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We derive arid discuss an extension of the Callen-Symanzik equation appropriate to the study of
critical phenomena. By applying our result to an Ising Hamiltonian with both fourth- and sixth-power
interactions {pseudo-spin-l), we find that its correlation exponent q is the same as the correlation
exponent of a system with only fourth-power interaction {spin-1/2). We also show how our result may
be used to discuss the correlation functions of spin-1/2 systems above the critical point.

I. INTRODUCTION

One of the most interesting results of Wilson's
investigations of critical phenomena has been the
construction of a theoretical framework within
which one can understand how different Hamilto-
nians give rise to the same critical behavior. ~

The insightfulness and novelty of his use of the
language of field theory compel one to ask if other
field-theoretic formalisms can be shown, even if
only with the help of hindsight, to yield comparable
results. Such demonstrations, in their turn, may
stimulate a clarification and extension of both the
old and new approaches.

Since the work of Brezin, LeGuillou, and Zinn-
Justin it has been known that the line of thought
embodied in the Callen-Symanzik (CS) equation and

its attendant approximations is capable of deriving
the same results for the spin-& Ising model as
Wilson's procedure of integrating over successive
degrees of freedom as implemented by the Wilson-
Fisher e expansion. '3 In fact, a number of authors
have discussed the application of the CS equation
to the spin-& Ising problem. Nonetheless, a sim-
ple derivation, within the context of statistical
mechanics, of this equation has not appeared.
Nor has a detailed application of it to higher-spin
systems been published.

In Sec. II of this paper we discuss the field-
theoretic formulation of higher-spin Ising models
and find in particular that a precise formulation
of the spin-1 problem involves interactions of
up to the fourteenth power in the spin. Nonetheless,
later we take seriously the possibility that a model
we dub pseudo-spin-1, which involves only inter-
actions in the fourth and sixth power of the spin,
may serve as a qualitative guide to spin-1 systems.
In Sec. ID and IV we give a simple derivation of a
generalization of the CS equation for a Hamiltonian
containing interaction terms of a finite but arbi-
trary degree in the spins. While our equation re-
duces to the CS equation at the critical point, it is
more general than the CS equation because it ex-
plicitly involves the ratio of the effective lattice

spacing to the correlation length. In Sec. V we
illustrate the use of our equation at the critical
point by discussing the critical behavior of the
pseudo-spin-1 model. We find that, to the order
of approximation we work, the pseudo-spin-1 model
has the same critical behavior as the spin- —, Ising
model. In Sec. VI, we illustrate the use of our
equation by finding a general form for the Green's
functions of the spin-z Ising problem not at, but
above the crtical point. Finally, we summarize
our results.

II. HIGHER SPIN, MOTIVATION AND NOTATION

Let us recall our reasons for studying 0" models
and at the same time establish some of our nota-
tion. Wilson begins his ingenious studies of the
spin-& Ising model with nearest-neighbor interac-
tions by approximating it with a cutoff bare 0'
field theory. ~ There are two crucial steps in
formulating the Ising problem in this manner. The
first involves the recognition that because the par-
tition function Z, may be written thus:

&exp(- PH, [s])

and because

= lim ~ exp[--'. b'(x' —4)'],
V 23'

one may write

b
Z, = lim ds(an)

b~~ n Y 271'

x exp(- PH, [s]——,'b' Z {[s(an)]s—-',)'), (2)

where u is the lattice spacing, n is a d-tuple of
integers which specify the lattice site in d dimen-
sions, and s(an) is the dimensionless spin variable.
The second step involves the transition to momen-
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where

s(an) = dq e'"o(q), (4a)

dq=(2e) 'd'qe(c~-q~),

5 q~ = 2m "5"
q&

(4b)

(4c)

ff [o]= ——
~ dq (q'+ i ~0)

I o(q)
I

'
4

—(4!) '&, gdq&& gq&IQo(q;), (4d)
j~l I~i ) f~i

and p, o and'F4 depend on 0 .
It is obvious that the a4 term arose because Wil-

son considered spin-&. If we wish to consider
higher spins, to be specific let us say spin-l, we
must find a polynomial P such that

5(P(x)) =5(x —1}+5(x+1)+&(x).
A short computation shows that P must be at least
of seventh degree. An example, which is not

unique, of a suitable polynomial is

P(x) = —,
' x(x ' —1) [-,'(x ' —2)'+ —',] .

By the method outlined, this I' will lead to the
study of a Hamiltonian with interaction terms of
fourteenth degree and lower. Naturally, one would

hope that because

I)(-,'x(x'-1)) = ~(x-1)+~(x+1)+2~(x) (7)

the qualitative aspects of the spin-1 problem will
emerge from a study of a Hamiltonian with inter-
action terms of sixth and fourth degree. %e call
this the pseudo-spin-1 problem. In any case, one
sees that to formulate a problem with spin-1 or
more, one must begin by considering Hamiltonians
with many interaction terms.

There is another reason for studying such Ham-
iltonians. Experiment shows, and Wilson's theory
suggests, that a wide class of physical systems
exhibit the same behavior near criticality. 5 The
interactions which differentiate two Hamiltonians
with the same critical behavior are usually said
to be "irrelevant. "6 Since one would like to under-
stand this "irrelevance" from as many points of
view as possible, we consider all such interactions
in the same formalism.

For these reasons we begin by considering Ham-

turn space, Eg. (4a), the replacement of the hyper-
cubic Brillouin zone of edge length 2w by a smaller
spherical one of radius c, and the disregard of
some temperature-independent factors. The re-
sult of this manipulation is that the partition func-
tion is represented by the functional integral:

z, =lim I &o(q) exp(ff[o]),
yw CO

iltonians of the form

birr]= —
&

. &q(s' ~ u )~r'r, (e)~' g t !) 'e.

x dg'g5 gg
0' gg

III. DIMENSIONLESS ANALYSES

In order to carry out our program, we first
establish a kind of dimensional analysis of dimen-
sionless quantities or, with tongue in cheek, di-
mensionless analysis. This is important to us be-
cause although we deal with dimensionless quanti-
ties these may either involve the comparison of a
length with the lattice spacing or with the correla-
tion length. Our dimensionless analysis will re-
strict the dependence of G~' on the parameters
which appear in the Hamiltonian, and thus it re-
stricts the dependences of the correlation length
and the so-called "dimensionless" renormalized
coupling constants on these parameters also.
These restrictions are embodied in the following
lemma and some related results:

+(m)(
I

a c2 +) es&%.d)~
G A

&

x ( 'qI '"v'o, '" ', &(~)), (g)

cg (y) el &n, d)&ca

e(n, d) -=n+d ——,
' nd,

u(m, d) =—I—d+ —', md .

(10)

(11)

(12)

In order to prove this we consider the generating
functional, C, of the cumulant averages in momen-
tum space of the products of spins~:

Let us denote the connected multipoint Green's
functions obtained from such a theory by 6' '(ql p, o,
c~, e}, where g denotes its m-1 independent mo-
mentum arguments and Rl is the set of coupling con-
stants whose members are U„. Since we will be
concerned with the comparison of the behavior of
Green's functions at large and small values of
their momentum arguments, we will later regard
G' as the product of a momentum-independent
factor Ze

~ and a momentum-dependent one, G~+
'.

That is to say, symbolicaQy, G + ' = Z3 G~ '.
Obviously with this definition of G„' ' we have
&~'(e"q)i&~'(q) = G„' '(e"q}/G„' '(q); thus while
G~~' has the same momentum dependence as G+'
it is normalized differently; that is to say, it is re-
normalized. It will emerge, in Sec. IV, that when
G~+' is parametrized in terms of the correlation
length, p, a, and other quasithermodynamic vari-
ables, its dependence on them and on momentum is
constrained to satisfy a certain partial differential
equation.
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C[Z(q); p, &'[, e', e ]
=-» nc(q exp ao + dqE, (q vq (13)

G&"'(q
~

I/, '„e'„%)
' ' G' '( 'q~ "It,„,'u(&)) . (9)

Since G~) is a scalar, it can depend on its argu-
ments q only through the variables

s =— q]+ qq

Q&/=-(q,. q, )s ' . (Ieb)

Hence the infinitesimal form of Eq. (9) is Eq. (17):

O= 'L) Pl d +28 —+2C +2/,
B p B p 8

s 88 BC Bp.o

Let us now introduce the dimensionless correla-
tion length p, in the standard manner:

I&'-=--', —lnG"'(s =0)
ds

(18}

It is easy to see, by referring to Eq. (9), that

P 2 ~) -2A 2( Rx 2 Rxc2 ~(I )) (19a)

or

8 1 B 2
p, = p, o 2+c q + — e(n, d)&&, ~Bpo B 2 s

(19b)
We also introduce the quantity &~ =- g~G '(s = 0),
which is the susceptibility divided by the square of
the dimensionless correlation length, and note that

Z, (p', c', 4) =Z, ( '" '„"', W(X)) (20a)

By making the linear functional transformation

t*[-e p[-(id ll&]jd*5[e'y-*) (x),

and noting that linearity implies that the Zacobian,
J; of this transformation is independent of 0, we
can show that

C[E(q); I&so, cs, 'u]

G[
- &d/2+1)&E(q) . Rx+8 21c2 el&(/ )] (14)

If we now apply Ii,.&[6j6E(q, )] to both sides of Eq.
(14) and evaluate the result at E = 0, we learn that

=8 ""'"a Q q) G' '(q[e"g'„e'"c'%[&))
)eg

(15)

I'& '(s~ p,'„c',4)
c& As&)&1 &~)(cRxs

~

sRL 2 sRxc2 ~ (/ )) (21)

Hence if we define the so-called dimensionless re-
normalized coupling constants g„byEq. (22), then
Eqs. (23) follow:

-s (n, dl)I (n)( O) (22)

g„(/&'„e',g) =g„(e'"p, o~, e"e',e (&)), (23a)

//o s 2+c s z +2 ~ e(~~d}'&&/ ~ g, ~

Bpo Bc 2
t', 23b)

It should be noted that our dimensionless analy-
sis has lead to the natural appearance of a differ-
ent epsilon, e(n, d) =-n+d —~ nd, for each interac-
tion term. Each e(n, d) results from the compari-
son of the scaling behavior of the Gaussian term
(q + I/O) l o(q) i', to that of the interaction term,
II", , o(q, ), in the Hamiltonian.

IV. DERIUATION AND EXTENSION OF CALLEN-SYMANZlK.

EQUATION

Let us now define the renormalized Green's
functions G„' ':

(m ) g- m / p, g )
R s

%e note that if we regard G„' ' as a function of p. ,
c, and g rather than as a function of p,»c, and

~, the work of the last section implies that

G&~'(s~ p2 c~ )=en& ~"'"G&~'(s"sjc~'p~, c~'c2 g) .
However, this relation does not exhaust the phys-
ics which may be gleaned by rewriting the in-
finitesimal forms of the homogeneity statements of
the last section in terms of renormalized vari-
ables.

%'e begin by substituting Zz Gz' ' for C' ' in
Eq. (17) and make use of Eq. (20b) to eliminate
explicit reference to cutoff c when differentiating
Z, . The result is Eq. (25):

B 2 B B
Q(m, d)+2s —+ 2c 2+ e(n, d)~„Bs Be „"Wt„

p B (fft) Ist /p g B ( )+ 290 p l~s &z = ~s 2&o
Bp, o Bpn

(26)
Equations (19b} and (23b} imply that the first three

ol

p 8 p 82+c s+—Q a.(n, d)W„g,.
B B

~
2 ~

~
j ~

~

~
3 ~2 ~s B&n

(20b)
If we Legendre-transform C with respect to

(g(q)), we arrive at the generating functional for
the generalized stiffness matrices or vertex func-
tions, I' '. An argument similar to that sketched
in the second paragraph of this section shows that
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terms in the square brackets on the left-hand side
of Eq. (25) may be replaced by

» eg.—2&o~ » ~ »
— 2Wo~ »~o ~o gn

We may then rewrite Eq. (25) and obtain Eq. (26):
8 ~ » Bg Qp,

~s &o Wo gn

+——p, lnZ
m

2 gp» 3 g~» R

» -1
Z- /» -» ~ ~ ~() (26a)

~&o ~Wo

If the coefficient of 8/8g„is regarded as a function
of g, p,

&
and e, then Eqs. (19b) and (23b) imply

that it can only depend on g and A =- (i&/c) . We
denote it by —', P„(g,A ). It also follows that the co-
efficient of m/2 depends only on g and A 2. We
denote it by 2H(g, A ). Finally, we note that since

G&!«)(
~

2 2 g)
s&«! !&)G&&«)(s/~8

~

1 A2

we define s = s/)), and express Eq. (26a) more
compactly thus:

c
2s —+ a(m, d) -—H(g, A ') -Q p„(g,A ')

G~mi 2Z- /» -» ~W
+ e~-» =

3 " ep» e p.
»

(26b)
Several comments are in order. Equation (26b)

relates the dependence of GR' ' on s to its depen-
dence on the renormalized coupling constants g„
and to its dependence on the ratio ~ ~ of the effec-
tive lattice spacing a/c to the correlation length
ap, '. An equation similar to ours has been derived
for quantum field theory by Callen and Symanzik.
However, in their work A = 0 and the operator
2A 28/8A 2 does not appear, because the analog
of c/a is the ultraviolet cutoff which is put equal
to infinity. In our work, A ~ = 0 at the critical
point because the correlation length p, ~a is infinite
there. The folklore of quantum field theory says
that when s is large and A =0, the right-hand side
of Eq. (26b) can be neglected. " We conjecture

that there is a region near the critical point, char-
acterized by 1«s«A», where it may be dropped.
Our working hypothesis then is

2P» g+) 0
8A

W'e see that if we are at the critical point, ~ ~ =0
and g=g such that P„(g„,A =0) =0, then G)'&

' is
pxoportionaj to s &~»&+~ "& ~~»&"&~

-&&a-s &s 0&)
Gg)( ) @&3)( )

one can identify H(g, 0) with the correlation ex-
ponent q. This result is not astonishing if one re-
calls that Z3 is the susceptibility divided by the
square of dimensionless correlation length.

Obviously methods for calculating Ig„and H are
greatly desired. To date, the only method known
is that of renormalized perturbation theory. We
shall see, in the next section, that numerically
satisfactory results can be obtained in this way.

V. PSEUDO-SPIN-1

In Sec. II we saw that different values of spin
lead to different interactions when the Ising prob-
lem is formulated as a field theory. In order to
explore this fact, using the formalism of the last
section, we have performed a calculation to sec-
ond order in the renormalized coupling constants
of the zeroes of the P functions and g for the pseudo-
spin-1 problem. The results of such a calculation
have a double interest. They may serve as a guide
to the critical behavior of spin-1 systems. They
may be compared to Wilson's treatment of spin-&
where a o6 arises but is deemed irrelevant. In
the section, we present the essence of the calcula-
tion and our results.

The calculation is straightforward but tedious. '
One begins by writing the pseudo-spin-1 Hamilto-
nian H[v] in terms of the renormalized spine
os(q) -=Zs'& o(q) and the renormalized coupling
constants:

4

&4!!'«.«'"'". ] [«, ~ g ~, Q..&~,!
, r. , jrf jrf

6 6
—(6t) 'g, p, '"'"'8, l] [dq, 8 q, ]„[„(q,) (26)

the constants y4 and p6 have been introduced to re-
late the renormalized coupling constant to the un-

renormalized ones according to '44 =g4p. ' ' '"'84Z~
and'46 =g6p. '@'"'b6Z3 . The constants 54, 36, and
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Z '=I - [-', E,'g', (I/5()E,'g', ].O(2),

s4=( I+2E«()«)+(() ESE(g4 g()+4 EaE(g6

,'E,g,—)+ O(2),

&6 = I + (-E,g8+ y E,g, ) + O(2),

(29b)

(29c)

Z3 are fixed to each order of perturbation theory
by the requirements I'g'(s =0) = ((2, (d/ds)I"g'(s = 0)

I (4)(s {)) g p& (41&) and I (6)(s 0) g p& (6II!)

me f dthat

w"er Ei ~ Ea ~ E3 ~ E3, and E5 are Feynman in-
tegrals (see Appendix A) which depend on A2. The
product E,gs appears in some of the terms for 84
because, in some graphs, the 0' interaction sim-
ulates the a interaction since two of its legs com-
bine to form a closed loop.

The P functions whose definitions involved unre-
normalized variables can be expressed in terms of
renormalized variables. For pseudo-spin- 1, we
have shown (see Appendix B) that p4 and p6 are given
by the following formula:

(Xy+ gyXgy)[e(u, , d) Xg+ Xg] —gy Xg, )) [e(f), d) X(, +Xb]

—Cg, g, + O(3)]

P, =[- e6(, )d,g+(3,'g+r ,g,g+O&()],

(30a}

where the coefficients of the coupling constant are
functions of ~ ~. The points in the g~-gs plane to
which the roots of P4=P6=0 tend when 4&d~3 and

tends to zero are g, =o, g, =o, and g, =(—,'E, ) ',
g, = 0. The point g, =g, = 0 is an artifact of any
perturbative ea.lculation. It is analogous to the
Gaussian fixed point in %wilson's approach in that
it leads to mean field (free field theory) results
for the exponents. ' The pointg, =(-,'E~) ', g6=0 is
much more interesting as we shall see.

The function H(g4, g6, A ) for pseudo-spin-1 is
(see Appendix B)

H ——Zq(ZS + p4 Z3 (+ p6 Z~ 6) . (31)

%'hen H is expanded to second order in the coupling
constants, A ' is put equal to zero, and the result
is evaluated at g, = (-,'E,) ', g, =0, we find that

H(g, =(-,'E,) ', g, =o, A '=o)

=)) = [3e(4, d) E,'](-', E,) '. (32)

This is the same result, to second order, which
Brezin et al. found for the spin--,' Ising problem.
Moreover, when this result is expanded in powers
of c(4, d) it agrees with the results of the %'ilson-
Fisher c-expansion technique.

One sees that, to the order me have worked, the
large-a behavior of the Green's functions at the
critical point of the pseudo-spin-1 and the spin-&
problems are the same and that, in this sense,
the cr interaction is irrelevant.

mhere a =4, 5 =6, or a =6, b =4 and X,-=b, Z '~2,

X,= pSX, /, 8 p, X„,~=—SX, /Sg~ By. expanding P(
and ps in a Maclaurin series in g4 and g6 and then
substituting the results (see Appendix B) of calcu-
lation for p4, p6, and Z~ in it, me find

P, = [- e(4, d)g, —E,g, + -', e(4, d)E, g,' —Bgs

Natura1. ly one mould like to extend this calcula-
tion to higher orders and to the specific-heat ex-
ponent n. Nonetheless, me expect that spin--,
critical behavior will always be a possibility for
a pseudo- spin-1 system because we do not believe
higher-order calculations mill produce a term in

P6 which is not proportional to some positive power
of g6. Thus the condition g6 = 0 will always imply
the P6=0 and me expect that perturbative calcula-
tions of p4, q, and n for pseudo-spin-1 with ps=0
will reduce to the appropriate calculations for
spin--, . The reason for doing higher-order cal-
culations is one's desire to know if there are any
roots of P4 = P6 = 0 for which g8 4 0, that is to say
if spin- —, behavior is the only possible critical be-
havior of pseudo-spin-1.

VI. AN APPROACH TO CORRECTIONS TO SCALiNG

As we have said, it is plausible to assume that
the solutions of Eq. (27) will be relevant to the
study of critical phenomena as long as 1 «s «~,
that is to say, not only at the critical point, but at
a small though .finite distance .from it. If this is
so, the solutions of Eq. (2V) will provide a frame-
work for discussing corrections to scaling. In
order to illustrate both the promise and difficulty
of this approach, me consider the spin-& Ising
model.

Since there is only one renormalized coupling
constant, that of the g term, our equation is

In order to find its solution, me must first solve
the simultaneous ordinary differential equations,
Eqs. (34), for its characteristics":

—=sdy
ds
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cfZ
( (~~X) &

9 = —,
' s '[-,' mH(Z, y, s,' s) —X) (m, d)] cJ . (35b)

8 =-' s ' [-,'mH(g, y) —~(m, d)] g

Since the solution of Eq. (34a) is y =yoso1s, the
remaining equations assume the following form:

1p(g 1
)s

If C(s, so, Joso, go) denotes the solution of Eq.
(35a) which satisfies the initial condition C(so, so,
yoso', go) =A', , then the solution of Eq. (35b) is

dx
~ —~o exp

& ~

——H(C(x), yo so(~) —D((((, d)
XSo I

It follows that the general solution of Eq. {33)is

G())))(8
~

p2 2 g) = p x)()oi)()(s/8o) +()))'t() t 2 E( )m((8 /s)A 2, K(s ' Q Bs (
))

xexp —
I

—H C x~,so, A so (d(s~ so, il s,g, xA s
X

where (d is go in terms of s, so, A, and g; that
is to say, C(s, so, A s, (t)(s, so, A s,g)) =g is an

identity. To see that this result for the behavior
of the Green's functions near the critical point

goes over to the one we obtained at the critical
point, one recalls G' '(s)/G™(so)=Gs( '(s)/
G~ '(so), sets A =0, and notes that C(s) =const
=g is a solution of Eq. (35b) if P(g„,0) = 0 and

replaces exp[4 m f; dx/x] by (s/so)
Obviously, the explicit solution of Eq. (35a) is

as desired as it is difficult. Had we considered
the many-coupling-constant problem, we would

have been faced with many such coupled nonlinear
ordinary differential equations. At present we
have nothing to say about the solutions or approxi-
mate solutions to them. However, we believe
that Eqs. (33) and (36) may constitute a formalism
alternate to Negner's within which one may dis-
cuss corrections to sealing. 1'

Vtl. SUMMARY

Let us summarize. By finding the dependence
of the dimensionless correlation length, renor-
malized coupling constants, and susceptibility on
the parameters which appear in the effective
Hamiltonian, we established a partial differential
equation which relates the dependence of the re-
normalized Green's functions on their momentum
arguments to their dependence on their quasi-
thermodynamic arguments, the correlation length,
and the values of the generalized stiffness ma-
trices. The partial differential equation is more
g neral than the fallen-Symanzik equation to which
it is analogous because it involves the ratio A '
of the effective lattice spacing to the correlation
length. We conjectured by analogy to the case
in quantum field theory that near the critical
point, and for fluctuations whose wavelength was
much larger than the effective lattice, spacing the
right-hand side of our equation could be neglected.

The result was a linear first-order partial differ-
entia. l equation whose study can be reduced to the
study of the ordinary differential equations which
determine its characteristics. Our application of
this result to the spin-& Ising problem resulted in
a general form for its Green's functions which may
in the future be used to discuss corrections to
scaling. %'e also applied our result to study the
critical behavior of pseudo-spin-1 system."- and
found that, to the order of approximation we em-
ploy, the o' interaction which is necessary to the
formulation of the problem is irrelevant to its
critica. l behavior.
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The Feynman integrals referred to in Sec. V
are defined as follows:

p, =(2~)-' d "ze(~'-e') z'+].) ',
r, -=(2m}" e"See(A'-X2) Z2 1) '

E, =-(2m) '" d'Z, O' Z, +Z2+Z, )
jc1

I [e(A'-K'. }(E'+I} '
)a, .

2
Fl=-

d g t2 )" ] [d'x; o(A' —Ec )tlr ~ ))')', ',.

x e(a'- (q-ff; -Z,}')[(q—fc, -Z, )'+I] '
Q2~0

t2 )" I[d'sc,. ] [oiA' v)trr~ ))-')',. ',. —
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xe(&' - (q E-, E, EC, K,)')

x [(q-Z, -Z, -X, -X,)'+i]'
~ Q ~0

~ga &o ~+I
8p. 8g, 8p,

the P functions may be written as an Eq. (38)

APPENDCX B

In this appendix we derive the expressions for
the P and H functions that were given in Sec. IV.
Recall that P, was defined as

Pft=2 P g 3

where the partial derivatives are to be evaluated
at constant ~ and c. Since we desire P, as a func-
tion of p, , g, and t.", extensive use of the chain
rule is called for. To arrive at our result, one
notes that the definition of J8, implies that P,

sgJ, s p where the partial derivative is evaluated
at constant ~ and f.". Next one recalls that since

where the numerator is evaluated at constant g„
'4, and c while the denominator is evaluated at
constant p, %t, and c. Now 'u, is known (from the
perturbative calculation of Sec. V) as a function
of p, g„g„andc, 'u, =f,(p, g4, g, e, c) so we must
use the chain rule to reexpress Eq. (38) in terms
of f,. This leads to the result

~aV

f2~.~ f~f..o-
(39}

fa, mfa, a fa, afa, s

When it is recalled that f, =g, p' "' 'X, , one sees
that Eq. (39) implies Eq. (39):

(x, g,x, , ,)[a[a, d)x. x]-g,x [a(b d[x +x[)
g,g~X, ~X~, —(X,+g,X, ,}(X~+g~X[,[)

(39)

The expression H function is now easily derived.
Its definition is

-8
g Bg4 8H=- p, —lnZ, '+ p,

4 lnZ, '
9p, ap, 8g4

H=2p, ',-', lns, (4o) 9gg 9
+ p, lnZS

eq eg,

where, once again, the partial derivatives are to
be evaluated at constant ~ and e. The definition
is equivalent to H = —p(8/9 p)ln Z~' at constant 'U

and e, but this is the same as H ——Zs(Z[[ + p4 Zs ~+ p[[ ZB ~) . (3l)

when is H regarded as a function of g4, gs, p. , and

e. Hence we obtain
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