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Critical fluctuations in kinetic Ising models are interpreted in terms of cluster reactions. The basic
assumption, that clusters with l spins grow at a rate ac l", is tested by Monte Carlo computations in

the single-spin-flip case. The dynamic susceptibilities associated with order parameter and energy are
then calculated also for nonxero magnetic field, and are shown to fulfill dynamic scaling. The exponent

(2 —r)PS of the relaxation times can be different from the susceptibility exponent y.

I. INTRODUCTION II. CLUSTER-REACTION MODEL

The critical dynamics of kinetic Ising models'
has recently received great attention: (i) In con-
trast to models where the dynamics is governed by
critical propagating modes, the dynamic critical
exponents cannot in general be expressed only by
static ones by use of dynamic scaling. ' In par-
ticular, dynamic scaling does not determine 4„„,
the exponent of the order-parameter relation time

Qv&

p„„(t)dt,
0

&g(o)p(t)) —&p&'

(ii) Renormalization-group techniques, ' high-
temperature series, 6 and Monte Carlo studies '

have shown that b„„differs from the susceptibility
exponent y in single-spin-flip (Glauber ) models.
(iii) This result is in cont". ast to mode-mode cou-
pling theories of anisotropic magnets, ' which
predict

The kinetic Ising model is described by a master
equation for the probability distribution I P~(t)& of
the spin

where the operator J.„can be specified explicitly
in terms of spin-flip transition probabilities. De-
noting a group of $ reversed spins linked together
by nearest-neighbor bonds as a "cluster, " one may
describe the state of the system by its cluster con-
figuration. Spin flips then produce cluster reac-
tions (we also count the creation of a single re-
versed spin-a I = 1 cluster —as a cluster reaction).
Discussing the nonequilibrium relaxation"' it was
pointed out that it is most important to derive the
averaged cluster concentrations n, (t). Considering
now the response of the cluster concentration to a
small change 6e of an external parameter e, we
denote by n& the cluster distribution which is in
thermal equilibrium with the applied parameter
e+5e, and n) =pgt . It was shown ' that it is
then reasonable to replace Eq. (4) by

which is also the result of the conventional theory. '
No simple physical interpretation for the result

4„„&yand no detailed satisfactory theory of the
slowing down exists. In the present work we treat
this problem with a cluster reaction madel. " In
Sec. II, we introduce the model, and briefly dis-
cuss the basic approximations involved in it. In
Sec. ID, we derive the dynamic critical properties
of this model. For an explicit calculation of criti-
cal amplitudes we use the Fisher droplet model'
as an example, and we compare these explicit re-
sults to corresponding Monte Carlo calculations.
Section IV then contains our conclusions.

where ) P, (t)& means a distribution of cluster con-
centrations fH, (t)j, and L, is given by

The growth rate D, is given by the probability
a (I, I') that a cluster with I' spine is incorpo-
rated"' into the I cluster,

We expect D, to have asymptotically a power-law
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behavior X„,(~)=P fn, g', (~), (18)

D, = D(f)f", (8)

with D(~) being finite and nonzero.
Approximating Eq. (4) by Eq. (5) one is free to

redefine what is meant precisely by a cluster; thus
we may consider various models for the static
cluster distribution pg, with different meanings of
the "cluster index" E. In the following we consider
a class of models, where g, depends on the mag-
netic field Pg only in the combination Ega

and subsequently one obtains the relaxation times
expanding

y„,((u) = ks Tx,„(1—j&u~, „+—~ ~ ~ ) .
If the critical part of the free energy is given by

n, =y(&, c, ff), (9)
as in the case of the Fisher droplet model, then it
is straightforward to derive also yes(~):

and where the critical part of the magnetization is
given by

&n)
&EE(+)=g s(1/T) gl(~) (2o)

mo= — ln) . (io) Equations (5)-(7) and Eqs. (15) and (16) yield
differential equations for g ~~ and g f

n, = q(~) I-'-'" exp( -5a'"' - I I), (i2)

which we use below as an explicit example, is a
special case of Eq. (11). In Eq. (12), q(~) and I)

are related to critical amplitudes and hence the
static scaling function is uniquely determined [using
Eqs. (9), (10), and (12)), which is of course only
an approximation. Equation (il), on the other
hand, could still be chosen in full accordance with
the exact static critical behavior. Hence, the
shortcomings of Eq. (12) do not apply on Eq. (11),
on which most of our calculations will be based.

We consider now time-dependent changes of field
h or temperature T,

5I (f) = e'"'5f „, (i8)

5T(f) &i&at 57 (14)

and introduce response functions g,"(&o) and gs)(~)

or

n, (f) = n, [1 —5h(t)g g'()d)] (15)

(16)n, (f) = n,(1+[f)57'(t)/r, ]gs) ((u)f .
»om Eqs. (10), (11), (15), and (16) one derives
the dynamic susceptibilities

y,„„(~)=Q ln, g g'((u), (17)

The physical meaning of .Eq. (10) is that the system
can essentially be interpreted in terms of a "non-
interacting cluster gas. " Thus the contribution of
cluster interactions to the free energy (e.g. , due
to excluded volume effects) have to be taken into
account already by a suitable choice of the n,, in
Eq. (9). Equations (9) and (10) are consistent with
static scaling, if we have

n, = q(f)f-'-'"/(ef'"', I I), (ii)
with q(~) finite and nonzero. Obviously, the Fisher
cluster model~2

„, ))) () -
),
""( 0)) I„—,)));( ) - )l )0)j

d

x [In(n, D))] — g' =0 (21)

and

—)z,*( ) -). ,*(0)]+ —)). ,*( ) -K*, )o)II—

x[ln(n, D, )] — g' =0 . (22)l

For ur-0 the solution for g,"[and thus v», from
Eqs. (17) and (19)] is

g", ((u) =g,"(0)+i(u Co+ C," (D„n„) 'df,
0

(D„n„)-' I2 n„df. df,
ty

the expression for g~ being similar. The constants
C0 and C0~ yield irrelevant corrections to the criti-
cal behavior. ' In Glauber models neither energy
E nor magnetization p. are constants of the motion
and C~ =0, C, =0. If i), is a constant of the motion,
C~ 40 and hence 7~ =~, while C, 40 and ass ——~ if
E is a constant of the motion. ' While our treat-
ment allows for all these four types of kinetic Ising
models, here' only the Glauber case will be dis-
cussed, deferring a more detailed discussion in-
cluding the case of nonzero wave vectors to Ref.
14.

Finally, we stress the fact that our basic results
[Eqs. (17), (18) and (21)-(23)] do not make use of
any specific assumption, neither Eq. (8) nor (12),
and hence are far more general than the Fisher
droplet model.
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III. CRITICAL DYNAMICS AND COMPARISON TO MONTE

CARLO CALCULATIONS

Near T, , the important contribution in Eqs. (17),
(18), and (23) comes from large clusters, I -~. It
is easy to show from Eqs. (8), (ll), (21), and (22)
the dynamic scaling behavior

100 150 200

X»(~)=e""'X(&e", ~~ ' ),
with

(24)
ln )~~(tj

O.I 5

a..= a„=(2-r)P8,
and if in addition Eq. (20) is invoked

(28)

0.50

~„=(2-r)P8.
In a naive geometrical interpretation of the drop-

N(l, 1) /ng

~ gw(2, E') f'rn'

2000—
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FIG. 2. ln P»(t} vs time, in units of "Monte Carlo
steps per spin" for a 55 &55 square lattice with periodic
boundary conditions and nearest-neighbor interactions
for some temperatures J/k&T. Error estimates are ind'. —

cated for some points. The dashed curves show our
cluster model treatment, with 5 and qo fitted to the ampli-
tudes of coexistence curve and critical isotherm, respec-
tively.

let model, / is the number of reversed spins in the
cluster. Then the two terms in the exponential in
Eq. (12) represent the contribution of cluster sur-
face and cluster volume to the cluster free energy.
Since one expects the cluster surface to vary in d
dimensions as

d —1
8, ~l'~, oz=

200— one would expect geometrically &r= I/P8 t-o be equal.
to o~, implying,

100—

50

p~ = —,', =',—, and —,
' for d = 2, 3, and 4,

while the correct values are'

o=~, g', and

(28)

(29)

0 l I ( )
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FIG. 1. Growth rate D, of clusters plotted vs number

l of spins, for two values of &, on a sc lattice with 30 F30
x30 spins, nearest-neighbor interactions, and periodic
boundary conditions. The partial growth rates involving

only single-spin. steps [8'(/, 1}]are included and show that
it would be a poor approximation to neglect higher-order
cluster reactions. For the normalizations we did not use
the actual cluster distribution. g), but the Fisher model
pg~, in order to make the effect of the small-) corrections
as small as possible. The data are derived from 10000
Monte Carlo steps per spin. For E &5, smoothing with a
Lorentzian (half-width LQ = 5} was necessary; and the
summation in Eq. (2} was truncated at 3' =5 in order to
avoid "noise" effects due to finite-time averaging (Refs.
14 and 19}.

G 3 4+~~=2, ~, and ~,
while the correct values are '

=2.00+0.05, 1.35+0.05, and 1.

(31)

(32)

Again the geometric prediction becomes worse for
higher d.

In an alternative interpretation of the droplet
model' / is the excess number of reversed spins in
a correlated volume P, „

y ~ ) 1+1/6 (33)

As expected, the geometric predictions are quite
good for d= 2, 3 but worse for higher d.

A similar argument can be suggested for y. Here
one expects to find

yG=1,

since all spins of the cluster may be flipped. From
&» = (2 —rc)/oc and Eqs. (28) and (30) one would

get
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mhich has the surface

) ff+1/6 (34) Oat B

0.1-
~pp la

Geometrically, in this interpretation one would ex-
pect the relations to hold:

~ y (g-j )/d

and

Q) oc P) .

Tp p

0.02—

EE 0.01—

0.005—
EE

Both relations Eqs. (35) and (36) are found to be
correct for d=4, but violated for d &4. Equation
(36) and (33) would yield a„„=y.

Just as the droplet model is unable to fix pre-
cisely the static exponents, it cannot fix precisely
the dynamic exponent r introduced in Eq. (8). But
this approach elucidates the fact that there is no

reason for 6 „and y to be equal. And with D,
given, y„s(u) can be obtained explicitly.

For numerical calculations, gJ and Dg must be
specified. Previous Monte Carlo work"' showed
that the Fisher model is a, reasonable description
of the actual cluster distribution, and that one may
then take

q(I) =go = const for I ~7 . (37)

Here we extend this work to obtain +I, I') and hence

D, . Figure 1 shows some results on a, log-log plot.
The slope shown is derived from the renormaliza-
tion-group result' for 4» via Eq. (26). Figure 1

proves the consistency of our description, and that
again it is reasonable to take

0.05 0.1 0.2 0.5 1.0 2.0

= h/(bE)~'"

FIG. 3. Scaled relaxation times vs scaled field. The
dashed lines indicate the results for h =0, while the
arrows indicate the corresponding; Monte Carlo results.

Figure 3 gives the critical amplitudes as a func-
tion of the magnetic field, calculated from the tri-
ple integral resulting from Eqs. (17), (18), and

(23). The Monte Carlo estimates of Ref. 7 are in-
cluded; again the initial relaxation time was fitted.
%hile the cluster treatment correctly predicts 7.~„
& 7'If, g & 7'g g, slight discrepancies remain, as it oc-
curs already for static amplitudes.

IV. CONCLUSIONS

First we note that Eq. (25) may also be obtained
from a more direct argument with the formal solu-
tion of Eq. (1),

D(f) = Do= const. (38)
~

I' (&)&
= e"'

~
&, (0)& (39)

If Eqs. (37) and (38) are used down to I = 1 one may
express 1„„(&u) in terms of confluent hypergeomet-
ric functions in some cases. '

In Fig. 2 some results are shown for d= 2 and

compared to data obtained from Monte Carlo simu-
lations, continuing earlier work. ' Here P»(f)
[Eq. (1)], the Fourier transform of Imp, „,(v), is
plotted versus time. In order to fix Do, the initial
relaxation time was fitted to the data, . Since they
are not very close to T, , we use an "effective" val-
ue &» = 1.8 for a simple fit for all times and tem-
peratures shomn. The large statistical errors of
the Monte Carlo work, increasing critically for
T- T, , make definite statements about the deficien-
cies of this treatment difficult. %hile for the tem-
peratures not close to T, the discrepancies seem
to be well outside the error limits, this fact may

also be due to correction terms to scaling, since
small values of $ there still make important con-
tributions, and for the smaller values of l Eqs.
(37) and (38) do not hold. It is hoped that exten-
sions of the renormalization-group approach' mill

provide a more sensitive test of the limitations of
our numerical results.

Near T, , the most important eigenvalues X of L,
are associated with "critical clusters" with P& = 1,
l. e. )

From Eqs. (6), (8), and (40) one then derives

(40)

(41)

Another interesting prediction follows in the case
where the Fisher model' and a simple power lam

for D, [Eqs. (8) and (38)] is assumed: The dynamic
scaling function depends on only three "ampli-
tudes, "

Do, qo, and Q; i.e. , one has three scale
factor universality, in generalization to tmo scale
factor universality for static critical phenomena.

In summary, a rather explicit theory for the
critical dynamics of kinetic Ising models has been
obtained, mhich is general enough to be consistent
with recent expansion estimates, in contrast to
the mode-mode coupling theory. ' Furthermore,
it offers a simple physical picture for the inter-
pretation of the result h„„ty in terms of cluster
reactions. As an example, Fishers' cluster mod-
el was used to obtain numerical results, which
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compare favorably to available Monte Carlo work.
Of course, then the dynamics cannot be better than
the basic model taken for the static cluster dis-
tribution, Eq. (12). We hope to extend" our ap-
proach to the explicit use of more general cluster
models, and also to dynamic critical phenomena

in liquid-gas systems, binary alloys, and struc-
tural phase transitions.
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