eq. (2.4) a term cubic in the
old spin variables:

r 3 2
T . .Ielexe&eef.elj= j exe --', X--err-„-c r

- „rr- „e-„e
Qi" Q2 Q3 i=1

x exp[3t'. [o]). (3.1}

If one nom returns to the derivation of the relation
between correlation functions given for Eq. (2.17),
and proceeds analogously with the new transforma-
tion T, b „one finds that the terms in the trans-
formation proportional to c lead to four- and six-
spin correlation functions in the right-hand side of
Eq. (2.17), in addition to the spin-spin correlation
function. The equation no longer provides a condi-
tion on the transformation parameters.

One would now like to know the fixed points of

TN, b++ hb, hc To, b++ ~T ~ (3.2)

with, to first order in 5b and 5c, from Eq. (3.1},

the new transformation, and the eigenvalues asso-
ciated with perturbations about the fixed point, but
we are unable to carry out analytically the inte-
grals required in Eq. (3.1). We therefore resort
to perturbation in the parameter c. It will prove
convenient to include a perturbation in the parame-
ter b as well. %e write

57'= s(}h (Sq-& &qqq}c' qqm+s&c J
'I (Sq ~ oqsq} q acq iqoq sq ~
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k

T, s*+sn 6~-Ta a~+ g T& I*5TT, n* ~

l=a
(3.4}

Let us represent by X*a fixed point of the old
transformation T, ,e, and by 3C*+53C* (if it exists)
the fixed point of the altered transformation
T, ,*,» z, . Since 3C* represents a system at a
critical point, we require

k x* x*-.ex*
Tfl, b +65, bee (3 6)

in the limit A —~, and expanding both sides of Eq.

where we have used the abbreviation Pg =g+g, +g,
+g„and where the integration j, is to be per-
formed only after multiplication by the functional
on which 57 operates.

Just as in Sec. 0, to find the position of the new

fixed point, we iterate the transformation. The
iterated form of the transformation, to first order
in 5b and 5c, is

(3.5) to first order in 55 and 5c, we have

g T', '„~ 5TT.','~ exp(3C*)- 53C*exp(X*j.
l=I

(3 6)

%e shall study the effect of the new transforma, -
tion on the Gaussian fixed points, given in Eqs.
(2.12) and (2.13). The calculation of the left-hand
side of Eg. (3.6) is in this case straightforward
but long, and a description of it is contained in the
Appendix. The calculation is carried out there
with the fixed-point Hamiltonian K* on the left-
hand side of Eg. (3.6) replaced by an arbitrary
Hamiltonian 3C quadratic in the spin, like the one
in Eq. (2.8). Of the terms obtained in the Appen-
dix, we shall use here only those that, in general,
diverge in the limit k- ~, when p(g) is set equal
to the fixed-point value p~(q} given in Eg. (2.13).
Those terms are, for d & 2,

k k

l=1

La p(4/La) (k)SqS q (, (~/ )/ j, exp(X [3']j

+ other terms finite in the limit k- ~.

The limits on the integral over fi' are the limits
on the magnitude q' = (q' ~. For p = p~ in FAl. (3.7),
the terms enclosed in large square brackets di-
verge in the limit k- ~ unless

satisfy Eg. (3.8), we select one of the fixed points
of the old transformation, labeled A in the figure,
near the new fixed point, labeled I3 in the figure.
The position of the new fixed point with respect to
the old one is found by our perturbation procedure.

5b 5c 3 a 1
b* 'ah*3 d-2 z d

(3 8)

where K, is proportional to the solid angle for a
d-dimensional space,

Z, = (2v)-'2v"'/r(d/2). (3.8)

Thus, for given values of 5b and 5c, we are able
to locate a fixed point of the transformation near
the old line of fixed points if we can choose z&0
satisfying Eg. (3.8). But there is no longer a line
of fixed points for 5c w0. The situation is illus-
trated graphically in Fig. 2, where the Hamilto-
nian space, though infinite in dimensions, is rep-
resented by only two axes, labeled by the coeffi-
cients Z and W in the expansion of u, (g} in expres-
sion (3.1) for a given Hamiltonian,

u, (fl}=const+ Zq'+Wq'+ ~ ~ .

The old line of fixed points parametrized by z is
indicated by the line in Fig. 2. By choosing z to

Fix

FIG. 2. Projection of the HamQtonian space defined in
Eq. (3.1) onto the W, Z axes in the expansion m&(q)
=&q ++"q + ' ' for the quadratic-spin component of
a given Hamiltonian. The curve represents the line of
fixed points of the linear transformation of Sec. II. Point
B is the projection of the fixed point of the nonlinear
transformation, and point A the nearby point on the fixed
line singled out by Eq. (3.8), for given 6b and 6c.
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Note, however, that the new fixed point is no long-
er a simple quadratic function of the spin vari-
ables. To this order in 6c, for example, QC* con-
tains quartic polynomials in the spin (see Appen-
dix).

The requirement that Eq. (3.8) have a solution
z &0 restricts the values of 6b and 6c for which
the transformation T, ,~+&, ~, can have a fixed
point. To this order in perturbation theory, one
finds that the transformation will only have fixed
points for

55& -K~ 5c/(dab*), 5c & 0;
5b & -K~ 5c/(dab*), 5c & 0. (3.10)

These restrictions were illustrated in Fig. 1.
Given values of R and 6c for which a fixed point

exists, we now wish to investigate its stability.
We shall adapt the procedure used in Sec. II to per-
turbation in 6b and 6c. If K*+QC* is a fixed point
of the transformation T, ,*,» z„and we add to
the fixed point a perturbation e6, we expect, as in
Eq. (2.19), to see

T', (,*,(;, (;, e "x "e =exp{3C"+53C*+e[(A, +5A, )'(6t,'+M,*)+ ]}
= [1+53C*+e(A', +kA", '5A, )$,*+eA', 5$. ,*]exp{3C*}. (3.11)

p(g) = p+(q)+ er(q), (3.12)

By comparing the results of the perturbation cal-
culation of the left-hand side of Eq. (3.11)with the
right-hand side, we can identify the change 5A in
an eigenvalue A.

Since we are only interested here in the largest
eigenvalues of the transformation, we may make
use of the results contained in Eq. (3.7). Choose

with the intention of using r(q) = 1 or r(q) =q', and
let the parameter e in p*(q) satisfy Eq. (3.8). For
e =0, the iterated transformation then carries the
Hamiltonian 3C* to the fixed point 3C*+6'~. For &

c 0, the perturbation dominates the approach to the
fixed point, and one can easily identify the terms
corresponding to the largest eigenvalues. Upon
substituting the choice (3.12) for p(fl) in Eq. (3.7),
we find

)" , .„,.exp. (xj=exy()('j[( ~ ())t.'-l f s s= (o'(q-,)l(*„e')I'Ile (elr,).
er(q'/f ) )S+ -,p (q)(eq') '

Z
l./L

(3.13)

e[p'(q'/1. , )] 'd'q' e5t',"" exp{3C*},

where we have neglected terms that fall off faster with k or are uninteresting for our purposes. The terms
on the right-hand side of Eq. (3.7) that were omitted there are again of no interest here.

The choice r(q) =1 in Eq. (3.13) gives
k 1

(+())."-4'c()P'-()5c((*)-' F, r;f.* (3.14)

(3.15)

and there are no terms behaving like k4' 'dt('j* that would indicate a change in the eigenvalue 4. Thus,
the eigenvalue associated with changing the temperature of the physical system is unaffected (to order 5c)
by the change in the transformation.

There is, however, an eigenvalue change for the choice r(q) = q'. We find, to first order in 5c,

7', ,*,~, „exp{3C}=exp{3C~}1+53C* - 1+ ', e((R(2)"+58',2)~)6K„6c
I

The terms 53C* and 56tI"* in Eq, (3.15) have not actually been calculated, but only verified to be finite. The

eigenvalue corresponding to the previously marginal operator (R',"*is now

c
d-2 b*

provided 5b satisfies Eq. (3.8).

(3.18)

IV. CONCLUSION

e have seen that an eigenvalue, the one associated with perturbations of the normalization of the spin
variables in the original Hamiltonian, is
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changed when the renormalization-group transfor-
mation is rendered nonlinear. Equation (3.16) in-
dicates the direction of this change, and explains
the behavior ascribed in the Introduction to critical
Hamiltonians under the repeated application of a
nonlinear r enormalization-group transformation.
If 6c is negative, and the transformation parame-
ters are in region I of Fig. 1, then this eigenvalue
is smaller than 1, and, regardless of the normal-
ization of the spin variables, every critical Ham-
iltonian is carried by the iterated transformation
to the same fixed point, instead of to one among a
line of fixed points. In particular, every Hamilto-
nian on the line of fixed points of the old linear
transformation is carried to this new fixed point.
The transformation parameters are much less
severely constrained than in the linear case. They
may be freely varied independently of each other,
except near the boundaries of region I, and a fixed
point will always be found. If, on the other hand,

5c is positive, and the transformation parameters
lie in region II of Fig. 1, then the eigenvalue is
larger than 1. Only if the normalization of the

spins in the original Hamiltonian is properly fixed
can a fixed point be reached. Alternatively, as
was pointed out in the Introduction, one may adjust
the parameter (t) in the transformation until a fixed
point is found, just as one had to adjust 5 to this
end in the linear transformation. However, in
contrast with the linear transformation, if the
normalization of the spin variables in the original
Hamiltonian is changed, the nonlinear transforma-

APPENDIX: DETAILS OF CALCULATION

In order to determine the effect of the right-
hand side of Eq. (3.4) on a Hamiltonian quadratic
in the spin variables, we must evaluate the quan-
tity

Z", ',*err,','*exp --,' I p qo q3 q
(Al }

where T', kk is defined in Eqs. (2.5)-(2.7), 5T is
given in Eq. (3.3), and b is given in Eq. (2.11}.
The calculation of (Al) is facilitated by introducing
appropriate generating functionals. Denote by 5&
the polynomial in new and old spins occurring in

Eq. (3.3), defined so that

tion (c & 0) will no longer reach a useful fixed point,
unless b is also appropriately changed.

The nonlinear transformation would appear to be
most useful when its parameters lie in region I of
Fig. 1, since it is then possible to locate a fixed
point without having to adjust the parameters of
the transformation with each itexation, as is nec-
essary with a linear transformation. However,
nonlinear r enormalization-group transformations
are rather awkward to use in the continuous-spin
case, and are more likely to be profitably em-
ployed in studies of systems with discrete vari-
ables like the Ising model. The calculation pre-
sented here serves as a model for what may be
looked for in such applications.

5T = 5V' Sq -b*o™«»o'q ~ exp --,'a $-
qa

Define the generating functional F[J', j] to be

(A2)

3:[Z,jl = exp --,'a' ~S'-" b'S'-
gA) J g(&-&)

+ J -(S&'~ b*SO-'&) -'a
q q/a 2 ~ q q/2

(A3)

5&[5/M;, 5/bj q„]V[z, j]~. . .exp(x[ol).
a

b r —b (b g)k-i

~k-l 3

where a„b„I., are defined in Eqs. (2.7), and
where 5 " is the block-spin variable introduced by
the 0th transforxnation. In terms of this functional,
the transformation (Al) can be written

a„,„=a a„/(a +L„'b'„a„), (A5)

one obtains

(A4)

Upon evaluating the integrals in Eq. (A3) and sim-
plifying terms by using the identity
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I/a I/hL')
+R(1/&( s)-j -,iq+R&R/( ) snR t.,)

I/(aL') 0

I I/L '

x 1;Zq +,'(1/a-)(1-L "b"s,/s) Z -, Z-,
I/L 0

j q j b-*b' L' a /(aa, ,) j, Jq+ —', (1/a)
0

(A6)

arith

1/a I/L 1/L

1n6'[&, j]=-Ras S6S q+b), j qjrq/I, ,+(L"b*b'as Ia, ,) t j q/RSi q+L' b'((2, /s)
0 ~0 0

g« =S«Q g«
q q k q/Lkl (A7a)

(Avb)

and where me have omitted all of the phase-space factors ff'q from all of the integrals. After using the
results of E(l. (A6) in Eti. (A4), there still remains to be performed in the calculation of (Al) the integral
over the original spins crq. The generating functional

r
Rtj}= i exq --,'a, IS;-e,a;„,l' -}t ati)q= +, j„=, ,)-

0
(A8)

is useful for that purpose. One finds

R S S
I/Lk y-Ij «S « I/Lk j «j«1 ~

2-q2q

ff, (C) = Ll p(OIL, -)l[1 Ll p(OIL, )ls, ]. (Alo)

As an example of its use, let us calculate the contribution to (Al) from the part of 5T proportionalto 5b.
First one finds, from E(ls. (A4) and (A6),

5 5
aee . S =qqe'a, i S;tq'e'A'e'(a. /a -,)S;+e -a

g }exq ' S 'll- ')' tstt)„-, 5J -, 5j-„, J qis

The spin-independent constants have been left out in E(l. (All), since they only contribute to the normaliza-
tion factor for the transformation. One next calculates the effect of these terms on the quadratic-spin
Hamiltonian in (Al), using the generating functional from E(l. (A9), and finds, after some algebraic simpli-
fication, that the contribution to (Al) proportional to 5b is

5b(b +)-' ft, (g}A, , (g)S;S;exp(X"}[S]},
q

&R,((4)-=DR(4)+~'b L' '&a(4)/nt „
D (0)=[1+L'.p(4/L. )/n ] ',

(A13)

(A14)

and where &(R} is defined in E(l. (2.9).
A similar, lengthier calculation yields the contributions to (Al) from the term in 5T proportional to 5c:

(b*) s5ci 3 t [L,p(ft'/L, )] '/f q' t 8 (q)x(i, (q)RI S -„+L'~ } t R (q)x(i, (q, )/t, ((l )
I/L '

q

x A, , (q, )S-,S;,S-„S-„q(Zq)+SR "-'i " R.(q'), ——' R.(q)-R. (q)
k-1+I q — q - k-1+I k

A. , (q)S-,S -, —,-(a, /. . .)j, -
(

t (A, , (q)) S-,S;..-(t/. . .)
I/L '

j I

t / -, ,) S O' " S"q' J( R (q)A, , (q)S S -) exq(R"'(S)}. (A(5)
0 I/L
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(A16)

Since a, and the functions 8, (q), D, (j), and &, ,(q) have finite limits for k-~ and p = p, the only terms
in (Al) that can diverge, when the summation over f in Eq. (3.6) is carried out, are the contributions
proportional to M in (A12) and the first and last terms proportional to 6e in (A15):

1 f. 1

&—„+&„, 3,(,~
d'q'+ d'q'

I R, (fl)A, , (g)S-S - exp(Xi" [Sjj.
l-1 1/L -~ ~ q

The other terms are finite when summed over L, for d&2.
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Note that the word "nonlinear" as we are using it is Pick

intended to describe the action of the transformation
on the HamQtonian space, which is always nonlinear
in the sense of V(nJC&+pK&) of'(X&} +ps'(X&).

4This fixed point cannot be associated with a system at a

tricritical point, because of the unphysical nature of
the extra parameter.
F. J. Wegner, Institiit fur Festkorperforschung, report
of work prior to publication.

88ee also some general remarks about the possibilities
for nonlinear renormalization groups by G. Jona-
Lasinio, lecture delivered at Nobel Symposium 24,
1973.

~One msy write J'o =Qz J'+ d(Reoq) f+"d(imoz), where
the product over the possible values of q is constrained
so that the same integration variable does not appear
twice, because of the relation ~q = o ~& .


