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Projected surface energy bands of bcc iron*
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{Received 21 January 1974)

We have projected Wood's calculated three-dimensional energy bands of paramagnetic iron to obtain
band gaps in the two-dimensional energy bands for (001) and (110) paramagnetic iron surfaces.
Extensive band gaps show the possibitlity that many surface states exist. The most important surface
states probably exist well away from the center of the two-dimensional Brillouin zone, and may explain
the existence of magnetically dead layers at surfaces of Fe and Ni.

In our work on aluminum' ' we developed a
method of projecting the bulk part of the two-di-
mensional band structure. In this method, we
form a unit cell in reciprocal space having the
same base as the two-dimensional Brillouin zone
(2D BZ). The height 2K, of this cell is taken to
be that which gives the same volume as the three-
dimensional (SD) BZ. This unit cell we call an
extended slab-adapted BZ. The allowed energies
at a point k in the 2D BZ are then the eigenvalues
at all the points (k, k, ) such that -K, ~ k, ~K, . (If
we consider a slab with reflection symmetry
parallel to the surface, then we need only sample
0 & k, (K, .) This method of projection gives
continua of states at k with symmetries corres-
ponding to the symmetries along the lines from
(k, -K, ) to (k, K,). Surface states can exist only
for values of k and E at which gaps appear. Such
states do not go over into bulk states as we go to
infinitely thick slabs. They are characterized by
complex values of the normal component of their
wave vectors, such that they decay on moving into
the film.

An example of this process is shown in Fig. 1.
The continua of various symmetries at the I'
point in the (100) face of tungsten are projected
from the 4 lines in three dimensions. These 3D
bands are taken from Louck's relativistic calcu-
lation. ' The gap in ~, levels at an energy of
about 0.9 Ry results from spin-orbit coupling.
Though it is completely filled by states of 4, sym-
metry, a surface state of 4, symmetry can still
exist within this subband gap. In fact, observed
surface states in W (Ref. 5-7) have been attributed
to this gap. ' ' To carry this example a step
further, note that as we move away from T' along
a general direction in the 2D BZ the difference in
symmetry between 4, and 6, is lost. There is no

gap of any kind and no surface states can exist.
But since a single point in the BZ is of zero
measure and cannot be observed experimentally,
what is observed is either surface resonances
from the region around I' or surface states from

some other region of the BZ. This simple ex-
ample demonstrates the utility of projected energy
bands.

In previous work we have used this method to
locate both absolute and subband gaps. Subsequent
thin-film calculations showed surface states in all
gaps and prompted us to speculate that this may
be a general result in nearly-free-electron (NFE)
metals. At the same time, Gurman and Pendry"
have examined d-band metals analytically. They
concluded that a gap has a 50$q chance of being
occupied if it results from band splitting at a
3D-zone boundary and a. 70/0 chance of being
occupied if it results from hybridization away
from a zone boundary. We have therefore pro-
jected bands for the (001) and (110) bands of non-
magnetic bcc Fe. We present these results here
in the expectation that our more detailed thin-
film calculations will show that most band gaps
are filled. This expectation is reinforced by the
finding of surface states in two gaps at T' in the
(110) face by Tomasek and Mikusfk. " Most work
on surface states has concentrated on the I
point, " '~ and another reason for presenting these
bands is to show that surface states at other points
in the BZ probably have more important physical
effects than those at I'.

We have projected 2D bands from the 3D bands
of Wood, "shifting his zero of energy to obtain
the correct work functions of 4.7 eV." These re-
sults were presented (complete with symmetry
labeling) at 55 points within the irreducible wedge
of the bcc BZ. This corresponds to a cubic mesh
produced by dividing each fourfold axis into
eighths. The points in this cubic mesh were
commensurate with the (001) and (110) 2D BZ's,
and the mesh size was small enough for projection
of many 2D points. Though these results were
derived for nonmagnetic (P-phase) Fe, it is ex-
pected that the magnetic phase (a-Fe) can be
reasonably represented by rigid shifts in the
bands. The self-consistent calculation by Tawil
and Callaway" shows spin-up-versus-spin-down
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FIG. 1. Relativistic energy bands for tungsten along
the [100] direction.

shifts averaging 0.165 Ry for d-like levels. The
smallest shift in such a level was 0.128 Ry and
the largest was 0.185 Ry.

Figure 2 shows the crystal structures and BZ's
for (001) and (110) oriented thin films of any bcc
material. The labeling of the high-symmetry lines
and points is consistent with that used for the
surface phonon problem. " For the (001}face, the
2D lattice vectors are a=ax, b =aj~, where a is
the edge length of the 3D cube, and x, y, z are
the usual 3D unit vectors. The reciprocal lattice
vectors are K, = (2v/a)X. and K, = (2v/a)y. To make
the volume of the extended slab-adapted BZ the
same as that of the primitive bcc BZ, we must

have K, = (2v/a)z Since there is reflection sym-
metry that takes z into -z, we need only sample
k, = (2v/a)k, from 0 ~ k, ( 1. In terms of the usual
3D vectors (k, , k„, k, ) = (2v/a)(k, x + k, y + k, z), the
(001) F point is projected from the 3D line
(0, 0, k, ). The Z line is projected from the lines
(k, , 0, k, ), 0 (k, ( ~. The X point is projected
from the line (-,', 0, k, ). The I' line is projected
from the lines (-,', k, , k, }, 0 (k, ~ —,'. The jtf point
is projected from the line (—,', —,', k, ), and the Z
line is projected from the lines (k, , k„, k, ), z )k,
=ky ~ 0.

For the (110) face, the lattice vectors are given
by a=-,'a(-x+ y-z) and b=-,'a( x+ y+ z). The
reciprocal lattice vectors are K, = (v/a)(-x+ y-2z)
and K, = (v/a)(-x+ y+ 2z). The directions of the
rectangular axes x and g are -z and -x+ y, re-
spectively. K, = (m/a)(x+ y), but again there is
reflection symmetry, taking x+ y into -x-y, so
we only sample k, =(2z/a)(y, y, 0), 0 (y ~-,', for any
2D point. The I' point is projected from (y, y, 0).
The Z line is projected from (y, y, a), 0)a ~ --, .
The D line is projected from (y-a, y+ a, --,'+ a),
0 &a (-, . The S point is projected from (y--„
y+ ~, --,'). The V line is projected from (y- —,',
y+ —,', --,'+ a), 0 (a (—'. The T'point is projected
from (y--,', y+ z, 0), and the Z line is projected
from (-a+ y, a+ y, 0), —,') a) 0. Finally, the A

line is projected from (y-a, y+a, -2a), 0 (a ~—'.
The projected energy bands for the (001) and

(110) faces of ll-Fe are shown in Figs. 3 and 4, re-
spectively. Before going into details about the
origins of the various gaps, a few general com-
ments are appropriate. First, there are many
more band gaps than in the NFE materials pre-
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FIG. 2. Crystal structures
and Brillouin zones for the
(001) and (110) faces of bcc Fe.
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FIG. 3. Projected two-dimensional energy bands for
the (001) face of bcc Fe. FIG. 4. Projected 2D energy bands for the (110) face

of bcc Fe.

viously studied, """"and the gapa are more
complicated. In the Al and Li calculations the
gaps were always widest at high-symxnetry points,
and narrowed going away from them. Here we
see gaps of this type, but we also see gaps which
widen as they go away from symmetry points, or
which pinch off before they ever reach the high-
symmetry points. Of course transition metals
have more complicated bands than NFE metals,
even in 3D. But one might expect the increased
density of d bands to make overlap more common
and gaps less likely. Obviously, this is not the
case. Second, those gaps which are closest to
the Fermi level and thus likely to be of greatest
physical importance are located mell away from
1 . As mentioned above, most work on surface
states has focused on the F points. %'e think that

TABLE I. Connectivity relations for the points and
lines of high symmetry in the Brillouin zone of (001) bcc
iron.

r, , r, —z, —x, ,x,
I2, 1"4 + X2,X4

1~ Z), Z)

&~ I"4—~i M~ M4

I'2, I ~
~ Z2 ~M2, 3

~5 ~r ~2 ~5

M(, M3 ~Y( X),X)

3f2, 3f4 ~ Y~ X3,X4

Mg Y), Y2

this emphasis is misplaced and that attempts to
explain physical properties —e.g. , surface mag-
netic dead layers"'" —in terms of I' surface states
will be unsuccessful.

In Fig. 3 vertical crosshatching is used to show
the extent of Z„V, „and Z, states. Horizontal
crosshatching is used to show the extent of E, and

Z, states. At I', X, and% there are more sym-
metries and their extents are indicated separately.
Table I shows the 2D connectivities. Our F, line
comes from %food's 4, line in 3D. Our F, comes
from his 6, line, our 1', from his 4, line, and our
I', from his 4,. There is a wide gap in F, states,
part of which persists as a gap in Z, states. But
this gap does not persist at all in the E direction,
or in any general direction, so that its contribu-
tion to the surface density of states is of zero
measure.

There is one gap along E which does not exist
at either I' or X. It is a gap in E, states which
connect to I', and I', states. Since the symmetries
are different at I", the I', and I', lines can cross,
and the gap is pinched off. This Z, gap becomes
indirect and pinches off before reaching X be-
cause tmo lines of the same symmetry overlap.
Figure 5 shows the 3D lines which are projected
back to form the 5(-'„0) point. The overlapbetween
the second and third Z, lines goes away as we
move toward I', producing the gap just discussed.
The gap between the first and second E, lines
increases as we go toward X, and becomes an
overlap as we go toward F. The same happens
to the gap between the third and fourth E, lines.
VFe can also see a minimal overlap between the
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FIG. 5. Three-dimensional energy bands from which

energy levels at the A {&3,0) point of the {001)face are
pr ojected.

two &, states. This becomes greater as we go
toward I', but in moving toward X the overlap is
lost and a gap develops.

All levels along Y, from X to M are twofold
degenerate because the SD points (-,', y, z) and

(—,', y, 1-z) = (--,', y, -z) go into one another under
the twofold rotation about the Y axis. Thus the
only gap which persists in going from X toward
M is the absolute gap caused by part of the lowest
X1 3 gap lying be low the X, 4 continuum . The
lower absolute gap at M is between k, =0 states
and comes from the N, -N, gap in 3D. Moving
toward X, this gap widens until it becomes an
indirect gap between k, = 0 on the upper curve and

k, = —,
' on the lower curve. The gap finally pinches

off as the k, =0 and 0, =-,' levels overlap. The
upper absolute gap at M comes from the N, -N,
gap in 3D. This narrows in the Y direction, then
becomes an indirect gap and widens out again. It

finally pinches off at X as the two bands go to
lines of different symmetry which cross. There
are three gaps along Y which exist at neither
M nor X. Each is narrow and indirect, except
that at its widest point the uppermost gap be-
comes direct. The extent of each gap will there-
fore depend greatly on the details of the potential
used in calculating the 3D energy bands.

As we move from M toward I', the highest Z,
level moves upward into the vacuum until there is
a wide gap between the highest I', 1IE,vel and the
vacuum. The lower Z, gap is indirect, but widens
considerably in going away from Q. It finally
pinches off when I', and I', levels cross at about
(0, 0, —,') in SD. The upper Z, gap at Mbecomes
indirect and pinches off about 38@ of the way to
I'. The absolute gap extends only about 19% of
the way from M to I'. The lower Z, gap from I
becomes indirect, then widens as it becomes
direct, and finally becomes indirect and pinches
off about 60% of the way to F. Since it is wholly
contained within the Z, gap, we again have an
absolute gap of considerable size. In Fig. 6 we
show the extent of this absolute gap through the
2D BZ, as well as the extents of the other two
major absolute gaps. "

The projected bands for (110) P-Fe are still
more complicated. In Fig. 4 we show the extent
of Z„C„and E, states with vertical cross-
hatching. We show the extent of Z» C» and &,
states with horizontal crosshatching. At I' and
Y there are more than two symmetries, so the
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TABLE II. Connectivity relations for the points and

lines of high symmetry in the Brillouin zone of (110)
bcc Fe.

r, , r4 —Z, —D,

D) C(~ Y), Y3

D)~C2 Y4, Y2

Y4 ~Q
Y2, Y3 E2 I'2, I'3 A)

T"
-0 712 - E — 0 527 Ry

T
-0468 —E - -0 337 Ry

T"

-0332 —E —-0032 Ry

FIG. 7. EKtents of the three major absolute gaps in the

(110) projected bands. The gaps are represented by the
unshaded regions.

extent of the various continua are indicated
separately. Along 3 and A all states are of a
single symmetry. Vertical crosshatching is used
to show continua along these lines. At F all levels
are 8 „S,degenerate. The connectivity relations
for the (110)bcc BZ are shown in Table II. The
absolute gaps and subband gaps arise in the same
way that they do in the (001) face. There are
again three absolute gaps which exist over large
regions of the 2D BZ. The lowest exists at F,
extends about threefourths of the way along both
the Z and E directions, extends all the way to S,
and extends from S along D in both directions.
This gap exists in the energy range-0. 712 Ry
«E « -0.527 Ry. The next important gap exists
along short portions of E and b, along most of A,
and along all of B except its endpoints. This gap
is narrow at 5, and only a few hundredths of a Ry
below E„. Going away from S, the gap drops to
lomer energy and widens. Surface states in this
gap mould have energies between -0.468 and
-0.337 Ry. The third gap is somewhat wider at
S, becomes much wider by the time it reaches the
end of the D line, then pinches off along the Z and

C lines. It extends only a little may from S along
A and does not exist at I'. This gap exists in the
energy range -0.332 «E «-0.032 Ry. Two ad-
ditional absolute gaps exist at S, but they are
narrow and pinch off quickly in either the B or
A direction. Figure 7 shows the extent of the three
most important absolute gaps.

Of course, surface states can exist in subband

gaps, but these gaps do not persist along general
directions in the 2D BZ. Along such directions
the surface states become surface resonances
(states which propagate uniformly into the bulk,
but have a maximum at the surface). Such res-
onances mill contribute to the surface density of

states and therefore to the results of experiments
such as field emission" and photoemission but to
a lesser extent than would surface states.

The presence of extensive absolute gaps very
near EF suggests an explanation for the surface
magnetic dead layers observed in a-Fe.22 In Li
and Al we found that surface states within gaps
caused antisurface states (i.e., states which be-
cause of their orthogonality to the surface states
are of small amplitude near the surface) at the
edges of the gaps. If there are surface states in
the gaps immediately above and below the para-
magnetic Fermi level, then the peak in density of
states occuring near EF will translate to a much
reduced peak in the surface density of states.
Furthermore, in order to maintain charge neu-
trality at the surface, the surface density of states
curve will have to drop in energy causing E„to
occur on the high-energy wing of this reduced
peak of the surface density of states, thus giving
a further lowering of the surface density of states
at EF. If the surface density of states is low
enough, then the paramagnetic phase may be
stabilized at the surface. Of course, it is pos-
sible, if the surface states in the gaps above E„
lie close enough to EF, that the ferromagnetic
state would be stable even at the surface, and
that the surface states would be occupied by
majority spins. Only more detailed calculations
can determine the actual situation. But we mould
like to point out that in both Fe and Ni the para-
magnetic EF lies on a peak in the density of states.
This peak comes from flat 3d bands so that there
are necessarily gaps in the projected energy
bands nearby. So this possible mechanism for
surface magnetic dead layers arises in a natural
way from the nature of surface states and the
nature of the paramagnetic-ferromagnetic tran-
sition.
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