
PHYSICAL REVIEW 8 VOLUME 10, NUMBER 9 1 NOVEM DEB 1974

Theory of layered Ising models. II. Spin correlation functions parallel to the layering
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%'e study the spin correlation g0.0 cro,~ p, which is expressable as a block Toeplitz determinant, of a
nth-order layered Ising model, in the direction parallel to the layering, The generating function of this
block Toeplitz determinant can be written as a scalar function times a 2&2 matrix whose elements are
nth-order trigonometric polynomials. We show that it is possible to calculate asymptotically for large
N the block Toeplitz determinant generated by such a matrix function. As an example we compute,
for large N, &cr«o.o, y for the second-order layered Ising model whose horizontal bonds are all equal
and whose vertical bonds between the jth row and (j+1)th row is E,, if j even and E,', if j odd.

I. INTRODUCTION

In this paper, we study (o~oo„„), the spin-cor-
relation function of two spins on the same rom, for
the nth-ordered layered Ising model. ' As defined
in Paper I, an nth-ordered layered Ising lattice is
a rectangular Ising lattice whose horizontal bonds
are all equal to E„and whose vertical bonds be-
tween the jth row and (j + 1)th row are E,(j), such
that E,(j+n) =E2(j) (see Fig. 1). Since the vertical
bonds can take n different values and are different
from row to row, we are calculating the spin cor-
relation function in the direction parallel to the
layering.

The purpose of our work is to study how the sys-
tem tends to behave when there are some inhomo-
geneities present. Moreover, by studying this
problem, one can gain insight of how to handle the
spin correlation function of a random lattice (whose
verticle bonds are random variables).

It is known' that the spin correlation (ooooo„) is
a Toeplitz determinant for the Ising model with
m=1. A Toeplitz determinant is a determinant of
the following form:
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where ct are 2X —1 constants. If the c,'s in Eq.
(1.1) are replaced by 2X —1 constant matrices a„
the determinant of the resultant matrix is called a
block Toeplitz determinant, and is denoted by
D„[e]. The spin-correlation function of two spina
on the same row (parallel to the layering} for a
layered Ising model is found to be a block Toeplitz
determinant whose entries a, ' s are 2 ~ 2 matrices.

The generating function

c($)= P c,$', l)l=l (l. 2a)

of a Toeplitz determinant is said to admit a Wiener-
Hopf factorization, 4 if c($}can be written as a
product

e(&) =c,($)c (&),

where c,($}[c ($)] is an invertible analytic function
inside [outside] the unit circle Whe. n e(() satisfy
the above condition, the Toeplitz determinant (1.1)
can be evaluated by Szego's theorem for X- ~.'
This gives the famous result of Onsager and Yang
that the spontaneous magnetization of the Ising
model behaves as M-(1 —T/T, )' ' for T» T,
Furthermore, the asymptotic expansion of the Toep-
litz determinant for large N is also known. v

Therefore, the asymptotic behavior of the spin-
correlation function can be evaluated.

Analogously,

(l. 2b)

is called the generating function of the block
Toeplitz determinant. However, no theorem, anal-
ogous to Szego's theorem, exists (except for a
very special case discussed in Sec. 11), and it is
not possible to calculate the block Toeplitz deter-
minant in general.

However, we shall show in Sec. III, that the
generating function of the correlation function
(ooooo„)a, for the nth-order layered Ising model, is
a scalar function I/y(e' ) times a 2 && 2 matrix
b(e' ), whose elements are sth-order trigonomet-
ric polynomials, i. e. ,

a(e*') = b(e")/y(e"),
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j+2th

E&(j+I) E&(j+I) E&{j+I) 'E2(j 4 I)
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T„ is minimum when E, = Ez = E z (see Fig. 2). In
Sec. VI, we calculate the spin-correlation function

(hippo'~) for large N at T& T„we find the correla-
tion length $(T) is given by

I/](T) = Ilail, (l. 8)

j-I th

EI E) El

E2(j-I) Ep(j-I) E2(j-I) E2(j-I)

FIG. 1. nth-ordered layered Ising model, whose hori-
zontal bonds are all equal to E~, and whose vertical
bonds, E2 g), between the jth and (j+1)th rows are peri-
odical function of n, i.e. , E2(j+n) =E2fj).

n

5(sip) gh ei18 (l.4b)

A block Toeplitz determinant that has this par-
ticular form (l.4) has been studied previously by
McCoy and Wu, when they studied the correlation
of the Ising model in the presence of an imaginary
magnetic field 0 = 2 imkT. %e shall generalize
their method to calculate the spontaneous magneti-
zation and the correlation function (oppop~) for
large ¹

%e include in Sec. II some known theorems on
block Toeplitz determinants. In Sec. IV, we shall
show how to make use of these theorems to evaluate
the spontaneous magnetization for the layered Ising
model, and also (oppop„) for large separations at

T,. Although it is possible, in principle, to
calculate these quantities for any n, the algebra
becomes increasingly tedious as n increases. %e
shall therefore restrict ourselves to the simplest
nontrivial case of the layered Ising model, when
the verticle bonds can take only two different
values: Ep(2K) =Ez, Ep(2K+ I) =Ez. In Sec. V, we
shall calculate the spontaneous magnetization for
this case. %'e find that the spontaneous magnetiza-
tion M, as T- T„approaches zero in the form
M A(E&, Ez, E )(lp—T/T, ) ~P, where A(E~, Ez, Ez)
is given by Eq. (5. 52}. Here the critical tempera-
ture is determined by

( )M, (vg v)v
)M 0 (l. 10)

for large N and T & T,.
When 7 & T„ the generating function does not

possess a factorization of the form analogous to
Eg. (1.3). However, we are still able to find in
Sec. VII [Eq. (7. 51)] that

(oppopJ & f(z2, zz, z&)rg/(»)'". (1.113

II. KNO~ THEOREMS ON BLOCK TOEPLITZ
DETERMINANT

Before stating these theorems, we shall repeat
some of the definitions. We define a block Toeplitz
determinant as a determinant of the form

D.[s]=is~pl, I=f J=&, (2. 1)

where a, are x&t' matrices. The matrix function

(2. 2)

CV

tLJ

cu
LLj

4J

where

y, = {(I+z, )(1 —zpzz) —[(1+z', ) (1 —zzz p)

—4z&(l —zz)(l —z p )] f/[2z~(1 —zz)(1 —zz)],

(I 9)
and

(1 —z„)'/(1+z„) = zz, zz„ (1.5) 2.0-

z)c= tanhPcE),

z2c= tanhPcE~,

z,', = tanhP, Z,',
I.O-—

O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

E~/E2

P, = I/jcT, .
From Ecl. (l. 5), one sees that we can fix T, by
fixing zz, zp, . We find that A(E&, Ez, E'p), for fixed

FIG. 2. Plot of the coefficient of the spontaneous mag-
netization [AN&, E2, Ez)/AN&, EI, E&)] (Ref. S) as a
function of E2/Eg for fixed T, and for exp(-4P/f)
=z2cz2c= 4
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0 k2 ~ 0
a($) =a ($). . . a,($), (2.3)

0 0 (V

where a,($) [a ($)] is a. x&r invertible analytic
matrix function for I ( I& 1 [1)1&I], and v;(i=1,
... , r} are uniquely determined integers (except
for ordering} called the "right exponents. "

In the scalar case (~= 1}, this reduces to the
known theorems of Wiener and Wiener-Levy.
When all the right exponents are identically zero,
the matrix a($) is said to admit a right canonical
factorization, or simply a, right factorization,

is called the generating function of the block Toep-
litz determinant.

It was shown by Gohberg and Krein that a x&r
matrix a(e" }, whose elements have convergent
Fourier expansions [a($)C R„„,], and whose deter-
minant does not vanish for any real 8, admit a
eight sfandaxd factovization of the form

(Hirschman'0).
Theorem II. Assume that a($) admits a right

factorization and also a left factorization, then the
limit

E[a] = lim D„[a]/v " (2. 8)

exists and is nonzero (Widom"}.
In the case of a scalar (x= 1), E[a] is given by

the formula

x( ]=exp I. (x„)(x „]),
n=].

where
2%'

h„=— d6 e '" lna(e' ) .
7T -0

(2. 9)

This is known as Szego's theorem. When the
generating function is a matrix, no analogous theo-
rem exists except for the following very special
case.

Theo~em III. If a(g) is a r&r matrix that can be
written

a(&) =f (()a,($)

a(&) =a (&)a,(&). (2 4) (2. 10)

On the other hand, if any of these integers are not
zero, i. e. , v;+0 for some i, the matrix a(g) does
not admit a right factorization.

Similarly, a($) is shown to possess a left stan-
dard factorization

a(&) =f(&)a (&),

where, ($) [a (g)] is a invertible analytic matrix
function of $ for 1)1& 1 [1)1&l], and f($) is a scalar
function which satisfies

a(() = a,(()
c

Q t t ~ Q

Q ( 2 t ~ t Q

a (&), (2 8)

(I) f(() ~0 for
I ~

l

= I,
2f

(ii) ind f= — arg f(e' ) dB = 0;
2F 0

a(&) =a.(&)a (&). (2 8)

Although every nonsingular matrix that belongs
to R„„„admits standard factorizations, there is no
method known to determine the left or right expo-
nents, nor the left and right factors a,($), except
for some special cases.

Assuming the matrix a(5) admits factorizations,
we have the following theorems on the block Toep-
litz determinant generated by a($).

Theorem I. If a($) admits a. right factorization,
then

limD„„[a]/D Ja] = p
g~ co

t
C

0

where v', (i= 1, ~ ~ ~, v) are called the left exponents.
When all the left exponents vanish, the matrix a($)
is said to admit a left factoxization

then.

z( ]=exp —I ((x,](x,}),
1

2f
h, = — e "sin[deta(e's)] dt]

2w 0
(2. 11)

D„[a]-]]. E[a](l —TrQ),

where 0 is a x&& x' matrix given by

(2. 12a)

II= . , d$ $"M($ ')
]81=1

(Widom").
Theorem IV. Assume the matrix a($} admits a

right factorization of (2.4) and a left factorization
of (2. 5), then the asymptotic behavior for D„[a] for
large N is

1 2'
=exp — d& ln[deta(e' )]

27/ 0
(2. 7) with

x
] n]=1

(2. 12b)
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M(& ') = [««(0] 's, (&) = I- '($) (2. 12c) D„[a]=D„[ar]. (2. 16)

D„[a]= D„[a'], (2. 14)

where a'(t') =a ($ 1).
When two adjacent block rows (or columns) of

matrices in the block Toeplitz determinant are in-
terchanged, the determinant of the resultant matrix
is equal to the original matrix multiplied by a
factor (- 1)""". Using this fact, one can show

D.ls] =D.[~], (2. iS)

where a(() =a($ '). Combining E«ls. (2. 14) and

(2. 15), we find,

(McCoy and Wuz). Formula (2. 12) is derived in
Ref. 8 for a 2&&2 matrix ««($). However, an exam-
ination of that proof shows that the same formula
holds for a gxg matrix.

Since there is no such formula (2. 9) available to
calculate E[«2] for an arbitrary matrix «2((}, we find
the following identities and theorem most useful in
calculating the limit of DN[«2] as X- ~ for a 2&&2

matrix ««($) of the type (1.4).
If we multiply all the matrices ««;e =««««(j= 0, &}

on the same block row (or block column) by a con-
stant ex' matrix whose determinant is 1, the block
Toeplitz determinant remain unchanged. Hence,
we have the identity

DN[«] =DN[«] = lff
I
"D.[a] =DN[«2]. (2 13)

Since the determinant of a matrix is equal to the
determinant of its transpose, we find

I et us now restrict ourself to the 2X2 matrices.
It is implicit, in Ref. 8, the following theorem
holds.

Theorem V. If the two 2&&2 matrices g($) and

h($) are related to each other as

e««)=~W(' «', '„,)
and h($) admits a, right factorization

h($) =I« (()h,($),

(2. IV)

(2. iS)

III. SPIN-SPIN CORRELATIONS

In this section we demonstrate that the (s«luare
of) correlation function (o„oo») of the nth-order
layered Ising model may be written as a block
Toeplitz determinant whose generating function is
of the form (1.4). This correlation function will in
general depend on M, but it is surely no loss of
generality to take M= 0 since by cyclically permut-
ing the n energies Ez(l) all other n distinct correla-
tion functions (o««0&&») can be obtained.

It was previously shown' that (ooooo„)' can be
written as a block Toeplitz determinant

then in the limit X-~, the ratio of the block Toep-
Iitz determinant generated by g($) and h($) is

DN[Z] ~.(o«)22 &,(P)iz
N „DN[h] h„(a)21 h, (p)„detI«, («2) deth, (p)

'

(2. io)

(&0)» (&0}12

(&0)21 (&0}22

1}11 ( 1}12

(ooooON } (nl)21 (sl)22

(S-1)11
(&-1}21

(&0)11

(+0)21

(S-1)12

(&-1}22

(&0)12

(&0}22

(S-N 1)11
' ' '(&-N. l)21

(a „„)„
(n-N+2)21

(S-N+1 )12

(S-N+1)22

(&-N~}12
(««-N. z)zz (3.1)

N-1}11 ( N-l}12 (SN-2)11 ( N-2}12 ( 0}11
N-1)21 ( N-1}22 ( N 2}21 ( -2}22 ( 0}21

(««0}12

(««0}22

where the 2x2 matrix generating function

a(e" ) = Q «2«e««e (3. 2)

2z, sine
l
1+s,e" l-',

b=(i -",) li+.,e"l-',

with

(3 4)

(3. 5)

ls

«e 'e zb( x x)
~»(e )=buzz(e* )=bz, (-,

— (3.3a)

z) = tanhPE),

zz( j)= tanhPE, ( j),
(3.6a)

(3.6b)

and

«e ««e e' (1+zie '
)

azl(e )= —a,*z(e' )=
1+@,e

and P=(I«T) '. Furthermore, x, which is a function
of 0 and n, satisfies

(T11++Tlz)/( 21++ 22)

zb(««+«7 2a) —2(e«--a)(»- a),3 3b)X
bz+(x- a)(N -a)

Here we use the notation

and x satisfies

( Tll + ~12)~( 21 + 22)

where

(3. 7b)
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T = T(n) =A(n —l)A(n —2) ~ ~ A(l)A(0), (3.8a) A(l) =AB(l), (3. 1V)

T = T(n) =A(0)A(l) ~ ~ A(n —1), (3.8b) where

and

(3.9)

T11 —T22+ [(TrT) —4 detT ]
2T21

(3. 10a)

(a2+b2 az, (l)}
A(l) =I

More explicitly we may solve Eq. (3. 7) and find

and

a'+b2 a)
!A=

a 1/

0)
B(l) =I 0 2(l)!.

Then from Eq. (S.8),

T =AB(n —1)AB (n —2). ~ AB(0)

(3. 18)

(3, 19)

(3.20)
T„-T„+l(TrT)2 -4 detT ]'"

21
(3. 1Ob)

We now demonstrate that a(e") can be written in
the form

T =AT'Z-'

Consequently,

(3.21)

a(e") = O(e")/X(e"),

where b($) is a. 2&&2 matrix of the form
n

J=«Ff

and X($) is a. scalar function such that
2'

x'(r) = Qx, &',
i=-2n

Furthermore,

x(&) =x(& ')

and

(3. 11)

(3.12)

(3.13}

(3.14)

TrT= TrT.
Therefore, if we denote

X =(TrT) —4detT,

Eq. (3. 10) becomes

x - ( T„—T22 +X '
)(2T2, )

x = ( T„—T2, +X ' ')/(2 T2, ) .

Consider next

T11 —T22 —2aT21+X Y+X
x —a=

21 21

(3.23)

(3.24a)

(3.24b)

det5(3) = x'(k) .

We first note from Eq. (3.8) that

detT =detT.

Moreover, let us write

(3. 15)

(3.16)

where

Y = T11 —T22 -2a T21 (3.26)

and the corresponding formula for x —a. Write
out Eq. (3.21) to obtain

((a'+bz)T„+aT„—a(a2+b')T2, —a' T„

a T11 + T12 a T21 aT22
2

-a(a +b )T1, -a T12+(a. +b ) T21+a(a. +b }T22)
I. (3.27)

-a' T„—aT12+a(a'+ b )T21+(a + b )T22

Then it is easily seen that

T22+ aT21= T22+ aT21

and therefore

Y = T„—T22 -2aT„,
so that

(3.28)

(3.29)

11(e ) 22(e ) (T21 21} (3.Sla)

e»(e") = —n12(e")

Then substitute (3.25) into (3.3) and use (3.30) to
obtain

x —a=(Y'+X1~ )/(2T2, ) . (3. 25b)

Furthermore, using the 21 element of Eqs. (3.2V}

and (S.23) and (3.26} we see that

e' (1+z1e '
) ib(T21+ T2, ) —Y'

1+z e"
1

x'&

Thus, defining

(3.3lb)

4T21T21b + Y =X. (3.30) X2(eio)
I
1 z ei8 !4nX (3. 32)
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b»(e "}= baa(&") =
I
I+ z«&" I'"ib(T21 —Ta«)

(3.33a)

e} be( «e} Il «eIa( -1)

&& e'e(l+ z,e ' )2[ib(T2, + T„)—F],
(3. 33b)

we see from (3.31) that ««(e' ) is of the form (3.11).
The relation (3. 15) immediately follows from

deta($) = 1, (3.34)

which is computed directly from Eq. (3.3). More-
over, itis clear from Eqs. (3.4), (3.8), (3.9), (3.23),
and (S.32) that X($) is of the form (3.13). Further-
more, since detT($) and TrT($) are invariant under
t'-t' ', Eq. (3.14) holds.

It remains to verify Eq. (3. 12). Consider first
Eq. (3.33a) and use (3.5) to write

b«1« "}= '(I - z1} I
1 +z«e" I" "(Tal Tal}~

(3.35)
Now neither the term with Tz, nor the term with

T21 is of the form (3. 12) since T(n)2«and T(«2)2,

each have a denominator of I 1+@,e'
I ". However,

we may expand Eqs. (3.20) and (3.21) to obtain

Therefore (S.38)

T„—Ta, = z, (n —1)[A(n —2) ~ ~ A(0)]2,

—za'(0)[A(1) ~ ~ A(n —1)]2, . (3.39)

Each of the two terms here involves only a product
of n —1 factors A(l). Therefore b»(e' ) and baa(e' )
are of the form (3. 12). Indeed, the somewhat
strong statement also holds

n g

b11(e } baa(e } Z ( «)1«e (3. 12a.)
f=»n+],

Finally, consider ba, (e") as given by Eq. (3.33b).
Expand (3.8) to obtain

Taa ——zz(n —I)[A(n —2) A(0)]„
+a[A(n-2)" A(0)] (3.40a)

to show that

[B(0)A B(«2 —2)A]„=[AB(1) ~ ~ ~ AB(«a —1)]„
(3.3V)

and thus

[B(0)A B(n —2)A] = [A(1) ~ ~ A(«2 —1)]
= [A(n —2) A(0)],1.

T21 = a [A(n —1) A(0)]

+ zaa(n —I)[A(«2 —2) ~ ~ ~ A(0)]„ (3.36a)

and

T„=(" b')[A(» ~ ~ ~ A(n - I}]„
+ z'(0)a[A(l} . A(«« —1}]„, (3.40b)

T„=a[A(1) A(«2 —1)]„
"2(0}[A(I)~ ~ ~ A(. —1)]., (3.36b)

Then use the fact that B(l) is diagonal and B(l)» = 1
I

[A(n —2) ~ ~ ~ A(0)]„=z', (0)[A(1}~ ~ ~ A(n —1)],
(3.41)

together with Eq. (3.36} to show that

ib [ T21+ T21] —I' = (a+ ib)[ T21+ T21] —T11+ Taa = (a+ ib) fzz(«2 —1)[A(n —1) ~ ~ ~ A(0)]21

+ za(0)[A(l) ~ ~ ~ A(n —1)]21}+(a+ ib) [A(l) ~ ~ ~ A(2« —l)]1,+ za(«« —I)[A(n —2) * ~ A(0)]22
(3.42)

Therefore, noting that

a+ib= (1 —ze «e)(1+z,e ") ',
we find the desired result

o„( ")=
i
( ee" i"""((e"—e'e"}ie'(e —))iat —o) ~ ~ e)(o)i„~*l(o)fw(() ~ &( —)))„i

+e"((-ee "}'I~())" ~( -))]„e"(( e e ")'*,'( -})I~( -O)" ~(O)I„),

(3.43)

(3.44)

which is term by term of the form (3. 12).

IV. FACTORIZATION PROCEDURE

It is clear from Sec. II, that most of the theorems
are valid if the generating function admits a fac-
torization, and that we need to have the explicit
factors in the factorization to evaluate the asymp-
totic behavior of the block Toeplitz determinant.
%'e shall first show how to carr'y out the "factoriza-

tion" for a 2&& 2 matrix of the form (l. 4). In par-
ticular, we shall determine the condition that such
a matrix admits a factorization.

From (3.13) and (3. 14), we find

x'($)=x'(5 ')= g x«&'.

Therefore X'($} has 4n roots; and if X'(y, ) = 0,
X (y«')=0. Let c««(i=1, . . . , 2n) be the 2n roots of
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X'((} inside or on the unit circle. We can write

2n 1/2

x(&)=~ II(I-o' ()(I-& & ')
ja1

(4. 1)

x(5) =x.(Ox (0,
where

(4. 2a)

Clearly, when X(e")v 0 (none of the 4n roots lies
on the unit circle), X($} always admits a factoriza-
tion

d, (e")= Q d.„e'"",
js 2n

with 6, 2„+0. One can conclude from the above
lemma, that h($) has exactly 2n roots inside the
unit circle. The same proof holds for a right
factoriz ation.

This theorem provides us a necessary condition
that a 2 X 2 matrix of the form (1.4b} admit a fac-
torization. From Eqs. (3.25) and (3.26), we have

&(k) =x'(&) =&(& ').

x,(&) =&II(I —o i&)'~

Under the condition

x(()~0 for I(I=I,
the matrix

o(0 = &(5)/x(h)

(4. 2b)

(4. 2e)

(4 3)

Therefore, this necessary condition is always
satisfied for the generating function of the layered
Ising model.

Next we shall describe the factorization proce-
dure. (a) Let us consider a 2&&2 matrix F(k) of
the form

(4. 4)

Let detE($} have 2l roots (n;, i =1, . .. , —2l) inside
the unit circle. We shall show this matrix E((}
can be related to a matrix H(() that has the form

is factorizable if and only if b($) admits a factori-
zation. We shall prove in, the Appendix the follow-
ing lemma.

I emmo. Let f(e ) be a function whose Fourier
coefficients f &

vanish for j&n, and f „&0. If f($)
admits a factorization, f($) has exactly n roots in-
side the unit circle.

Let us consider the following example. Accord-
ing to this lemma, the function

f(&) =(I -~&)(I P& ')—
admits a factorization, only if f($) has one root
outside and one root inside the unit circle. Indeed
this agrees with the fact that such a function is
factorizable if and only if either l el, I Pl& 1, or
lel, lPl &l.

Using this lemma, we can prove the following
theorem.

Theorem 4. 1. Let E(e'') be a 2&&2 matrix whose
Fourier coefficient I'

~ vanishes for j &n, and whose
determinant b, (g) has a nonvanishing (-2n}th Fou-
rier coefficient (d 2„+0). If E($) admits a left (or
a right) faetorization, then h($) has exactly 2n

roots inside the unit circle.
Proof If E(g) adm. it a left factorization

F(&) =F.(&}E(0,

H(g)= P H,.g', (4. 5)

E11(+1)g E11(+3)
Fai(ni) Fai(o'a}

'

Let12

(4. 6)

Eu(ng) Fu(&, )
Fai(o» Fu(o'i)

[the second equality holds, because n, is a root of
detE($)] and

(4. 7)

Fai(no) F22(&2}
11(+R) 1R(+8)

(4. 6)

We can always identify the roots in such a way
so that E12 and K2, are finite.

Consider now the matrix

G($) =K iE($)

1 -E12
= (1 —K~ K2 q)

~+
21

(4. Qa)

where detH($) has 2l - 2 roots inside the unit circle,
provided certain condition is satisfied.

Assume among the 2l roots of detF($), there
exist a pmr e1 and e2, such that

then the function n, (f) = I F(g) l must admit a Wiener-
Hopf factorization

&(&)= IF(&) I
= IF,(&) IIE-(&}I

Fgg(&) F~(&)

Fpg(5) F22(&)

From Eqs. (4. 7) and (4. 9), we find

(4. Qb)

Since the Fourier coefficient I
&

= 0 for j & n, we
have

G(o,)„=(I -K„K„)-'i'[(E„(n,) -K„E„(o,)]= 0

(4. 10}
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and

G((2&)12=0.

(3. 12), whose determinant has 2n roots (c((&; 2=1.
.. . , 2n,' In;I & 1). When

G(~2}2&= G(~2}22 = 0

This means that me can write

(4. 11)

Likewise, from Eqs. (4. 8) and (4. 9), we find (4. 20)b(1(+1) g b&1(o2)

b21(o &) b21(&22)
'

according to (a), there is a matrix b'"(() of the
form

G(&)11=(1 —(21& ')H((l)&z

G(&)12 = (1 —o'1& ')H(&)12

b{1)(2} P b(1)
~

&

j= -n+1
(4. 21)

G($)21= (1 —(22$ ')H(&)2&,

G(&)22 = (1 —~2& ')H(&)22

(4. 12) whose determinant detb&(&($) has 4n —2 roots (&2,';
&2z,

' {2';2=3, . ~ . , 2n; &2;&1), such that

0
b((& =n"' (.,) b"'(() . (4. 22)

where H(() (y, s = 1, 2) have the following forms:

H(()„= g (H,.)„,&', ~(~=1, 3, s=l, 2.
J=-z+1 (4 13)

We can now rewrite Eqs. (4. 9} as

Again, if

11 (+3}g 11 (O4)
b21"((23) b21" (&24}

' (4. 23}

(-1

n(&& ((=,' ',
, )n(().1 —QZ

(4. 14)

where H($) is defined by Eqs. (4. 12) and (4. 13).
When Eq. (4. 6) is satisfied, so that (1 —K12K21)

& 0, the constant matrix K defined by Eq. (4. 9) is
a mell defined matrix whose determinant is unity.
According to Eq. (4. 14), we also have

detG($) =(1 —(2,$ ')(1 —(22$ '}detH(&). (4. 15)

Since I G($) I has 2l roots inside the unit circle,
the determinant of H(() has 2f —2 roots (n, , i =3,
. . . , 2n) inside theunit circle.

(b) Similarly, we can show that if

there exists a matrix b' &($} of the fcrm

b(2)(() Q b(2)(i
j=n 2

such that

(4. 24)

1 —e,$' 0
b(1)(]) K (2) b{2)(])

O 1 —n, &'
(4. 25)

We can repeat the same argument n times. We
find, that when n such conditions (4. 20), (4. 23),
etc. , are satisfied, there exists a matrix b'"'(() of
the form

n

(4. 26)
j=0

ll(+ 1) g ll(O2)
&12(O'1) &12((22)

'

there exists a matrix H*($) of the form

H*(&}= P H,*. &',
j=- 2+1

(4. 16)

(4. 17)

b(() e&1&(~)C&2&(]) . C&n)( 2}b( &n(n)

where
(4. 2&)

whose determinant has 2n roots ((2, z = 1, . .., 2n)
that lie outside the unit circle, such that

whose determinant has 2f —2 roots ((2(, 2= 3, . .. , 2l)
inside the unit circle, such that

1 —nz
e&)((~) K(i)

0
(4. 28)

C —Fl&(&1)

-+~a~&3~
+(((&22)

with

+~2 &S

1-n, ( '
O

n(()=n'(()
' ',

,)n',1-n, &
'

where

(4. 18)

(4. 19a)

(4. 19b)

Clearly, b&"&($) given by Eq. (4. 21) is analytic in-
side the unit circle. Since detb&")($) 4(0 for I f, I & 1

(all its roots lie outside the unit circle), b'"'(q) is
invertible for I $ l & 1. On the other hand, the ma-
trices e "($) are analytic invertible functions out-
side the unit circle. Therefore, me have carried
out the right factorization for the matrix b($), with

b (g} c())(])e&2)(().. . ( )e((n)[ (
K) 1( K.2.&. K(»J-&

(4. 29)

b (g) K(1)K(2&. . .K(n)b&n)(2)

(c) Consider now the 2&&2 matrix b($) of Eq. We find it convenient to choose b ($) such that
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b (~) =f. (4. 31)

(d) We shall consider the case of n = 2, to show
what happens, if the n conditions (here n= 2), as
given by Eqs. (4. 20) and (4. 23), are not satisfied.

Consider a 2&2 matrix b(k) of the form

2„(&)= b„(&}— " '
b24(&), I = 1, 2

b21(421)
"

and also

A21(() = b„(5), I = 1, 2 .

(4. 36)

(4. 36)

b(])= Qb, t',
whose determinant has the property

(4. 32a)
By the assumption of Eq. (4. 33), we have

/i„(n;) =0 for i =1, 4.
Since

(4. 37)

detb(e") = detb(e ")4'- 0.

bll(121) bll(422) bll(t22) bll(«)
b21(+ 1) b21(422) b21(+ 3) b21(+ 4)

(4. 33}

Let 42,. (2 = 1, .. . , 4) be the four roots of detb($), that
lie inside the unit circle.

Case 1. Assume

b»(a;)b22(~;) —b12(n;)b21(~ }=0 f»1=1, ", 4

we also have, fram Eq. (4. 33),

/112(n, ) =0 for i = I, . .. , 4. (4. 38)

(4. 39)

It is evident fram Eqs. (4.35), (4. 36), »d (4. 32),
that we can write

1 ~~
I

bll(&) b12(&)

b21(&) b22(&)
(4. 34)

This means condition (4. 20) is not satisfied.
Consider the matrix

—&„t,)/t„ta, ))
0 1

Using Eqs. (4. 3V) and (4. 38), we find

&»(5) =(1 —a, ( ')(1 —422$ ')(1 —422t ')

&&(I —n4$ ')B„$'I
where B»(l= 1, 2) are two constants. Let

B„($)= B„, I = I, 2

B2)($) = t'A($)24, I = I, 2.

(4. 40)

(4.41)

It is clear from Eqs. (4. 39} and (4.41), that B($) is a matrix analytic for I I I & 1. Using (4. 40) and (4. 41),
we can rewrite Eq. (4. 34) as

(1 —a, k ')(1 —42, ' ')(1 —n, t' ')(1 —42, 5 ') 0 $2 0
b(() =R B(g) .

I1 ~ ~ ~ 1 ~ ~ 1 ~ 11 ~

~
~

~

0 1 0 (4. 42)

Since detb($) has exactly four roots (ct;, i = 1, 4)
inside the unit circle, we find, from Eq. (4. 42),
detB(() 4 0 for I ) I& 1. Clearly, Eq. (4. 42) is the
right standard factorization of the matrix b(k)
This means when Eq. (4. 33) holds, the matrix b($)
of Eq. (4. 31) has nonvanishing right exponents

and v2 = —2.

B(~)=QB,~ .
i=-1

In order to violate Eq. (4. 23), we assume

B»(&2) B»(&4}
B21(~2) B21(~4}

(4 46}

(4. 46)

Case 2. Consider now the case

b11(+1}gA -1 bll(+2)
b21(&1} " b21(&2)

According to (a}, the matrix

We multiply B($)l defined by Eq. (4. 44), from the
left by a constant matrix

—&„t )/&„(,i)
0 1

(1 —42, $ ') '
B(t') =

0

is of the form

0

tt ..:-,-)
1 —K12

x b(&)(I -If12ff21) '" (4 44)
—K21

C(O = S 'B(t')

When Eq. (4. 46) holds, we have

C„(~,)=O for &=1, 2,

and also

(4. 49a)
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C1,(n4) =0 for I=1, 2 . (4.49b}

&24(&}= &41(&)=
& 'D41(&) (4. 51)

where D„($) is a cubic polynomial in $. Conse-
quently,

((1 -n, ( '}(1—n4$ ') 0 (5 0 &

0 I (0 ~-'iD(".
(4. 52)

According to Eqs. (4. 45), (4. 48), and (4. 49), we
can write

&11(&)=&(I -n3& ')(I -n4& ')D11(&), I =I, 2,
(4. 50)

where D„($)(l = 1, 2) are linear polynomials in $;
and also

(I —n, $' 0
b(k) =b("(()~, ,&1K"), (4. 57}

where K'" is a 2~2 constant matrix whose deter-
minant is unity.

Let

a")(~)= b("(~)/X(~). (4. 58)

Thus the matrix a($) of Eq. (4. 3) is related to
a(1)(~) as

trlx of the form (3.22), in the limit N- ~.'4 Accord-
ing to (b), there exist a matrix b("($) which has
the form (4. 21), and whose determinant has 2n —2

roots inside the unit circle, such that

Let

((1 —n, $ ')
F(~) =Kl

() — .('))
(() -n, ( ')() —a,( ')

O)xSI
0 1

1 -K)2
K '= (1-K12K21) 1(

21
(4. 53)

(4. 54)

(1 —n, )1 0
((l= "'(() ( o ) (,))('". (4. 5)))

r, = lim D„[a]/D„[a'"]. (4. 60)

Repeating these steps n times, we obtain the
ratio

r„=lim D„[a]/D~[a(")], (4. 61)

Now we can use identity Eq. (2. 15}and Theorem
V to calculate the ratio

We can rewrite Eq. (4. 44) as

o
&(&)=+(&)

0 (-1 D($) (4. 55)

By Eq. (4. 54), we find F($) analytic and invertible
for l (I & l. Since the elements of D($) are poly-
nomials in $, D(() is analytic inside the unit circle.
According to Eqs. (4. 54} and (4. 55}, we find the
four roots of lD($) I lie outside the unit circle
Therefore, Eq. (4. 55) is a standard factorization
of b($). We conclude, when Eq. (4. 20) holds, but
Eq. (4. 23) does not hold, the matrix b($) of (4. 26)
has nonvanishing right exponents

v, =1 and v2= —1.
This shows that the conditions

b11(n1} ~ b11(na}
b31(n1} ba1(n2)

and

11(n3) g 11(n4}
&21(ns} &a1(n4)

(4. 56)

are the necessary and sufficient conditions that a
matrix b($) of the form (4.26) admits a right fac-
toriz ation.

In the next paragraph, we shall describe the pro-
cedure that enables one to calculate the block
Toeplitz determinant D„[a], generated by the ma-

where a(")($) is equal to a, scalar function I/}(($)
times a matrix function b'")(5) which is an inverti-
ble and analytic function for l $ l& 1. For such a
matrix a(")($), we can use Theorem III to calculate
the block Toeplitz determinant D„[a'"'] in the limit
N- ~. Consequently, we find the block Toeplitz
determinant D„[a], when N-~, is

lim D„[a]=r„lim D„[a'"'] .

To calculate the asymptotic behavior of D„[a],
for large N, generated by a matrix (4. 3) that admit
a factorization, we can simply substitute into Eq.
(2. 12) the left factor obtained by the procedure de-
scribed in (c).

V. GENERATING FUNCTION AND SPONTANEOUS
MAGNETIZATION FOR THE CASE n=2

In the following sections, we shall study in some
detail the simplest nontrivial problem of the lay-
ered Ising model; we consider the lattice whose
horizontal bonds are all equal to E~, and whose
vertical bonds can take two alternate values:
E3(2K) = Em and E4(2K+1) =E z. We have shown in
Sec. III that the spin-spin correlation function
(oooao„)2 is a block Toeplitz determinant D„[a] gen-
erated by a 2 X 2 matrix a(e' ) given by Eq. (3.3).
It was also shown that the matrix a($) can be written
in the form (3.11), i.e. ,
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e(&) = 5(&)/X($) . (5. 1)

(a'+b')2+ a z," az,'(az+b'+ z,")
a(a2+b2+z22) a z2+z2z2

Here, in this simple case, the 2&2 matrices T
and T defined by (3.8) become

((a'+b ) +a z,' az,"(a'+b'+z2)

( a(a2 b2 2) a2 22 2 2

Consequently, Eq. (3.33a) yields

= z,(1 —z', )(z,' —z,")(e"—e ").

by Eqs. (3.29) and (3. 33b), we have

(5.3a)

b2, (e' ) = —522(e
'

) ={[(1+z2)(I+z2z2) —z2(l —z2z2)(e' +e ' }]
x [2z4(I + z2z 2) —(1 —zzz 2)(e + zte )] —z2(z2 —z 2) (e —e )(e

Likewise, Eqs. (3. 23) and (3.32) Yield

}(2(e'3)=
~

1+z&e'
~

[(a +b —zzz2) -2a(z2+ z2)1[(a'+b' -z2z2)+3a(z2+z2)l

~[(a'+b'+z, z,') -2a(z2-z2)lla'+b'+z2zz)+3 (z2 —z2)].

(5.3b)

(5. 4)

P4("') =
I
l+ z4e" ~2[(a2+ b' —z2z 2) -3a(z2+ 2 2)]

=(I+z',)(l-z,z,') -z(l-z, )(1 -z2')e"-z, (1+z2)(1+z2')e *' (5. 5)

P2(e' ) = ~I+z&e'
~

[(a +b +z2z2)+ia(z2 —z2}]

= (1+z', )(1+z,z 2) —z,(1+z2)(1 —z,')e" —z,(1 —z,)(l + z 2)e ".
Clearly, Eq. (5.4) becomes

X'(5) =Pt(5)P2(& ')P2(&)P2(& ')

let y, and y2' be the two roots of the quadratic polynomial Pt($), and let y, & y2'. We find

y4 = I(I + z2)(l —zzz 2) —[(1+z4) (1 —z2z 2) —4z2(I —z2)(1 —z 2 )] ]/I 224(I —z2)(1 —z 2)]

and

y, = [(1 —z, )(1 —z,')/(1+ z,)(l + z,')]y

(5.6}

(5. 7)

(5.8)

(5. 9)

Here, we choose (x) &0 for real and positive x. Let y3 and y4' be the two roots of P2($), and let y, &y4'.

%e find

y 3 = I(I+ z4)(I + z2z 2) —[(I+zi)'(I+ zzz 2)' - 4zi(I - z')(I - z 2')]'" ]/[2z4(I + z2)(I - z 2)l (5. 10)

(1+z,)(1 —z 2)
(1 —z,)(1+z,') (5. 11)

&z2z2], we have y, & 1. Since

b44($) = b22($) = —522($ ) (5. 13)

lt is evident from Eq. (5. 7), that X (h) has eight
roots (y", , i=1, 4). Therefore,

X(~) =",(1 —.',)(1 —z2')[(~ -y4')(~ -y.')
~42(&) = —~24(& ').

ere find

(5. 14)

~((-y, ')(& -y4')(1-»t ')(1 -y.& ')

&&(I -y35 ')(I-y4t' ')]'". (5. 12)

42(y ) 22(y ~) 22(yt')

524(y4) 5&2(y;) ~»(y4')

It can be shown that

(5. 15)

It is easy to verify that, when 0 ~ z, ~ 1, 0 ~ z~ ~ 1,
and 0 ~ z 2™1, we have (i) y, ~ 0, i = 1, 2, 3, 4; (ii)
y3(z2 z2) y4(z2 z2). y3 y4 when z2 z2. (I I) 0 y2

&y4 —y3&y~ «» z2 —22, (iv) y2, y3, and y4&1; (v)
when T» T, [that is„when (1 —z,)'/(1+z, } ~ z2z2],
we have y, ~ 1 and when T», [(1—z,)'/(1+ z,)

5»(y3) —~2g(y2)

&24(y3) b22(y2)

—(1+z2)(1+ z '„.)y, '+ z, (1 —z,z,'}
I

82 Z2
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and

~11(y2) —b11(y4)

&21(y2) &21(y4)

According to Sec. IV, case (c), we can write

("1
b($) =K

0
(1 —z,)(1+z,')y, ' —z,(l+z,zz), 1 )I

z2+ z2

Since y2, y4( 1 for any temperature, Eq. (5. 17)
implies that condition (4. 37) holds. This means
that b($) belongs to the class described by case 2

in Sec. IV, case (d).
Let

0
c((),

1-y~$ ' (5. 26)

where C($} is a, 2&&2 matrix whose elements are
quadratic polynomials in $, and whose determinant
does not vanish for I $ l & 1, at T& T,.

I et us rewrite (5. 12) as

v = &11(y1)lb21(y1),

~ = &11(y2)/b21(y2) .

Consider the matrix

(5. 18)

(5. 19)

x(h) =x (l)x,(5),

where

x.(&) =((I -y1'6')(I -y2& ')

(5. 29a)

B($)=
0

where

0
K '5(&),

(1 y ~-1)-1
(5.20}

and

~(l -y, ( ')(1 -y, ( '.)]'"

X,(k) = z', (1 —z, )(1 —z 2")

(5. 29b)

From (5.20), we find

B11(y,) v —e 1 -y4y
=(d „g )

B21(y,) v+ &u 1 —'Y2'Y,

(5.21)

(5. 22)
a(g) =s (~)a,(t), (5.30a)

~[(~ -y, )(~ -y. ')(~ -y.')(~ -y, ')]'".
(5.29c)

The matrix a($) of Eq. (5. 1) admits a right fac-
toriz ation

B»(y2) v+» —y4»'= Cd -1 )B.1(y2)
(5. 23)

where

s,(&}=KqC(&)/X, (t) (5. 30b)

B11('Yi ) 1 —» 1 -'Y4y1= (d
B21(y] ) 1 + (dv 1 y3y1

It can be verified that

11(yl} B11(y2)
B21(y1} B21(y2}

and

B11(yj') B11(y2)
B21(y, ) Bp1(y2)

'

(5.24)

(5.25)

(5.26)

(-1
a (g) =K

From Eqs. (5. 13) and (5. 14), we find
(5. 30c)

When T &T„y1 and y2(1. Since Eq. (5. 25)
holds, the matrix b($) admits a right stands. rd
factorization with nonvanishing right exponents v,
= 1 and v~ = —1. Whereas, y, ' and y2& 1 for T& T,.
Because of Eq. (5. 26), the matrix b(5) admits a
right factoriz ation.

Let

Therefore, a($) admits a left factorization

a(])=a.(()a (t),
with

(5. 31)

(5.32a)

(5. 32b}

and

@12 B11(y1 )/B21(y1 } (5. 2'Ia)

41 B21(y2)/B11(y2)

Furthermore, define

(5. 27b)
0 ii (Oi

& (()= . 0i44.(& ')(. (5.32c)

1 Qjq
Q=(1-@12921)' I

(q21 1
(5. 2 ic)

As mentioned before, the generating function
a'(() of (o,2o1N) can be obtained from a($) by inter-
changing z~ and z,'. Hence we have
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~

~

—a,1($) a,2(() i 0 } i 0

(221(() —a22(f) 0 —i J 0 —2/'

Consequently, using (2. 15), one obtains

By Eqs. (5. 1), (5. 37), and (5. 39), we have

1-y,'( ' 0

, )..1 -y2$
(5.40)

00 0(('} ( 10 1(((} ' (5.33)

M' = Iim (o00o» & (5.34)

is the spontaneous magnetization of the second-
order layered Ising lattice.

A. Spontaneous magnetization for T & T, (y, '
& 1)

By considering the symmetry of the system, this
identity (5. 33) is also evident.

Accordingly,

Using identity (2. 15) and theorem V (in Sec. II),
we get

D„[,] 1 Q, (wi')22 Q.(wi')12

„'„D„[q] detq, (y, ') detq, ( y)2 q (y ) q (~ )

(5. 41)
It is obvious from Eq. (5. 39), that Q(t') admits a
right facto riz ation

Q(&) =Q (&)Q,(&),

Consider the matrix B(() defined by Eq. (5.22).
It is easy to show that

with

Q, (k) = «($)/x, (k), (5. 42b)

11(r1 ) b11(~1 }
S12(~1') &12(r1')

(5. 35a)
where X,($) is given by (5.29c). Substituting Eq.
(5. 42b) into (5.41), we get

s11(r2) 511(Y2)

~13(r2) &»(r2)

Therefore,

S»(~i'), &»(~2)
&»(&i') &»(&2)

'

(5. 35b}

Hence, from Sec. IV, case (b), we can write

l-y, '( ' 0
&(&) = G(&)

1-gpss 'f
where

1 +v
1=(1+V2) 1/2

—v 1

(5. 36)

and G($) is a 2x 2 matrix whose elements are
quadratic polynomials in t', and i G(t')i4-'() for i/i
& 1. From Eqs. (5. 20) and (5. 36), we obtain

1-y $' 0
0(((=»,' ',

, )P(((.

Therefore,

1-y,(-' 0
(('(((=P'(((, ',

, )(( .j.

(5.44}

(5. 45)

Again, making use of Eq. (2. 15) and theorem V,
we find

„. D[q']
~- D[P"] X,(&3)X,(~4)

D„[a 1

~ .D3([q] x.(&i')x.(&2)

G(&i')22 G(&1')12
X (5.43)

C(&2)21 G(r2)11
„

'

Next, we compare Eqs. (5. 38) and (5. 39), and find

Let

I-y3) ' 0

1-y1'( '

xG($)

P(&) = (=(0/x(&)

(5. 37)

(5.38)

G(y3)22 G(r3)21
X

G(&4)» G(r4)11
(5.45)

where we have used the fact that Pr($) admits a
right factorization

P'(&) =[I/x-(&)l[G'(&)/x, (&)1,

with

(P'), = G'(t)/x, ($) .
1 -y3( 0

((((l=&
~ ( (,)G(((/X(() (5 39) Combining Eqs. (2. 18), (5.45), and (5.43), we

have

DN[&] [G(r2)11C(wi')22 —G(r2)21G(xi')»][(."(&4}1h(»}22 G(~4)12'(~3)21]
D [P] x,(r3)x,(v4)x, (ri')x, (v2)

According to theorem I in Sec. II, we have

(5. 46)
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Since P($) is a scalar function 1/y(t'} times a matrix function which is invertible and analytic for 1)1& 1,
we can use theorem III.

Since

detP($) =[(1-r1'6')(1-y2$ ')(1-y2$ ')(1-y4& ')] ',

we have k„=0. Therefore

limDQP]=1. (5. 47)

From Eq. (5. 3'7), we can compute G(y, ),&, and find

11(r2) =&11(y2)(1+~v )(1+v ) 2 /(1 r2y2 )(1-r1y2 )

G21(y2) = &„(y2)(~ ' —v ')(1+ v')' 2 '"/(1 - r4r2')(1-y, 'y, '),
G22(Y1 ) b11('Y1 )(1 + ~ v )(1 + v ) 2 /(1 —y4y1)(1 -r2y1),

G12(r1') = &»(y, ')(v ' —~)(1 + v')'"2 '"/(1 -y3r1)(l -y,y, }

and

G11(r4) = b11(y4)(1 + ~v)2'"(1 + v') '"/(1 -r y ')(1 -y1'r4'),

G12(Y4) f111(y4)(v ~)2 (1 + v } /(1 -r2y4')(1 -y,r4'),

G22(y2) =b»(y, )(1+v&d ')2' '(1+v') ' /(1-y, y, ')(1-y,y-, '),
G21(r2) = &11(r2)(~ ' —v) 2'"(1+v') ' /(1 —y4r 2')(1 —r1'r2') .

Substituting Eqs. (5.47) and {5.48) into (5. 46), we obtain the remarkably simple result

M'=li m( ocr )' —limD [a]—
(1 -r, 'y2)(1 -y2y4)

As T-T„

y,-1+, (4E„+[z2, (1 —z„)E, + z2,(l —z„)E,]] .(P P.)(1 ——21.)' I~] I2 I

2z„z2, +zz, )

Therefore, for T- T„
M A(E1, E2, E2)(l —T/T, ) i,

where

„(E E E.) {z.+z'.}' [{1-r2.}(1-r'.)(1-r'..)1'"
4zzz 2 {1-r2.)(1 —r2.r4.)

(5. 48)

(5. 49)

(5. 50}

(5. 51)

(1 —z„)2 1/8

, , p, [4 E+1( z,2—z )E2+( 22~
—z22,)E2]

I j I I

2Zl~(82~ + 8 pc J
(5. 52)

In Fig. 2 we plot A(E, 1 E,2 E,')A(E„E,, E,)
' as a

function of E,/E,', for E, and T, fixed.

B. Spontaneous magnetization for T&T, {'y, &1)

o

0 s &')Y4

Because

+11(y1)/+12(r1) 511(r1)/512(r1) (5. 53a)
. a*(g

' ',)rc',
0 j. -y, $-' (5. 54a)

E11{r2)/+12(r2) 511(r2)/512(r2) v (5 53b)

we find

where

11{r1}/ 12(yl) +11(y2)/+12(r2)

Therefore, we can write

(5. 53c)
(5. 54b)

and G~(t') is a 2&&2 matrix whose elements are
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quadratic polynomials and whose determinant
lG*(()l co for l&1 & 1.

Note the matrix B(5) given by Eq. (5.22} admits
a right factorization because of Eq. (5.53c), and

does not admit a left factorimation because of Eq.
(5.25). Similar to the derivation of Eq. (5.46), we

can derive the following formula for T & T;.

»m DN [&]=- [G'(rz)gF'(r g)pp
—G*(rz)zgG*(rg)gp]

N~~
x [Q (r4)qtG (rq)zz —G*(ra)rzG*(r3)z)/

X.(rg)X.(rz)X.(rg)X,(r4) . (5. 55a)

X($) = z, (1 —zz)(1 —z p')

[(f. -r, ')(~ -r.')(~ -r )(~ -r, ')]" .
(5. 55b)

Since

1- $ 0
(((((= &"((( 0 ( (- )(('

~
1

we can show

D(r g) gg/B(rg)zg = G*(rg) ~/G*(rr)zz

and

B(rz)ll/B(rz)z1 G (r2)11/G (r2)21 '

Because of Eq. (5. 25), we find,

M'=limD„[a]=0 for T», .

(6.3)

ig($') 0 0 1

D(&) = Q
'
{ -g (-i) & '

g '(&)

0 g(h) 3

to obtain

M(( ') =f '(&) =[n (&)1 ".(&)

(6 4)

h((-') O h-'($) 0

o h-'(]-'} ( } o h(&)

tj' 0 i
xq- Z-

I(-f o' (6. 5)

Consequently,

h(~-') o

ns(( 'yz(q(=z(( ,„,(, )

i h '(&)h(r}) 0
xD ) I

o ~«»- (.()
h '(r} '} 0

We substitute Eqs. (6. 1) and (6.3) into (2. 12c),
and let

VI. ASYMPTOTIC BEHAVIOR OF |0'oo&gv) FOR T& T

We learn from Sec. V, that the generating func-
tion a($) of ((r00(ro„) = D((([a] admits a factorization
for T & T„' but it does not admit a factorization for
T & T,. Therefore, we can use theorem IV to cal-
culate the asymptotic behavior of {(mao(r ) for
T & T„but not for T & T,. We shall restrict our-
selves to the case of T& T, in this section, and

defer the discussion on T &T, to Sec. VII.
Rewriting Eq, (5.30c), we have

Trig~ '}L,(q)]

= h($ ~)D($)~~ h ~($)h(q)D ~(r})~,h ~(r} r)

+h(h ')D(()r2h($)h '(r})D '(r})2p '(ri ')

h '($ ')D(()„h ~($)h(r})D '(r}), h(r} ')

+ h '(5 ')D(h) h(&)h '(r})D '(n) h(r} ') .

(6 6)

(6. V)

where

ig '(k ')

r(('))
h~($~) 0

o ((( '()~'»'

h(&) = [(1-rz&)/(1-r~'5)]'~

g(&) =[(1 rgb)/(1 -r, k-)]'~.

By Eq. (5. 32b), we have

io f ig '(Z) o

'{~)=i; 0 K& 0 g(~)

(6. 2a)

Consider now the integral

Trg= . ~ d$ dq—

"»[M(& ')f (n)1 . (6. 6)

Since the singularities of the function g''($„) and

h"($") are the eight branch points at y", , y,", y", ,

and y4', the integrand which is a product of these
functions, has cuts from yl to y3, and from y, to

y, ', inside the unit circle and cuts from y, to y4',

and y3' to ya' outside the unit circle. We deform
the contour of the integration variable q to be the
lines above and below the cuts outside the unit cir-
cle, and deform the contour of integration of ( to
be the lines above and below the cuts inside the

unit circle.
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x»[M(& ')f («})J (6. 9)

Note that h(C ) is divergent at 5 =y,«and h(«}) is
divergent at q =y, .

One can show that

One can see readily that the integration of q

from y, ', to y4' gives rise to a term proportional
to y, , while the integration of g from y, to y4

gives rise to a term proportional to y,". Hence
for large N, we can neglect the former. For the
same reason the integration of $ from y2 to y3 is
neglected. Now the integral (6. 8) becomes

1
TrQ = —-r d$ df} — (q —$) o

m y 4
7'

1
q

and

f «d~ f««(1 ~)t «-/8

-y-, '"'«P (f+ .', -N+1}

~j
I = f d«}«t (1-y««l )

yi' «P(m+ o, N —1).

(6. 18a}

(6. 18b)

For large N, the p functions in Eqs. (6. 18) be-
have as

P(m+-. , N+1)-P(m+-,', N-1)-r(m +-,')/N ~«'-

(6. 19)
Substituting Eqs. (6. 16), (6. 18), and (6. 19) into
(6. 17), we get

and

D '(t') =D(& ')

D«(yi') = Di«(») = o.

(6.10)

(6. 11)

fo (1/«f')D«o(yi')Do«(ri')(r« -yi') '

"(fA+ of«)+ (-1/&)D«o(rj )Do«(yi')

(y «) oy o s/No os x Q( l /No) (6 20)

Therefore, there exists a function R««($) such
that

Since detD(t') = —1, and D„(y,') =0, we find

D«o(yi')Do«(ri') = 1. (6. 21)

and

D««($) = (1 —y«))R«, ($) (6. 12a)

D, ',(f})=D«, («} ') =(1-r««} ')R«g(f} '). (6 12b}

Clearly, because D»(yi') =0, the first term in Eq.
(6, 7) gives rise to a term of the order y, "/N'; and
the integral due to the last term of Eq. (6. 7) is
also of the order y, '"/N' Henc. e we get

Substituting Eq. (6. 12} into (6. 7), we find that the
second and third terms in Eq. (6. 7) are the most
singular terms of the integrand.

Let

x [f«($ )D«o($)f«($)k (f})Do)(f} )Q («i )

+ & '($ ')D„($)f '($)h(n)D«o(q ')I (q ') J.
(6. 13)

The integral I2 due to the second and third terms
of Eq. (6. 7) is

xR(5, «})(1-r«&) ' '(1 r«fl ') '- (6. 14)

R(g, q) = g R,.(1 -y, h)'(1 -y, n '),
l, mW

(6.15)

Expanding R($, «7) about $ =y, ' and f} ' =y, ', we have

( 1/vN }rj os 1

&&(&)««&«o(&)

« '~(««„ ) (V. 1)

Therefore, the spin correlation for large X at
T& T, is

((roooos) =D„[a]«a-M'(1 ——,'Trn)

-M 1+ 2 (2+y)
(6. 22)

where M is the spontaneous magnetization given by
Eq. (5.49).

VII. SPIN-CORRELATION FUNCTION FOR T & T,

When T & T„y;& 1 (i = 1, .. . , 4), the matrix a($)
is not factorizable. To calculate the asymptotic
behavior of (oooao„}, let us consider the matrix

y } ' R, are the Taylor coefficient of the
above expansion. %'e fl.nd ~(5) = s($)/X(~) . (V. 2)

R00=0,

R«o =Ro« = D«o(yi')Do«(yi'}(y« -ri') '

Consequently, Eq. (6. 14) becomes

—1
I2 —— 2 ~ R) I)I

&o m"-0

where

(6. 16a)

(6. 16b)

(6. 1V)

Clearly,

a«o(&)

r(&) =
(() ( , (() .

The matrix s(g) still has the form

s($) = g s&$ ~

j=-2

(V. 3)

(7. 4)
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since dets(h}= detb($), dets($) also has the eight
roots (y',.1; i =1, .. . , 4; y, & 1).

It shall be shown that the matrix r($) admits a
factorization. Therefore @re can use the method
described in Sec. IV, case (d) to calculate the
block Toeplitz determinant D3 [r].

In the following paragraph we shall derive the
relation of the block Toeplitz determinant DZ, [«] to
the block Toeplitz determinant D„[2'].

Since
pg

e "'r(e")de
2m

2$

e "0«(e'0}de2~

by Eq. (7. 3) we have

l)11 ( 1+1}11 ( l)12 (+1}12

(«1)21= (&1)21 («1)22 = (&1-1)22

Accordingly,

D~[«]=

(~,)„(3o),
(&0)21 (&-1)22

(r2)11 ( 1)12

(+1)21 ( 0)22

(420}»

(&-1)21

1)11

(&0)21

«-1)12

(3'0)12

(&-1)22

(&,v, p)gg

(+-8«1)21
(r- 7+3}11

(+-E 2)21

(3 8+1)12-
(&-~)22

( r- 3 +2) 12

(+-X+1}22

~ 4 ~ ~ ~ ~ a

(&8}11 (&E-1)12 (& N-1) 11 (&X-2)12 (&1)ll ( 0112

(+14-1}21 (+N 2)22 (3 N-2)21 (rN-3)22 (+0)21 (r-1}22

Interchange the (2j —1)th row with the 2jth row for j = 1, 2, . . . , X, and the interchange the 2jth column
with the (2j+1)th column for j = 1, 2, .. . , N —1, the 2K& 2K determinant in Eq. (7. 8) becomes

(&0)21

(&1}11

(&1}21

(+-1)21 (+-1}22 ( -N«1)21 (y-3'«1)22

(r0)11 (30)12 (+-S«2)11 (3-3'«2}12

(3'0)21 (3'0} 2 (&-~,2)21 (& ~,2)22

(&-~)22

X+].)1P.

(r-~-, l)22

D.l«1= (- 1)"(-1)"
(&~-1}11
(4 3'-1}21

4

(~, ,) (~, )

(~g-2)21 (+N 2)22

(&W-1}11 (&3-1}12

4 4

0)11 (+0)12 (3-1)12
(&0)21 (&0)1. (& 1)22

( 1)11 ( 1)12 (&0)12

Comparing with the 2(X+1)&&2(/+1) determinant D~„[r]=detT, [T denotes the 2(/+1)&2(X+1}matrix
crated bI r(t')], we find that (-l)D„[«] ls a co-factor of l Tl, ZTZ„,ZN 1 l. [That is, (-1)D3[«l can be obtained
from D„„[4]by striking out the first row, the last row (2Nth row), the second column and the (2X —1)th
column of the matrix T. ]

Consider the following systems of linear equa-
tions:

y'0= cof ITZ„,Z 2 I
/detT (7. 12c)

E«, .(+)=(')s, , r o, . . . , «, =

y'
I=0, . .. , X.

mO &m

(V. 10)

( i. 11)

1'3 = cof
I T23t, 23-11,~ det T . I'7. 12d)

-D.[] -D. [ l

-v0 1'g detT D3t«1[K]

By Jacobi's theorem" on minors of the adjugate,
me find

and

x'=cof IT, , /detT ( l. 12a)

Using Cramer's rule, we find from Eq. (7. 10), We now may proceed to factorize the matrix 30($).
Note that

sll(y3)/s21(y3) y3+

XN=Cof IT1 ZN 1I / de&tT

and from (7. 11), we have

( l. 12b) and

sl, (y4)/2. 1(y4) = -y401,
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the ref ore,

11(r3)/ 21(r3} 11(r4)/ 21(y4} .
Let

(1 -y3$ ') '

~(t) =

X (&) = [(I-y $ ')(1-r r')(I -r & ')(I-y & ')]'".
From Eqs. (V. 3) and (5. 31}, we have

(V. 23)

1 —/3'
R-' = (1+y,y-, ')-'~ (V. 15)

Hence, r($} admits a left factorization

~(&) = &,($) ~.(&), (7. 24a.)

One finds

"11(rl) 1 -r4ri rl" -y3~
(y4(d),

3(21(rl) 1 -rlri yl'+ r4" (V. 16a)
(7.24b)

and

1'21(y2) 1 r3r2 r2» -y4& -1(r4~)
~»(r2) 1 -r4r2 y2 &+r3~

(V. 16b)

(0 3} O 3(
~ (&)=i . 0)&,(& ') (V. 24c)

and it can be shown that

~11(r1}/~21(r1) 11(y2}/"21(r2)

Let us denote

(V. 17)

We can now use the method of Ref. 8 to obtain
the asymptotic expansion of x~, x~, yo, and y~ for
large X. %e find

&o = —&» = [&,'(0)]21

and

W12 11(yl)/ 21(r1)

W21 "21(r2)/~11(r?),

(7.16c)

(7. 16d}
where

-([y.'(0)]21A„+[&.'(0}122A21] (V. 25)

1 —W'~2

W ' = (1 —W12 W2 1)
21

According to Sec. IV, case (a), the matrix

(V. 18)

with

(223)

(31 () 'll " '-I (3})d31,
l 2f| =&

(7. 26)

is a 2 && 2 matrix whose elements are quadratic
polynomials in $ and det V($) & 0 for I $1 & l.

Consequently, the matrix r($} admits a right
facto rim ation

0 1

M(& ') = ~ '(&) = [y (&)] ' » y (& ');

z» yo [ (0)]2 ~11+[» ( )]22E21

where

(7. 27)

(V. 28)

r($) = r ($)y,($),

where

and

(V. 20)

(V. 2la)

Z [I/(23M')]$(4( 1$ I (t' )(f$

From Eq. (V. 20}, we have

~. (o) = ~ (0)&-(0).

(7.29)

(V. 30a)

with

1 -y~g-' 0
X1 -y, $

(7.21b)

Using Eqs. (V. 21b) and (7. 30), one can show

b'. '(0)]21=-(- zl)(1+r,r, ') '

x (1 —W12 W21) '(r lr2'y3r4')'"

x [(1+yi y2)(l —W12W21)

+(1 -rlr2')(r4~W21 —W12/r4~)] = o

X.(() = zl(I —z2}(i —z,"}
x [(& —r, ')(& —r ')(& - y, ')(& —r,')]'" (7. 22)

and

[r,'(0)]22 = zl(ylr2 y3r, ')

(V. 30b)
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"(I+rsy4') '(I —&»~'21) '

x [(I -r, 'ray, 'y4) + (ra'r4 -r lr2 )W12W21

~(I y,ya-')(y4(dwzl+ w»/y4(o)]. (v. 3oc)

Therefore, Eqs. (7.25) and (7. 28) become

(7. 3 la)

1)11(rl}~&13(rz)

v»(») &»(rz)
'

Therefore,

(I-r & ') '
Z(&) = ~(&)ftz'

with
(V. 37a,)

X](= -yo-—[&+ (0)]22521. (V. 31b)

x- (x„')' + o(y,'"/x') . (7.32)

It is evident from Sec. VI, that A;, (which is a
double integral) is of the order y, '"/N; whereas Z;&
(which is a, single integral) is of the order y", /vP.
Hence X, given by Eq. (7. 13), can be written

v/y,
Ra' --(1 +r lyz )

v 1
(7.37b)

is a matrix function whose determinant detZ($) 44 0
for l (t & 1 and whose elements are quadratic poly-
nomials in (.

Combining Eqs. (7. 14) and (7. 36), we get

It is also clear, from Sec. VI, that

D.(Y]-D(Y][I —o(r',"/~)],
where

D(r) =limDz[Y].

Consequently, Eq. (7. 13) becomes

(V. 33)

(V. 34)
(I -ylt ) 0

«zW), ' ',
, )(). ().38)

Similar to Eq. (5.46), we find

D„[a]- D(~](z'„)2+—O(y41" /Xz) . (7. 35)

The spin-correlation function for large N at
T & T, can now be written

&ooooos&-(-D[Y])'~ Izv I

-(-D( ])"(..'(0}]..E., (7.36)

11(y1} 11(y1}
v,z(y, ) s,z(y, ) v

and

We now calculate the block Toeplitz determinant
generated by r($), in the»mit X-~.

Because

D[Y] = »m D„[Y]
g~oo

(zll(r2} 22(yi) 21(r2)z12(yl}l

[Zll(r4)Zza(ys) —Zla(y4)Za l(ys)]/

x,(y,)x.(r2)x (Y3)x.(y4) .

One can easily show that

Zlz(rl) Zal(rz)
Z22(ri} Zil(r2}

and also show

Zaz(ys) Z»(y4)
Zal(ys} Zll(y4}

(v. 39}

(7.40)

~11(ra) 11(yz )

v»(ya) slz(ya)

we find

(rl +r4 )(rz +rs ) (I gf gf ) (7 41)(- zl)(yl(d +y4v)(ya(d +ysv)

From Eq. (7. 38), we find

Zll(r2)Z22(yl)Z11(r4}Z22(r3} ((rlraysy4} 511(yl)511(rz)511(ys}hil(y4)

(rzv+ys~)(rlv+r4(o)(ya(o+ysv)(rl(o+r4v)v'(d'l/[rar, '(1-rlr ')(1-ysr ')(1-r r ')(1-r4rl')]' (7. 42)

Substituting Eqs. (7.40), (7. 41), and (7, 42) into ('I. 39), we get

(» +y4 )(rzv+ra~)(I - &12Iyzl)

~~ ~~ ~

~x,(y, ) z, (l —y, y, ')(1- y,y, ')(1 —ysy, ')(1 —y4y, ')v(dray, ' '

When zz- zz, we find from Eqs. (7.30c) and (V. 43) that

(-D[Y])'"((Y,'(0}]22=((I-rzl)(I -y.')1'"(1-yly. )'".

(7.43}

(V. 44)

We shall now calculate Zal in Eq. (7. 36), using the same method we have used in Sec. VI. We deform
the contour of integration to be the lines above and below the cuts inside the unit circle, and neglect the
integration of $ from yz to y, . Now Eq. (V. 29) becomes
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+ &" 'L (~ '}21.

It is evident from Eqs. (V. 27) and (7.21b), that [i(1-yii))'/ f, ($ 1)z,] is finite in the interval $4(y4, y, ). We
can expand this function about $ =y&, so that

I (t ")„=— (1 -y, '~) "[A..A, (» -y, ) ~ ~ ~ ].
Substituting into Eq. (7. 45), we obtain,

yN /(41Ai)1/2 +yNXQ(+2/2)

where

1 -y4(d S',-&
(1-yi)' (1-yiyz) (1+yzy4') (1 —WiaW21)

~ ((I -y') [I —(V44o) 'W12]Mil(y1) + (I -r ir2)[1 - y4o1 Wzi]M12(yi)]

with

(7.46)

(V. 47)

(7.48)

and

/Yf»(r, ) =
1 g '(ri) g(ri')[yzr4'+(y4oi) '1+a' '(ri}g '(Vi')(r4oi) 'Wiz[1 —(r4o1) '1

+g(v, )g (r, ') [ray 4' —(y4o1) '](v4oi) Wai+a(r, ) g '(ri') W» W»[yar4'+ (r4oi) ']]

M12(Y1) = lg '(vi)R'(yi )(r4~) W»[yzy4 + (r4~) '1+g '(ri)g '(vi')(r4~) 'W 12[1 —(y44o) ']
+a (V,)g (yi')[y', r4' —(V4oi) ']+a(y, )g '(r, ')(r4oi) 'W»[rzy, '+ (r4oi) ']) .

(V. 49a)

(V. 49b)

The function g($} in Eq. (7.49) is given by

g(&) = [(I-y4&)/(I -vz&)]'~ (7. 50)

In Eqs. (7.48} a.nd (7.49), W,z 2.nd Wz, is given by
Eq. (7. 16); while oi and 1/ are given by Eqs. (5. 16)-
(5. 19).

Substituting Eq. (7.47) into (V. 36), we have

( )
(-D[r])' [y,'(0)] A y", 0 y",

00 0JIt' (aX)'& pP/2

(7. 51}
for T&T,. When Ez-Ea'(az-zz'), we find

Mii(yi} ™»(»)= 4

and

coefficients f, vanish for .j &n, and f „&0. If f($)
admit a factorization, f($) has exactly n roots in-
side the unit circle.

Proof If f($) ad.mits a factorization

f(k) =f,(&)f-(&), (A1)

(A2)

and

(A3)

where f,(t') (f (g)) is an analytic and invertible func-
tion for I ) I & 1 ( I $1 &1), then we can write,

Ao--(I —ri) ' (1-y,y, ) ' '(1-y, 'y, ) ' ' .
Combining with Eq. (V. 44}, we get

(oooooN & [1-yal'"[1-yi] '"
~ [1 v, 'y. ] "y",/(»)-"

(7. 52) Furthermore,

f,(])~ 0 for
l ] l

& I

and

f (t)~0 for lt'I » ~

(A4)

(A5)

for E& =F. &. This is exactly the result of %u.
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APPEN DIX

Here we shall prove the following lemma.
I.emma I.et f(e'2) be a f.unction whose Fourier

In particular, f,(0) wo, therefore (f+)2440.
Since f, =—0 for j &n, we ca. n write

f(e")= Zf;e*".
j=-n

Hence Eq. (Al) becomes

(A6)

Qf t'= E(f )1&'Q (f ) & (AV)

As the coefficients of $ must vanish for k &n on
the right-hand side also, we have
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,
—= 0 for k —n+1

g&a
(A8)

f. .. , =0 for M» &~n+1,

Consider (f.), (L = n+ 1, n+ 2, .. . , M) as solutions
of the following system of homogeneous linear
equations:

this homogeneous equations are the trivia. l solution;
i.e. , (f }„„=(f}„,z= ~ ~ ~ =(f )„=0. This is true
for any integer M~ n+1. Therefore, we conclude
that the only solution of the homogeneous equation
(A8) is the trivial solution (f )„., = 0 (1~ l & ~).

Consequently,

f-(&) =Z(f-)~& '

where I is any integer greater than n.
To clarify, let us rewrite Eq. (A9)

(f.)0(f-)..g+(f.)g(f-)..2+. +(f,)s. g(f )s= o,

(f,)o(f-)..2+ "+(f,)~.-a(f-)m=0,

Now we rewrite Eq. (AV)

Zf)&'=(f.)op(f ) &

+(f,)i&P(f) & + ~

(f.)o(f-4 = o
(A10)

Since the coefficients of Eq. (A10} form a tri-
angular matrix whose diagonal elements are all
equal to (f,)0, because (f,)o4 0, the only solution to

Since f „&0, we must have (f )„40. This implies
that f ($) has n roots. Because f ($) o 0 for I $ I & 1,
these n roots must lie inside the unit circle.
Therefore f($) =f,($)f (() must have n roots inside
the circle. Since f,($) e 0 for I $ I & 1, f($) has
exactly n roots inside the unit circle.
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