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The relationship between the BCS superconducting and Peierls insulating phase transitions in

one-dimensional systems is investigated within mean-field theory. This calculation lays the essential
theoretical groundwork for a treatment of fluctuations in the two order parameters which is presented
in a companion paper, The model Hamiltonian used here is equivalent to the reduced BCS Hamiltonian
when the Peierls gap vanishes and also equal to the mean-field approximation to the FrQQlich
Hamiltonian, in the presence of electron-electron interactions, when the BCS gap is zero. The two
coupled gap equations are derived and solved and it is found that the two instabilities are, in general,

very incompatible. When the "bare" Peierls transition temperature T~ is greater than the "bare" BCS
transition temperature Ts, the system generally orders at TI, and is a Peierls insulator at all lower

temperatures. The converse is also true. Only when T p and Ts are nearly equal will the ordered state
be the "mixed" state, that in which both order parameters are simultaneously nonzero. This mixed

state is shown to exhibit a "oneAimensional Meissner effect." As a side issue, the effect of
electron-electron interactions on the Peierls transition (when the BCS gap is zero) is also investigated; it
is shown that electron-electron interaction effects are important. Repulsive interactions lower T„,while

attractive interactions raise T~. These effects are sufficiently severe so that in jellium, with only
Coulombic interactions present, T~ is identically zero.

I. INTRODUCTION

The purpose of the present paper is to investi-
gate the relationship between the BCS superconduct-
ing and the Peiexls insulating phase transitions in
one-dimensional systems. This is the first of a
series of two papers and is based entirely on mean-
field theory. A brief summary of these results
was published previously. ' It is important to out-
line clearly the predictions of mean-field theory
even though, because it neglects fluctuation effects,
this approximation scheme is inappropriate to
strictly one-dimensional systems. Mean-f ield
theory provides a theoretical basis for the Landau-
Qinsburg fluctuation theory and it is, therefore,
essential that mean-field theoretic calculations be
performed before fluctuation effects can be in-
cluded. It is also felt that the predictions of mean-
field theory will be useful as a basis for compari-
son with other diagrammatic approaches. The sec-
ond paper in this series treats the effects of
fluctuations in the BCS and Peierls order parame-
ters within a Landau-Ginsburg framework. This
paper makes use of several results, such as the
expression for the free energy, obtained in the
present paper. It will be shown in this next paper,
that even though fluctuation effects are very im-
portant in one-dimensional systems, the con-
clusions reached using mean-field theory are not
qualitatively different when these effects are in-
cluded.

There are three important reasons for studying
the relationship between the Peierls and super-

conducting transitions in one-dimensional systems.
(i) Little has suggested that one-dimensional

organic salts may be good candidates for high-
temperature superconductors. However, it was
pointed out a number of years ago by Peierls that
these one-dimensional systems also have a ten-
dency to undergo a transition to an insulating
ground state. Because of the significance of high-
temperature superconductivity, it is important to
determine which of the two transitions will pre-
vail or if, in fact, they can coexist.

(ii) Recent experiments by Coleman et af . ,
' al-

though controversial, have been interpreted to
suggest that they have observed superconducting
fluctuations above the onset of a Peierls insulat-
ing phase transition in the one-dimensional organic
charge-transf er salt tetrathiofulvalinium tetra-
cyanoquinodimethan (TTF-TCNQ). The problem
is, therefore, of current interest.

(iii) Finally, it is of general interest to study in
detail a system which can undergo two different
and competing types of phase transitions. It is
hoped that the present one-dimensional calcula-
tions can provide a handle for learning about the
more general problem of competing instabilities.

To investigate the coexistence of the supercon-
ducting and the Peierls insulating states we use
a simple mean-field theoretic model Hamiltonian.
This Hamiltonian is equivalent to the reduced BCS
Hamiltonian when there is no Peierls gap y and to
the usual random-phase approximation to the
Frohlich Hamiltonian (in the presence of elec-
tron-electron interactions) when the BCS gap h,
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is zero. Ne derive and solve two coupled gap equa-
tions which have three types of solutions. %hen
the "bare" Peierls transition temperature T~ is
greater than the "bare" BCS transition tempera-
ture T&, the system becomes ordered at Tp and
is in the Peierls insulating state at all tempera-
tures below TJ, . Similarly, when Ts&TJ, the sys-
tem becomes ordered at T~ and is a BCS super-
conductor at all lower temperatures. Only when

TJ, and Ts are nearly equal will the ground state
be one in which both gap parameters are simul-
taneously nonzero. This new "mixed" state sets
in at a temperature T~ which is below both T~ and

TI, . Because it occurs only for very special val-
ues of the model parameters, the existence of this
new state is highly improbable. Consequently we
reach the very strong conclusion here that within
mean-field theory the Peierls insulating and the
I3CS superconducting states are almost alceays in-
compati hie.

The problem of the competition between the BCS
and Peierls instabilities was first considered by
Little. He suggested. a simple form for the BCS
gap equation in the presence of a Peierls distor-
tion and showed that his new gap equation could be
nontrivially satisfied whenever the Peierls gap was
small compared to the pairing interaction cutoff
frequency. While his ansatz for the BCS-like gap
equation is essentially the same as the equation
which will be formally derived in the present paper,
he did not solve self-consistently for the BCS and
Peierls gap parameters. This lack of self-con-
sistency is an important omission and, as will be
shown in Sec. V, leads to incorrect conclusions.

Bychkov, Gor'kov, and Dzyaloshinskii' con-
sidered the problem of the two instabilities from
a different point of view. Their model Hamiltonian
differs from that used here in that only electron-
electron interactions are included; the electron-
ion interaction is treated as an effective electron-
electron interaction. In contrast to the mean-field
approximation used here, they used a logarithmic
approximation to solve the parquet equations and
concluded that both Cooper-pair instabilities and
electron-hole (Peierls} instabilities will always
occur at the same temperature. Their conclusion
that the two instabilities are always compatible is
in disagreement with that reached in the present
paper. However, it should be noted that if in the

present model Hamiltonian the. electron-ion in-
teraction parameter v is set equal to zero so
that there are only electron-electron interactions
present, and if the two electron-electron interac-
tion parameters V+ and V». , defined below, are
assumed to have the same sign, magnitude, and

cutoffs then it follows from the present theory that
T I, = Ta . This is also the case in which bothy and

4~ are nonzero in the ordered state. Hence, our

theory appears to be very similar to that of Bych-
kov et a/. in this special case. However, because
the parameters TI and T~ are not, in general, re-
stricted to be equal, it is possible here to explore
a wider range of physical situations than was the
case in Ref. 10.

Another investigation of the relationship between
the BCS and Peierls instabilities was carried out

by Patton and Sham" and Rice and Strassler. "
These two groups showed that the effect of the
Peierls soft phonon is to decrease the attractive
pairing interaction and thus lower, or suppress
altogether, the BCS transition temperature. While
the present approach is complementary to that of
Ref. 11, we feel the conclusions reached here re-
garding the incompatibility of the two phase transi-
tions are stronger. In the present work all possi-
ble mechanisms for an attractive pairing interac-
tion are included in a phenomenological parame-
ter V». defined below. These include the excitonic
mechanism, all phonons as well as other excita-
tions. It is found that even under circumstances
which are most favorable for superconductivity
(i. e. , even if the nature of the pairing interaction
is such that it is not substantially weakened as the
Peierls phonon goes soft}, if the Peierls transi-
tion occurs, it; eliminates BCS superconductivity.

The remainder of this paper is divided into five
sections. In Sec. II the model is described and a
mean-field decoupling of the Hamiltonian $C"' is
performed. This mean-field Hamiltonian BC"' is
seen to be equivalent to the reduced BCS' and to
the mean-field approximation to the Frohlich Ham-
iltonian in the appropriate limits. In contrast
to previous treatments, '3 electron-electron in-
teractions are also included in the Peierls transi-
tion. In Sec. III the two coupled equations for the

gap parameters y and 4~ are derived. This deriva-
tion involves a sequence of three steps. First,
the Bogoliubov transformation for K"' is obtained
and the Hamiltonian is thus written in diagonal
form. Second, by evaluating the expectation value
of 3C"' the free energy is obtained, and third the
two gap parameters are determined variationally
by setting the derivative of the free energy with

respect to each gap equal to zero. It is shown that
the two equations thus obtained reduce to the usual
BCS or Peierls gap equations when y or 4„are,
respectively, zero. The solution of the coupled

gap equations is deferred until Sec. V so that a
more detailed discussion of the Peierls gap equa-
tion (when 6~=0} in the presence electron-elec-
tron interactions can be given. This discussion
is presented in Sec. IV wherein it is shown that
within mean-field theory repulsive electron-elec-
tron interactions lower the Peierls transition tem-
perature while attractive electron-electron inter-
actions raise TJ, . In jellium, with only Coulombic
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interactions present TI is identically zero, It is
also demonstrated that the phonon frequency for
wave vector Q =2k& becomes zero at TJ, . This
last derivation serves to underline the importance
of including electron-electron interactions in the
Peierls transition, for it shows explicitly that in
the defining equations for TI„the electron-elec-
tron interaction appears multiplied by the singular
(at zero temperature) electronic susceptibility
function.

In Sec. V the coupled gap equations are solved.
The phase diagram for the system at temperature
T = 0 is presented and it is demonstrated that only
when T I, and T ~ are nearly equal mill both order
parameters be nonzero in the ground state. Ex-
cept in this special case, there is no smitching as
a function of temperature from one type of ordered
state to the other. The shape of the free-energy
surface as a function of y and 4~ for a range of
temperatures is discussed, and it is shown that
(when there is no mixed state) below both critical
temperatures, the lower-critical-temperature
order parameter corresponds to a saddle point in
the free-energy surface while the upper-critical-
temperature order parameter corresponds to a
true minimum. The properties of the mixed state
are discussed in Sec. VI. The temperature de-
pendence of the gap parameters in the mixed state
is obtained in Sec. VIA, and in Sec. VIB the
electromagnetic response of the system at T = 0 is
calculated. It is shown that as long as h~ WO, there
is a nonvanishing (negative) coefficient of propor-
tionality between the current and the vector poten-
tial in the direction along the chain. Hence there
is a "one-dimensional Meissner effect" in the
mixed state. An explicit expression is given for
this coefficient.

IL MODEL HAMILTONIAN

In this section a simple mean-field theoretic
model Hamiltonain mill be derived from a more
general phenomenological Hamiltonian which de-
scribes a one-dimensional system of electrons
mhich interact mith each other as mell as mith ions
in the solid. This general Hamiltonian is

X= Q e(k)c~tc„+Q v, c~t, c»,u,
kea

vrColllVa='a'" + Vo, a -q, ~ + V-g, a.q, a (2. 3)

and the effective electron-electron interaction in
the BCS channel

{2.4)

The latter interaction is assumed io be of the form

ve(le(n}l -~,) e{[e(u'}l-~,),
where co, is a phenomenological cutoff parameter
and 8 is the step function. %'bile the form of the
very complicated electron-electron interaction
is simplified considerably, this approach follows
the spirit of the BCS theory. Boih V and V». are
treated as phenomenological interaction parame-
ters and it is assumed that all possible attractive
electron-electron interactions, such as those pro-
posed by Little, s are included in V». so that V».
and V& are independent phenomenological parame-
ters. The mean-field theoretic model Hamilionian
is then of the form

~"= Q e(k} C»» C», + Q r C»,o, C»,

-Q n»C „,C„,+E +c.c. , (2. 5)

mhere the gap parameters y and ~~ are given by

r -=~e&no&+ l'o& po'& (2. 6)

creation operator for electrons of wave vector
k and spin g and the ionic gisplacement opera-
tor of wave vector q. V, ~, , ~. is a phenomeno-
logical indirect attractive electron-electron in-
teraction and V,

~' is the ordinary repulsive
Coulomb interaction. %e now perform a mean-
field decoupling of the Hamiltonian: Only the ex-
pectation values &Ct,o, c»,&, &C„,C.», & and their
complex conjugates are assumed to be nonzero and
the ionic displacement operator g is replaced by
its mean value &uo& . Here Q -=2k+. ' Formally we

replace the operator C C by & C C&+(C C -
& C C)).

This form is inserted into the Hamiltonian and only
terms first order in the fluctuations of C C from
its mean value & C C) are retained. Thus, contri-
butions quadratic in ( . ) are ignored. Finally,
me define the effective electron-electron interaction
in the Peierls channel

t+ Z i'.»» C» .C». C» "C»"»' (2. 1}

~,-=-P v„,,&c'...c'...) . (2. &)

where e(k} is the one-electron energy measured
relative to the Fermi level, e, is the electron-
phonon interaction for longitudinal phonons, and

the electron-electron interaction is given by

(2. 2)

The operators C~, and u, are, respectively, the

» Eq. (2.g) & po' &
= g»,& C'„o,C», & is the expectation

value of the electronic number density. The
quantity E is a e number given by

l&poo'& I'+~el&no&l' —2 i'»» &»ri»
»s

(2. g)
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X"'=- Z X(k)+ g X(k)+E'
09(~&y -Op&A&0

(3. I)

K, (k) = [«(k)(C», C», + C „,C «, )

+ «(k —Q)(C«.o, C«.c, + C «„o,C»+o, )

+y*«~-q Ca +C-'

+y«~ Ca-q +C'-) q C-a ) —&aC-a C~

—~&Ca C-~ —&~q C-a.q Ca-q

—n~o C»-o C-'».o ] .
The terms with y* and 4~~ come from the complex-
conjugate term in Eq. (2. 5) and K (k) can be ob-
tained from X,(k) by replacing Q by —Q. It may

where the second term represents the elastic en-
ergy of the lattice associated with the distortion
of wave vector q and q»=(C», C „).The first and
third terms in Eq. (2. 8} arise from the mean-field
decoupling scheme.

The Hamiltonian in Eq. (2. 5) thus describes a
system of electrons which can undergo both a BCS
superconducting and a Peierls insulating transition.
When y- 0, X"' reduces to the usual BCS Hamilto-
nian and when 4„-0, K"' is equivalent to the
mean-field theoretic approximation to the Fr5hlich
Hamiltonian. It should be noted from the definition
of y that electron-electron interactions, which
were not considered by Frdhlich or Peierls are al-
so included in the present treatment of the Peierls
interaction. As will be discussed in Sec. IV, they
play an important role in determining the Peierls
transition temperature T~. The two gap parame-
ters y and &„aredetermined self-consistently from
two coupled gap equations in Sec. III.

III. DERIVATION OF GAP EQUATIONS

In this section the gap equations are obtained in
a sequence of three steps. (i) 3C" is written in
diagonal form, i.e. , the Bogoliubov transforma-
tion for the coupled BCS-Peierls system is ob-
tained; (ii) the expectation value (3C' ' —TS ) = E"
where S is the entropy and F" is the mean-field
free energy, is calculated; and (iii) the equations
for y and ~& are determined variationally from
F", thus yielding the two coupled gap equations.

The Hamiltonian in Eq. (2. 5) may be written in
diagonal form provided the Peierls interaction [the
second term on the right-hand side of Eq. (2. 5)]
only mixes those pairs of states involving one
positive and one negative wave vector k. Since only
these states can be degenerate or nearly degener-
ate in energy these interactions dominate and all
others can be treated perturbatively. It suffices,
then, to consider only those states in K"' with
Ik I Q. Vfriting out these terms explicitly, it
follows from Eq. (2. 5) that

e (k)

—e{k)

0 —&a

—~ta vq) J

(3.3)

where we have used the fermion commutation rela-
tions in obtaining the signs in some of the matrix
elements.

The four energy eigenvalues for 3C„(k)are

y [n»»+ —,'([«(k) + e(k —Q) ].([.(k) —.(k —e)]'+4r'P")»]'",

and the corresponding eigenvectors are labeled
g"(k), g '(k), P' (k), and P (k), where the two

superscripts correspond in order to the choices of
plus and minus signs appearing in Eq. (3.4). It
should be noted that when y=0 or ~„=0the cor-
rect results for the energy eigenvalues for the BCS
or mean-field Fr5hlich Hamiltonians are obtained
from Eq. (3.4}. Because of the complicated form
of the eigenvectors of Eq. (3. 3) it is not convenient
to evaluate them directly from the eigenvalue equa-
tion. To obtain the unitary matrix U which diago-
nalizes X,(k) we first note that it follows from the
eigenvalue equations that the following identities
among the eigenvectors hold:

y
lm

ply
+pm q

I It! m=+, (3. 5)

q++ q
+ (3.6)

be seen that tC, (k) only mixes the four operators
C&, , C ~, , C, , and C ~&, . For simplicity, in
what follows, the gap parameters are assumed to
be real (this does not affect the derivation of the
free-energy or the gap equations), and for k posi-
tive (negative) n» and 4» o (4»,o) are assumed to be
equal. Because the k dependence of the gap param-
eter is later shown to be of the BCS form &„
= 46() a'(k) I

—w,), this last approximation can be
shown to be valid a poste~ieri providing the cutoff
frequency in the pairing interaction, {d„is small
compared to the Fermi energy (which assumption
is expected to be reasonable for most physical
systems). This leads to considerable simplifica-
tion of the algebra. The Hamiltonians 3C„(k)can be
written in the basis
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(3.7)

(3.8)

where we have, for convenience, omitted the argu-
ment k from the g's and the subscripts, i=1-4,
denote the ith component of the eigenvector. It fol-
lows at once from these identities and from the
normalization and orthogonalization relations of
the eigenvectors that the unitary matrix which
diagonalizes K, (k) can be written

n, /v —a,/v

Q»/p Ofg/V pz v —
p» "

{3.9)

In Eq. (3.9) o,,+ia, =[v'/(I+ v')]"'e*'"~ and P,
+iP»=(1+v») '1»e'"» where v=g, /rg'. Each column
of the unitary matrix U gives the coefficients of the
four operators C„,, C~„„C~~,, and C~~, , , and

corresponds to one of the four eigenvectors of
K,(k). In what follows we shall present all results
for K,(k). The corresponding results for K (k) can
be obtained from those for K,(k) by replacing q by
—q. Thus, Eq. (3.9) gives the generalized Bo-
goliubov transformation for the coupled BCS-
Peierls system in terms of the unknown parame-
ters y, yq, and I. To obtain these three un-
knowns we evaluate the matrix V ~K,(k) V and re-
quire that its off-diagonal elements are zero. This
gives six different equations. Four of these re-
duce to the defining equation for v

+ P E (k) {[~~' (k)]' q'-{k)
0&A+F

+0 (k)[t} (k)]')

+ g [e(k)+ ~(k —q) —E'(k) —Z (k)] .
0&4«A'F

(3.15}
Using Eq. (3. 1) X"' may then be written in diagonal
form.

The mean-field (MF) free energy F" is cal-
culated from

FM F &Keff »& {3.16}

To evaluate &K"'& it is convenient to change vari-
ables (k- —k+ q) in the first sum on the right-
hand side of Eq. (3.15) so that the limits of sum-
mation are from kF to 2kF. Defining

f(k) =-&[q' (k)]'~' (k)&

(k)[g (k)]"&, for 0&k &k

and

f(k) =- &[0'"{k)]'0"(k)&

=&t} '(k)[P '(k)]'&, for k~& k & 2k~,

it follows that

F" = —P V»». sin28» sin28„,(1 —2f»)(l —2f» )

+Q [e(k}+ f»cos28]»

g' (k), and ( (k). Substituting these into Eq. (3.2)
we obtain

x.taI = g & t&I(»'"I&)]'
0~«~F

x tP'(k) + g (k)[P '(k)] j

.=2y[e(k —q) —e(k)+X] ',
where

X =-([e(k) —e(k —q)]'+ 4y']'" .

The remaining equations imply

sin sy, =- 4»/E (k)

and

(3.10)

(3.11)

(3. 12}

2+ r»cos28»f»+ ~a l&~o& I'- &o 1& po'& l'- »
(3. 17)

where the prime on g denotes that all wave vectors
lie between + 2kF and where S is the usual entropy
term:

S= —2ks Tg [f»lnf„+(1—f„)ln(1 —f»)] .
sin 2(p, = &»/E'{k), (3.1s)

where E'{k) and E (k) are the two positive energy
eigenvalues of K,(k) which can be obtained from
Eq. (3.4). These are given by

E'(k) =(~'»+-.'[e(k)+ e(k —q) ~X]'p" . (S. 14)

Finally,

sin28»= & /{& + g } ~

and

cos28» = —1 /(+»+{;»»)

(3. 18)

(3.19)

Once the Bogoliubov transformation is found it is
then straightforward to write K"' [Eq. (2. 5)] in
diagonal form. Equation (3.9) may be inverted to
obtain the four operators C„,, C ~, , C~z, , and
C~~,z, in terms of the eigenvectors g"(k), P '(k),

and g„for k &0 is

r» = —,'[~(k)+ e(k —q)+ sgn(lk l k, ) E], —(3.20)

which is just the dispersion relation for a Peierls
insulator. The quantity f„,which describes the
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occupation number for excitations denoted by wave
number A', will be determined variationally. In
obtaining (3.17) terms like (f+ &~)~t2 which ap-
pear in Eq. (3.17) have been written as t~/(g„
+ &',)'t2+ n~/(r„„+cP)'t~ and those terms proportional
to &„have been combined with the last term in Eo

[Eq. (2. 8)]. It can be seen that in the limit y- 0
the free energy reduces to that obtained in the BCS
theory'; in the limit ~~-0, the free energy is
equivalent to that obtained in the usual Peierls the-
ory. This special case wiQ be discussed in Sec.
IV. The gap equations can be obtained by finding
the extrema of J'" with respect to the four quanti-
ties f„,&uo), & po), and &„andby using Eq. (2.6).
As in previous theories of the Peierls limit, at
the free-energy minimum &uo) and & pc~) are pro-

portionall:

(~',/u, ) &uo) = —
& po') . (3.21)

Defining

~ = I'o "o/I &el' (3.22}

the equations for the three remaining unknowns are

2 g g8+ g2 1/3

(3. 23)

2 2 1/3y (I 2/' ) n /(n g8 )1/2

{3.24)

/, = {exp[(g',+ a',)' "/ke T]+ I}' . {3.25)

The quantity E appearing in Eq. (3. 23) is defined in
Eq. (3. 11). The gap equations contain the BCS limit
when y —0 and the Peierls limit when rh~- 0. Note

that the excitation energies are given by (ff+ d~Pt~

which also reduces to the appropriate limits when

h„ory are zero. Because of the form of the BCS
pairing interaction V»& it follows that the BCS gap
parameter may be written 6, = 69( la(k) [

—&u,}. It
can be seen that the BCS-like gap equation [Eq.
(3. 24)] has the same form as the usual BCS gap
equation except that the one-electron energy in the

presence of a Peierls distortion g~ appears in place
of c(k). This gap equation is essentially that which

Little proposed. '6 The way in which the Peierls-like
gap equation is modified as a result of coupling to
the BCS gap is less predictable from intuitive con-
siderations. In Sec. IV the Peierls gap equation,
when the BCS gap Lh is zero, is discussed. Par-
ticular emphasis is placed on the effect of electron-
electron interactions on the Peierls transition tem-
perature T~. The solution of the coupled gap equa-
tions will be discussed in Sec. V.

IV. EFFECT OF ELECTRON-ELECTRON INTERACTIONS ON

THE PEIERLS TRANSITION IN MEAN-FIELD THEORY:
CASE OF ZERO BCS GAP

~R ~2 IV~ I g (qi A) (4. 1)

where ~, is the bare phonon frequency and y'(q, &o)

is the density-density correlation function for non-
inte racting electrons~~:

x'(q, ~)= 2
f(e (k) ) f(e (k —q))—

e (k} —e (k —q) —(o —i' {4.2)

where f(a(k)) is the free-electron Fermi function
and p-0 from above. Finally, V, is the qth com-
ponent of the Fourier transform of the electron-
electron interaction, as in Sec. III. Equation (4. 1)
will be modified somewhat if the detailed effects
of the periodicity of the lattice are included. '7

These were considered in the treatment of the
Peierls distortion presented by Renker et al. " In
one dimension X (Q, 0) = - ~, at T = 0. It is this
divergence which drives the phonon frequency to
zero. The transition temperature corresponding
to that at which ~-0 for q=Q is obtained from

While there have recently appeared in the litera-
ture"' numerous discussions of the Peierls
transition (when the BCS gap is zero), a detailed
discussion of the effect of electron-electron in-
teractions on the transition has not yet been given.
It is the purpose of this section to discuss these
effects using mean-fieM theory and to thus show
that they are generally important. %e find that
repulsive electron-electron interactions depress
the Peierls transition temperature, while attrac-
tive electron-electron interactions raise it. This
can be understood physically as arising from the
fact that it costs the electrons electrostatic energy
to form a charge-density wave when the electrons
repel one another, whereas energy is gained upon
formation of the charge-density wave when the
electrons attract one another. In jellium, with
only Coulombic interactions, the effect of electron-
electrbn interactions is sufficiently severe so that
the transition temperature is suppressed to zero.
It is important to recognize that, however small
the electron-electron interaction parameter Vz is,
in the RPA expression for the renormalized phonon
frequency, it appears multipled by the singular (at
T = 0) electronic density-density correlation func-
tion. Hence, tvithin mean field the-ory efectron
electron interactions should never, at the outset,
be neglected.

The frequency of phonons of wave vector q in the
presence of the electron-phonon interaction v, is
modified. This modification can be easily cal-
culated within mean-field theory and the phonon-
dispersion relation is shown to be'7
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the equation

i ~, i'y'(q, o)
1 —v, q'(q, o),

There are two important points to make concerning
Eq. (4. 3). First, this equation yields the same
transition temperature as that calculated from Eq.
(3.23) with &»=0; this will be shown explicitly be-
low. Second, the electron-electron interaction Vz
is multiplied by }( (Q, 0}, the term whose singularity
(at T= 0) drives the phonon frequency to zero.
Thus, because Vz is multiplied by a singular term,
arguments which have been previously presented
for neglecting V~, because it is small compared to
the bandwidth, '» are misleading. Equation (4. 3)
has solutions for a nonzero temperature only when

(4.4)

%hen the equality holds, the transition temperature
is identically zero. Equation (4.4) is equivalent to
the inequality & &1 which is required in order that
Eq. (3.23) have nontrivial solutions. The condi-
tion for neglecting the electron-electron interac-
tions in determining TJ. is that V be small com-
pared to lvo I /(do. In jellium (with simple Cou-
lombic interactions) it follows that for a chain of
length I. and radius r with k~ r «1

(o»o = —(2sne»/M) (qr)» [ln(qr) ],
Vo = (- 2em/I }[ln (Qr}],

—2vfe»(yg/(if)t~»(vr»f, ) &(»qr [in(qr)],

where ~ is the density of ions and M is the ionic
mass. It can be seen from (4.4) that in jellium
Tp = 0. The same conclusion can be obtained using
the three-dimensional jellium parameters

(kyar

»1). The physical interpretation of this result is
that in jellium the attractive electron-ion inter-
action is exactly canceled by the repulsive elec-
tron-electron interaction so that there is no may

to produce a Peierls distortion at finite tempera-
tures. These observations mere made independent-
ly by Heine and Vfeaire. In summary, within
mean-field theory, the effect of repulsive electron-
electron interactions isto lower T~ while attractive
electron-electron interactions raise TI, . Note
also that it follows from Eq. (3.23) that an attrac-
tive electron-electron interaction will itself drive
a Peierls transition even if electron-ion interac-
tions are absent (&- —~). This picture of the
Peierls transition corresponds to the model used
by 9ychkov et al. ~0

Equation (3.23) may be written (when b» =0),
after several algebraic steps as

y= Vq4 1-fq y E

f v(E),
Pp&kCRAy

Vo4 g yf»sgn[e(k) —e(k —q)
k&

rf&
a(I}—r(a Q)I

'

(4. 5)

(4.6)

where f»= I -j» i—f k & kr and f»=f, if -k &k» . In ob-
taining Eq. (4. 6) from (4. 5) we have included terms
for k & 2k' which were not present in Eq. (4. 5)
since we neglected these at the outset (see Sec.
III). Because the contribution of these additional
terms is very small [note that I e(2kr) —e(kr) I

»ke T for ail reasonable T so that f», for k & 2k'
is small], they may be added to Eq. (4. 3) with
negligible error. The second term in the curly
brackets in Eq. (4. 6) arises from the coupling of
states ik) and ik+Q) with k &0. This coupling,
which was neglected in Sec. III since these states
are always nondegenerate, is included in Eq. (4. 6)
using perturbation theory. The equation for T~ ob-
tained from (4. 2) and (4.6) is then

I =- [(I-~}/~ll'o X'( q, 0l}r,

This equation for T~ is seen to be identical to that
obtained from Eq. (4. 1). Thus, the temperature
at which the phonon frequency is driven soft is
identical to that at which a gap opens in the elec-
tronic energy spectrum.

A final remark should be made in this section
concerning the slight difference in form between
the BCS and Peierls gap equations (in the ab-
sence of coupling between the two gaps). It follows
from Eqs. (3.23} and (3.24) that the two equations
would have exactly the same form, except for dif-
ferences in the cutoff energies of the interactions,
if

E = ([e(k) e(k q)]»+ 4+p&» 2[&»(k) + p]1/»

Since for k-kr, e(k —Q)=-e(k) and since the sum
in Eq. (3. 23) is dominated by the contributions of
wave vectors near AF, the above equality is nearly
satisfied for all important A. However, as will be
discussed in Sec. V, the gap equations are not com-
pletely identical in form and this fact gives rise
to certain asymmetries in the solution of the cou-
pled gap equations. These asymmetries do not
show up in the parquet diagrammatic analysis" in
which the BCS and Peierls gap equations are found
to be identical in form.

V. SOLUTION OF COUPLED GAP EQUATIONS

It can be seen from Eqs. (3.23) and (3.24) that
there are three types of solutions to the coupled
gap equations, each corresponding to extrema
of the free-energy surface; (i) the normal-state
solutions in which 4 = y = 0, (ii) the decoupled
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FIG. 1. Phase diagram for the coupled BCS-Peierls

system at T = 0. The variables bo and po are the values
of the gap parameters divided by bandwidth S' vAen there
is no coupling between the bvo gap equations. The verti-
cal axis on the right and upper horizontal axis give the
effective interaction strengths corresponding to 4 and

p, respectively. In the shaded region the ground state
is one in which both gap parameters are simultaneously
nonmero.

solutions in which y=0 and &=~, and 4=0 and

y = y, where the superscript zero is used to de-
note the value of the gap parameters in the ab-
sence of coupling, and (iii) the solutions for which
both ~ and y are nonzero. The highest tempera-
ture at which Eq. (3.23) has a nontrivial solution
when 6 = 0 is T~ and that at which Eq. (3.24) has
a nontrivial solution when y = 0 is 7'~ . An extensive
numerical study we have carried out indicates that
only when 4 and y are nearly equal with y & 4
can there be solutions to Eqs. (3.23) and (3.24)
with y and ~ simultaneously nonsero. This result
is qualitatively independent of kz, ~, the cutoff
frequency which appears in V&., and temperature.
From the numerical studies, we have constructed
the phase diagram for the system at T=0. This
is shown in Fig. 1, for a half-filled cosine band,
e(k) = (-, W) (I - cosh), where W is the bandwidth and
the lattice constant is assumed to be unity. The
vertical axis plots the BCS gap (in the absence of
coupling) divided by W and the horizontal axis
plots the normalized Peierls gap (in the absence
of coupling). The upper and right-hand axes plot
the effective interaction strengths corresponding
to y and &0, respectively. Since at T = 0, 40
=1.76 kaT~, and y =1.76 A'~TJ, , the axes can be
viewed as plotting T~ and TI, . It follows from the
figure that the ground state of the system is a BCS
superconductor when T~ & T~ and a Peierls insula-
tor if the converse is true. Only when T~ and T~

are nearly equal will the system be in the mixed
state with both order parameters nonzero. The
corresponding parameters are indicated by the
shaded region in Fig. 1. The lack of symmetry
between the superconducting and Peierls insulating
states in the phase diagram arises from the slight
differences in form of the BCS and Peierls |',decou-
pled) gap equations. In the half-filled cosine band
case this arises on1y from differences in the cut-
off energies. This was discussed in Sec. IV. This
asymmetry would not be expected to show up in cal-
culations based on the logarithmic approximations
to the parquet equations.

%'e have studied the temperature dependence of
the solutions of the gap equations. Except for the

very special case when the mixed state occurs,
the system does not switch from one type of or-
dering to the other. Thus, for TJ. & T~ the ordered
state is always the Peierls insulator and for Ts & TI,
it is always a BCS superconductor throughout the
entire temperature range. The free-energy sur-
face as a function of the coordinates (4, y) has the
following behavior. Above both critical tempera-
tures a minimum is at the origin & = 0, y = 0. When
there is no mixed state, below the upper critical
temperature, say TJ, a minimum appears at (0,
+y ) and the origin is a saddle point. Below the
lower critical. temperature, T» a saddle point
develops at (+ do, 0) and the origin is then a maxi-
mum. The minimum still occurs at (0, +yo). This
behavior continues down to zero temperature. The
special behavior associated with the mixed state
will be discussed in Sec. VI.

In summary, it is found by numerical solution
of the coupled gap equations that the BCS super-
conducting and Peierls insulating states are, in
general very incompatible in mean-field theory,
and the system has only one phase transition, ex-
cept under very special circumstaqces.

VI. SOME PROPERTIES OF THE MIXED STATE

%'bile, on the basis of the present calculations,
it seems very unlikely that the mixed state can be
observed in any real systems, for the sake of
completeness, some properties of this state will
be discussed in this section.

A. Temperature dependence of the gap parameters

It is possible to show analyticaQy that the solu-
tion of the coupled gap equations [Eqs. (3. 23) and

(3.24)] corresponding to y x 0, & x 0 can only occur
when y ~&, whereas in Sec. V, yo and &0 are
the temperature-dependent gap parameters in the
absence of coupling. This proof is given in Ap-
pendix A which also contains a brief description
of how the shaded region in Fig. I (which corre-
sponds to the mixed state) was obtained. Numeri-
cal calculations substantiate these analytical re-
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dimensional Meissner effect", i.e. , there is a
nonzero coefficient of proportionality between the
current induced by an electromagnetic field J„and
the vector potential A„.The aim of this section is
to calculate this coefficient. Only a one-dimension-
al calculation is performed here; hence the sub-
script It is used to represent the fact that the cur-
rent and vector potential are along the direction of
the chain. Clearly there are complicated effects
which arise from three-dimensional coupling be-
tween the chains and the fields. These will not be
considered here.

Define Ule paramagnetic current J)~ as

0
0 I.00.5

T/ Tp

FIG. 2. Temperature dependence of the gap parameters
when the mixed state having order parameters 6, p exists.
The mixed state sets in at temperature T~ correspond-
ing to the point at which the curves 6 and p vs T (which
are the solutions to the uncoupled gap equations) cross.

suits. It is also found numerically that the mixed
state always appears at a temperature T~ which
coincides with an intersection of the curves &0 and

y plotted as a function of temperature. Thus the
mixed state is found to occur only when TJ & T~
and yo~ 4 . These results are illustrated in Fig.
2 which plots the gap parameters as a function of
temperature for a balf-filled cosine band. The
parameters are chosen as follows: V = V=1.0
in units of bandwidth and &=0.766. As before, the
parameters 4 and y are the solutions to Eqs.
(3. 23) and (3.24) associated with the mixed state.
It follows from Fig. 2 and from considering the
state of lowest free energy that for TI, & T & T„the
BCS gap parameter is zero and the Peierls gap
parameter y is monotonically increasing until T
= T„.Below this temperature & begins to grow
and y to decrease until the zero temperature limit
is reached. As shown Appendix A, 4 +y =(&') .

The free energy as a function of (&, y) has the
following behavior. For T & TI, a minimum in the
free energy surface is at the origin (0, 0). For
T2& T& Tv the pOintS (0, +y } are minima. The
origin is then a saddl'e point. For T„&T& Ts the
points (0, +y') are minima, (a&', 0) are saddle
points and the origin Ls a maxHIium. For T & Tpg

the mixed state is a minimum in the free-energy
surface and the points (0, +y2) and (+ &2, 0) are
saddle points; the origin is then a maximum.

8. Electromagnetic response in the mixed state at T=O

Once the Bogoliubov transformation (see Sec.
ID) for the coupled BCS-Peierls system is obtained,
it is relatively simple to calculate the electro-
magnetic response of the system. As was suggested
by Bychkov et al. ' the mixed state exhibits a "one-

JI, =J„—ne A)) /mc, (6.1}

where n is the density of electrons, m is their
mass, and c is the velocity of light. To calculate
J~ we follow Rickayzen. The Hamiltonian which
describes the interaction between the spatially-
(z) and time- (t) dependent external field A„(z,t)
and the electrons is written in second-quantized
form as

H' = Q a((f, t)(2k+ q) C„'„,C„,2pRc
fy

where a(q, t) is the Fourier transform of A„(z,t),
and the paramagnetic-current-density operator is

(6. 2)

i'(z) = g C„',C„,.z'"(2k+q) .
2m p q

The expectation value of the current density is

(6. 3)

gP y 2q2 pP
(2)' &'(&) & (4))

I v (k) v'{k)
Z-(k) Z'(k) Z (k) Z"{k)) (6. 6)

where E is given in Eq. (3.11) and E'(k} and E (k)
are defined by Eq. (3.14). Here

v'(k) =-,'[z(k)+z(k —Q}vX] . (6.6)

In the Peierls limit (4-0) the quantity in square
brackets is 2. 0 for all k values. In the BCS limit

(6.4)

where we have used the Heisenberg representation
of the operators Z and O'. We wish to evaluate the
Fourier transform of Eq. (6.4), Zv(q, ~), in the
limit that first ~-0 and then q- 0. To evaluate
the commutator in Eq. (6.4) is tedious but straight-
forward. The Bogoliubov transformation is used
to express the operators C~„etc., in terms of the
g's defined in Sec. III. The final expression for
the expectation value J~ at T=O can be shown to be
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g«/A„= (ne'/mc)[y'/(a'+y')] . (6.7)

As can be seen, Eq. (6. 5) differs quantitatively
from this equation but the qualitative dependence
Z«/A„on n and y is the same.
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APPENDIX A: PROOF THAT THE MIXED STATE OCCURS
ONLY WHEN yo ( go

Define

~k«, +hA 1 2 cs( ) (Al)
&A~

where u is an unimportant constant, &k is the cut-
off wave vector in the BCS interaction and f (v}
is the Fermi function for excitation energies of the
BCS form: [e (k)+ «j' . The decoupled BCS gap
equation [Eq. (3.24) with y = 0] can be written in
terms of I as

I'"(n') = v/V .
The decoupled Peierls equation [Eq. (3.23) with

h~ = 0] is

I'"(y')+I"'(y') —v~/[(1 ~) V ] (A3)

(y-0) J« =0, so that only the diamagnetic contri-
bution remains. It is shown in Appendix 8 that
in the Peierls limit J„exactly cancels the dia-
magnetic term so that there is, as expected, no
"Meissner effect" in the insulator. It follows
from Eqs. (3. 12) and (3.13) that the quantity in
square brackets is given by [1+cos (2V« —2y~}]
which clearly lies between 0 and 2. Thus there
is a reduction in Z„/A„relative to the value in the
Peierls insulator, when 4- 0. This means that
the coefficient of proportionality between J„and
A„is negative and nonzero.

Bychkov et al. '0 suggested that in the mixed state

Isci( 0) )) Iscs(n 0) /V

and thus

I"'(y') =.~/[{1—~) V.]-I'"{y')
«vX/[(1 —a) Vo]-v/V .

The Peierls-like gap equation implies

I&1)(yo) « I u&(y)

(A6)

(A9)

(A10)

Equation (A10) implies y &y and it has solutions if
and only if

I (y) = vX/[(1 —X) Vo] —v/V~I '(0) . (All)

Since y &b, , by assumption, we conclude that
y & b, so that Eq. (A5) is also satisfied. Had we
assumed b, &y we would have reached the con-
clusion y &y &ho which is inconsistent with Eq.
(A5). In summary, the mixed state only occurs
when

y0~ go

(y)=v&/[(1 —&) Vo] —v/V~I' '(0) .

The first equation places an upper bound on y .
The last equation places a lower bound on y . These
two equations were used to plot the phase diagram
in Fig. 1.

APPENDIX B: PROOF THAT J„=ne'A„/me IN THE PEIERLS
INSULATOR

From Eq. (6. 5}we have (when A, = 0)

I"'{y)= &X/[(1 —l ) Vo] —v/V .
In order for there to be a mixed state the quantity
on the right-hand side of Eq. {A7) must be positive.
Now I (v) and I '(v) are positive functions which
rapidly decrease monotonically as p increases.
%'e want to show that only if y ~4 can we obtain
solutions to Eqs. (A5) and (A6). If y & 4

where we have used the fact that e(k}= —e(k —q)
for k=k~ and

Ar-kh 1 2f«( )(«)-n, i
[ (k) (k q)p p . (A4)

J~~ Seg' " y' 1
(«««'t&)+E W)

aeQy
A„2vm c „lo [E+(k) ~E (k)]

(81)

(82)

In Eq. (A4), f«(v) is the Fermi function for excita-
tion energies of the Peierls form lf~). The cou-
pled gap equations are solved by y, b where the
BCS-like gap equation [Eq. (3.24)] implies

For simplicity we assume c(k) = k~/2m. The re-
sults should be valid for any band shape. From
Eq. (3. 14) we have

I'"[(A'+y')' "]= v/V (A5) J 4e Q y m dkA„2 '
~q „'. [(k+ —,'q}3+ (2my/q) ]~'

Thus g +y =(n, ) . The Peierls-like gap equation
[Eq. (3. 23)] implies

I' c[e{d'+ y)' /]3I+"'( y}=v&/[(1 —l ) Voj . (A6)

Hence,

Defining k+ ~q

~J, Se Q
A. ,f me8g

= (2my/q) x gives

dx
(1 + xs)$/I

(83)
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The number of electrons per unit length (including
spin) is

Evaluation of Eq. (B4) yields the desired result

z„~/A„=ne/mc .
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