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Electrodynamics and thermodynamics of a classical electron surface layer~
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The properties of a classical charge-compensated electron surface layer on a dielectric {for example,

liquid He, or liquid or solid Ne) are studied with many-body theory. The electrodynamic properties

{static screening, plasma oscillations, and inelastic electron scattering) are obtained with the

random-phase approximation. A "Debye-Huckel" expansion provides the corresponding thermodynamic

functions in the nearly ideal limit.

I, INTRODUCTION

The prediction of bound-electron surface states'
on certain bulk dielectrics such as He or Ne has
stimulated several. experimental. searches for such
behavior. Although early observations mere con-
tradictory, ~ recent data strongly support the
original theory. For example, studies by Brown
and Grimes' of cyclotron resonance in a tipped
magnetic field have verified that the electron mo-
tion is indeed tmo dimensional, and detection of
resonant transitions to excited surface states has
confirmed the fundamental mechanism of image-
charge binding in considerable detail. These ex-
periments raise the intriguing possibility of study-
ing other properties of a two-dimensional electron
gas, and a theoretical calculation of such effects
becomes of great interest.

Consider a charge-compensated one-component
system of N electrons confined to an area A at a
temperature T. Three energies are significant:
thermal (=ksT), electrostatic (=e2n'~~), and zero-
point (= 8 n/m), where —e and m are the electron's
charge and mass, and n =N/A is the areal density.
If the interparticle spacing n ~ is much greater
than the Bohr radius 8'/me, then electrostatic ef-
fects dominate those of quantum degeneracy. This
limit always applies in the present problem, be-
cause the electron density is usually in the range'
10 ~n-10 cm . The corresponding electrostatic
energy per particle lies between 2&10 and
7x 10 erg, which is roughly comparable with

typical thermal energies (= l.4X 10 "erg at 1 K) ~

Thus, quantum effects are negbgible, and the

present two-dimensional surface electrons always

exhibit classical behavior.
For electrons on the surface of liquid He, the

low temperature (T~ 2 K) implies that the Cou-

lomb energy exceeds the thermal energy except
at very low density (n& 4 &10 cm at 1 K). Con-

sequently, such a system may form a tmo-dimen-

sional signer lattice. '8 Unfortunately, a reliable
estimate of the critical density n, (T) for melting

this lattice has proved elusive even in three di-
mensions, so that the existence and stability of

the ordered tmo-dimensional array remains con-
jectural. Independent of the detailed configura-
tion, however, these electron surface layers
should exhibit two-dimensional analogs of the
plasma oscillations and screening that character-
ize a bulk charged medium.

The surface of liquid or solid Ne (critical tem-
perature =44 K, normal boiling temperature =27
K ) can offer a quite different environment. At

these higher temperatures (note that ~He and Ne

attain a vapor pressure of 1 mm at 1.5 and

15.9 K, respectively') an electron surface layer
would better approximate a classical dilute plas-
ma, analogous to the three-dimensional Debye-
Huckel limit. '0 Indeed, a charged layer on (solid)
Ne at (say) 10 K might be made to pass continu-
ously from a Coulomb-dominated regime to a ther-
mal one; such an experimental investigation could
illuminate the analogous behavior of a degenerate
electron gas, mhere direct variation of the elec-
tron density has proved impractical. Neon offers
the added advantage that its larger dielectric con-
stant binds the electrons more tightly to the sur-
face. (Note that liquid He and Ne have dielectric
constants 1.056 a.nd 1.167, respectively. ) The
corresponding scale of length perpendicular to the
surface varies approximately as (e —1) ' and is
therefore smaller in Ne than in He by a factor = 3.

To clarify the properties of such a system, we
have present a many-body theory of a dilute two-
dimensional classical charged gas, placed at the
interface between tmo semi-infinite dielectrics and

neutralized by a rigid background charge. Sec. II
analyzes the electrodynamic effects, including the
screening of a static impurity, the spectrum and

damping of plasma oscillations, and inelastic elec-
tron scattering. The equation of state and other
thermodynamic functions are determined in Sec. III.

II. LINEAR RESPONSE TO ELECTRODYNAMIC
PERTURB ATIONS

Although the present problem is wholly classical,
it mill be convenient to formulate it as a many-
body quantum-field theory. This approach permits
a unified description that is valid for all tempera-
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V(r) = e~/r,

where the "renormalized" charge

e = e[2(~, + e,) ']"'

(2)

is the only remnant of the surrounding dielectric.
This same reduced charge e determines the po-
tential energy of the neutralizing background and
its interaction with the mobile electrons; hence the
subsequent reduction of the total Hamiltonian is
virtually identical with that in three dimensions. '
A straightforward calculation leads to the second-
quantized expression

H=gfgs Qg, + Q Q V(q}
kyq )t,ghee

ture; at low density and high temperature, it re-
duces to the classical bmit applicable to electrons
on the surface of He and Ne, whereas the same the-
ory at zero temperature describes a dense two-
dimensional degenerate electron gas typified by in-
version layers in certain semiconductors" and by
electrons on the surface of ZnG. + Since the latter
problem has already received considerable atten-
tion, """the present work will largely ignore the
low -temperature limit.

The system of interest is X electrons confined to
an area A in the xy plane with periodic boundary
conditions and neutralized by a positive rigid back-
ground layer. Moreover, we assume that uniform
media with dielectric constants &, and e, fill the
adjacent half spaces. When a single test charge Ze
is placed at the origin of the otherwise charge-free
system, the electrostatic potential at the point
(r, s) has the value

2Z8
4'(rr s)

( ~ )(&2 &z)1/2

This result follows immediately as the limit of
standard textbook example' ' it has the corollary
that the electric field E is radial and isotropic,
whereas the displacement field D is radial but con-
centrated on the side with the larger die1ectric con-
stant. In addition, Eq. (1) yields the potential en-
ergy V(r) of two electrons in the xy plane a dis-
tance x apart

between the Fourier transforms of P„, n, and the
retarded polarization Il . In the simplest approxi-
mation of keeping only the ring diagrams [random-
phase approximation (RPA)], this latter quantity
reduces to

II"(q, (u) = II (q, (u)[1 —V(q)II (j, (u)] ',
where

(2F) Kd + fq —ey~ + cp

is the retarded proper polarization of an, ideal two-
dimensional Fermi gas and n~ is the Fermi-Dirac
distribution that reduces to expP(p —e~) in the clas-
sical limit.

If P,„(r, t) arises from a static point charge Ze
located at the origin of the xy plane, the Fourier
transform of Eq. (I}yields

@,„(Q, co) =[(2v) 2Ze/(e, +@2)q]5(w) .

An inverse transform of (6) gives

( )
d'q, ;.; 2v~err~(q 0)

(2v)' q —2w~erl~(q, 0) '

where e is again the "renormalized" charge from
Eq. (3). The evaluation of II "(q, 0) proceeds ex-
actly as in the three-dimensional classical limit
and even gives the same answer when expressed in
terms of the variables (T, A, N}:

II (q, 0) = —n(ks T) 'g, (qX)-,

where X=(2m''/mksT)'~' is the thermal wave-
length,

g( )x= 2v'" x-' q(x/4v'~') (12)

and @' denotes the rea.l part of the plasma-disper-
sion function. As a result, Eq. (10) may be writ-
ten

consider the effect of an external scalar potential
P„(r, f) on the two-dimensional electron gas. In
this case, the response may be characterized by
the induced particle density 5n(r, f}. Application of
the standard theory' yields the relation

5n(q, v}= —II"(j, &o}eP,„(q, ~)

y g~)t~ p)t~
5n(r) =— q dq Zo(qr)

Z " k, g&(q~)
2' q+kng, (qX) ' (13)

where al (a. ) is a creation (destruction) operator
kX k)t

for an electron with momentum hk in spin state ~
and &~ = 5 k /2m. Here the primed sum means
omit the terms with q = 0, and V(q) is the two-di-
mensional Fourier transform of Eq. (2):

r(q)=r' J d r "'r '=2 e'r ' .

As our first example of electrodynamic response,

kD = 2vn e /ks T (14}

is the two-dimensional analog of the Debye-
Huckel' screening constant and Jo is the usual Bes-
sel function of order zero.

Equation(13) has several desirable features,
such as a finite screening density &n(r) even at
~=0, and a total integrated screening charge —Ze.
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For large r, the behavior at small q dominates the
integral, and g,(qX) may be replaced by its leading
term g,(0}= 1:

5N(r) - ' q dq
Zk " J (qy)
2& 0 q+k~

' (15)

This long -wavelength approximation evidently re-
quires ~» X, where it reproduces the Thomas-
Fermi model of Stern and Howard, ~0 but with the
modified screening constant (14).

The same methods also can describe a time-de-
pendent perturbation with frequency &. In the ran-
dom-phase approximation, the resonant response
(plasma oscillation) occurs at the solution A, -fy,
of the equation

1 = V(q)II (q, A, —Ip,), (18)

which, in general, requires numerical evaluation
of II . For small damping (y, «A, ), however, an
expansion to first order in y, uncouples the real and
imaginax y parts

1 = V(q)Reii~(q, Q,),

layer and S(q, u&) is the corresponding dynamic
structure factor. ' It takes the usual form

S(j, ~)=& ' gexp[P(Q —E;+ pN, )
kf.5[~ —& '«, -E i)l I&+,l.(-R l~,) l .

(20)
Here n= (n) is the average electron surface density
in the grand canonical ensemble, n(-q) is the two-
dimensional Fourier transform of the fluctuation
surface density n= n —n, and the sum runs over the
complete set of initial and final states of the tar-
get. The Lehmann representation relates Eq. (20)
to the retarded polarization introduced previously
in Eq. (6), and a straightforward analysis yields

S(-., )=-—' (21)
nv 1 —exp(-Pg&u}

In the lowest (RPA) approximation, where the
proper polarization is taken as that for an. ideal
gas, the dynamic structure factor assumes the
simple form

(&k &)
(1 -ga

)

y =r n (q o )/('"'" ~~' ~) (17b) lmllm(c{, (u}

[1 —V(g) Rell~(j, (u)]'+ [V(q) Imll~(q, (u)]' '

The evaluation of these quantities is very similar
to that in three dimensions; after some rearrange-
ment, we find

2''Pq 3q'AT 2vne'q 2q
m m m kD

2mne'q &' y '&' ~ &' u, 3

(18a)

(18b)
which holds for q& kn. The leading term of (18a)
exhibits the usual q ~ behavior ~~'~s' 4 and the
correction term confirms that obtained with the hy-
drodynamic model. The present many-body treat-
ment introduces one new feature, however, for the
long-wavelength plasma oscillations undergo I.an-
dau damping ' like that in three dimensions; in fact,
the long-wavelength ratio ly, /A, l is virtually un-
changed by the altered dimensionality, apart from
the substitution of k~/q for (kn/q) .

As another example of linear response, we study
inelastic scattering of nonrelativistic electrons
from the charged surface layer. If K and- K' denote
the incident and final three-dimensional wave vec-
tors of the projectile and q is the projection of
K —K' onto the xy plane, then the double differen-
tial cross section for scattering with projectile en-
ergy loss @(d and a two-dimensional momentum
transfer 8'q to the layer is given by

d o NK' 2me
dQd~= X 8- iK Ki

where N is the number of electrons in the target

(22)
with V(q) the interparticle potential from Eq. (5).

Consider first an ideal gas (V= 0), when the de-
nominator reduces to 1, and S(q, u} then is pro-
portional to Imll "(q, &o). For fixed q, the result-
ing ideal-gas structure factor has a maximum at
the "quasielastic" value ufo(q) =Kq2/2m, with a
width of order (ksTq /m) ~ . The inclusion of in-
teractions affects this behavior significantly, for
Eq. (22) is large not only where ImII is large but
also where 1 = V(q)RelIos. Comparison with (17a)
indicates that S(g, ur) I'or a two-dimensional charged
layer should acquire a peak at the plasma frequen-
cy A, (18a) with a width of order y, (18b). Indeed,
an expansion of (22) near e =A, yields a Lorentz-
zian form

S( )
q pgQ~

2wkz 1 —exp(- PIIQ, )

X
2vne q ((u —Q, )~+y2

Observation of such a plasma peak mould verify
the detailed form of the dispersion relation, which
has previously been deduced from purely theoreti-
cal considerations.

III. THERMODYNAMIC FUNCTIONS

Section II studied the electrodynamic response of
a classical two-dimensional electron gas in the
random-phase approximation. Although this ap-
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proach is rigorous only in the low-density limit
(n'~2 «ks T e~), its qualitative predictions are
likely to have a wider range of validity„ In partic-
ular, the essential features of the screening (15)
and plasma oscillations (18) reflect the long range
of the Coulomb interactions and occur in other
more approximate descriptions. "'~0

On the other hand, the situation is less favorable
for the thermodynamic properties of the charged
surface layer, because quantities like the equation
of state can be obtained only as expansions in the
small parameter e~n'~~/ksT Con. sequently, the
resulting theory is limited to low density (n & 4
0&10 cm for He at 1 K and n &4&&107 cm ~ for Ne
at 10 K). Nevertheless, it may have experimental
application to these charged surface layers, and,
moreover, the expressions exhibit an interesting
nonanalyticity in the coupling constant. As the
calculations are standard, the derivations are
greatly abbreviated.

It is most convenient to evaluate the thermody-
namic potential Q(T, A, p), 26 whose derivatives
yield the various thermodynamic functions like the
entropy S, the pressure p, and the number of par-
ticles ¹

ture'5 owing to the altered phase space and less
singular form of V(q). On the other hand, the first
classical correction to the ideal gas in two dimen-
sions turns out to vary like e4lne, which is less
singular than the e' dependence in three-dimen-
sions, but it still requires a summation of the ring
diagrams to infinite order. A detailed calculation
(see the Appendix) yields the approximate expres-
sion

( )
2Ae " 2vPAe~~" e '

pate

3
ln

4 & + —+ c, 25

where

c = —,'In(2v) ——,'y —G = -0.2856

and G = 0.91597 is Catalan's constant.
The first step in deriving the thermodynamic

functions is to eliminate p. in favor of N with Eq.
(24). The resulting thermodynamic potential is
just —pA, which therefore yields the equation of
state

P(T, A, N)=nksT 1 ——
(

(24)

Note that P here has the dimensions of a force yer
unit length, appropriate for a two-dimensional
configuration. If the interaction potential V(r) has
a short range and a well-defined Fourier trans-
form, then 0 may be constructed with perturba-
tion theory. In the present situation of a long-
range Coulomb potential, however, some of the
terms diverge, and it becomes necessary to sum
an infinite subset of all the contributions. This
procedure is well known in three dimensions,
where the divergence first appears in second or-
der. There, the resulting zero-temperature cor-
relation energy ' varies like e4lne, whereas the
first Coulomb correction to an ideal classical gas'
varies like e . Each of these regimes involves
nonanalytic behavior in e, with the classical limit
more singular than the degenerate zero-tempera-
ture one. As shown below, the two-dimensional
electron gas behaves similarly.

The evaluation of A from the Hamiltonian (4) is
a standard problem in many-body theory, and the
altered dimensions and presence of adjacent di-
electrics affect the Feynman rules~a only in that
the momentum differentials become A(2v) ~d~k,

and the Fourier transform of the potential is given
by Eq. (5), which varies like q

' for small q. As
a result, the leading contribution to the two-dimen-
sional correlation energy is finite at zero tempera-

xln, „lBIR 3

+ —]n ~, + —+ c . 271 mk~T 1
2 2mn a2 2

Note that the leading correction is indeed small in
the limit I n/m«n' e «ksT; nevertheless, it
is not permissible to neglect the zero-point energy
entirely, for the expression diverges logarithmical-
ly as g-0. The isothermal bulk modulus J3~ ex-
hibits a similar behavior.

To evaluate thermal properties, it is preferable
to introduce the Helmholtz free energy E(T,A, N)
=0+ pA. An elementary calculation gives the cor-
responding entropy

—4

S(T,A, N)=Nks In 3 +2-

2„nicaea +2 2 „+g +c

(28)
along with the specific heat at constant area

mn e4 k~T
C~ =RA'a 1+

&
ln 2mni/a ea

ma, T' 3
2vna' 4 j

and constant pressure

3mne4 ~ u, T
Cp —2&k'g 1 +

2
ln

2 gyp g
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An experimental study of some of these quantities
for electron surface layers on liquid He or Ne
would be valuable.

The appearance of g in these apparently classical
expressions can be explained in various ways.
First and most trivial, the thermodynamic func-
tions of classical gases depend explicitly on 5 be-
cause it fixes the allowed cell size in classical
phase space. More significant, however, is the
factor ln(keT/2vne2X) in the second-order correc-
tions. As in the ease of a three-dimensional
charged medium, this factor arises from a quan-
tum-mechanical cutoff on the maximum allowed
momentum transfer, or, equivalently, on the mini-
mum allowed impact parameter. 39 3' In the pres-
ent two-dimensional case, the minimum impact
parameter is of order ii/m(v) = (g2/2mkeT)'~2
=200 A at 1 K, which is comparable with the thick-
ness of the electron surface layer on ~He. Thus it
is possible that the finite perpendicular extension
of the wave functions might alter the logarithmic
dependence on ~. This effect requires further anal-
ysis; it would be less significant for electrons on
Ne, owing to the enhanced binding to the surface.

IV. CONCLUSIONS

The present paper has analyzed the electrody-
namic and thermodynamic properties of a classi-
cal two-dimensional electron gas, which serves as
a model for surface electrons on 'He or Ne at low

temperatures. Most importantly, such a charged
layer responds in a characteristic manner to an
external electrostatic perturbation. It screens an
external charge placed in its plane with a long-
range algebraic tail3 '3~ in contrast to the exponen-
tial Debye-Huckel form in three dimensions.
Moreover, the dispersion relation 0, (18a) for two-
dimensional plasma oscillations is virtually identi-
cal with that obtained previously. "' ' Finally,
inelastic electron scattering from the charged layer
might, verify the existence of the two-dimensional
plasmons, for the cross section should peak sharp-
ly at an energy loss 50, .

It is interesting briefly to compare these fea-
tures with those for a degenerate two-dimensional
electron gas, which serves as a model for semi-
conductor inversion layers" and for electrons on
the surface of ZnO. ' The present many-body
formalism remains valid if n, is taken as the gen-
eral Fermi-Dirac distribution function, and most
of the conclusions remain qualitatively correct.
There are a few new features, however, which re-
flect the presence of a sharp Fermi surface. First,
the correlation energy (terms of order e and
higher) is finite, '~ in contrast to the logarithmic

APPENDIX

This Appendix computes the approximate thermo-
dynamic potential for a classical two-dimensional
electron gas in the low-density limit (e2n'~2 «ka T)
The leading contribution is that for an ideal spin. --,
Fermi gas~6

n, =-2k, T p ln(1+e"' '&')
k

=- 2Ae '/P&'

where X = (2wh'/mkeT)' ' is the thermal wavelength.
Quantum corrections to (A. 1) are smaller by a
factor of order e~" =-,'n&, which is negligible in the
present case. Moreover, the first-order correc-
ti.on to Ao also vanishes in the classical limit, be-
cause it arises solely from quantum-mechanical
exchange. As a result, the presence of interac-
tions affects 0 only in second order, and these
quantities will now be examined in detail.

The small classical occupation of any particular
single-particle state permits a simple classifica-
tion of the various perturbation terms. The only
relevant second-order contributions are the "di-
rect" and "exchange" ones

dkdpdq
2a (2& )6

[ V(q)]2n, n,
y

&P+q+ ~p+g &r &p

(A. 2a)

d kd'pd2q V(q) V(k+p+q)n, n,
A~t, = A(P

(2w) c +e —N —f

(A. 2b)

where 6' denotes a Cauehy principal value and we
have passed to the classical limit with n, =expp(p
—e2) «1. The term 0» is finite, but Q2, diverges
logarithmically, necessitating the inclusi. on of
higher-order ring diagrams. The analysis is
similar to that for a three-dimensional electron
gas, ~ combining features of both the classical and
degenerate limits. The net effect is to replace A~,
by A„, +Q„» where

singularity found here in the classical limit. Sec-
ond, the screening around an external impurity ex-
hibits long-range Friedel oscillations. " Third, if
lmll' (q, &u) is considered a function of ~ for fixed

q & 2k~, ii acquires a cusp at a characteristic fre-
quency (Nq/n2)(k~ ——,'q), which might be detectable
as an additional structure in inelastic electron
scattering from degenerate surface layers. This
last possibility merits further study.
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n„g =
4 qdq[ln[1 —V(q)II's(q, 0)]

0

+ V(q)lio" (q, 0)]; (A. 3a)

rewritten in terms of an integral of the complete
elliptic integral3

e4 1

Qgg -— ggP Ae "
g df K(i)

0
-2A
(2 gg)' [y(q)]Sf

d Ig d ig ggg ggp

«~+a+ «p+a
=2ggGPAe g~ e /& (A. 10)

(A. 3b)

Here II (q, 0) is given in Eq. (11) and the cutoff qo
must satisfy q0X«1.

The first step in evaluating Q» is the introduction
of dimensionless variables

PAe"' e '~ d g god'x d'y exp(- x' —y')
2ggg Xg gvlw+x+yl[@ ~ (0+x+y)]

(A. 4)

A linear substitution y = —v —w —x then permits a
direct evaluation of the x integration

PAe~' eQ»=-
4~

~(P

II (q, 0) = —2Pe ~X (A. 11)

apart from corrections of order (qA) . Equation
(A. Sa) thus reduces to

n,„g= 4, xdx[ln(1+ox ')- ax ']

(q,X) ln 1+
A z a

q0A.

where G = 1 —9 '+25 ' — ~ ~ =0.91597 is Catalan's
constant. ~5

The next contribution A„g requires Iios(q, 0) only
for qadi«1; a simple analysis [compare Eq. (11)]
gives

d'vdggvexp(- —,
'

v ——,
' gv' —v w)

vgv(v w)
(A. 5)

The remaining fourfold integral may be simplified
by observing that

p 3 xp
vgv(v w)

(A. 6)

yields

1

dfexp —gv ~ w = v-w exp -v-w -1
(A. V)

0

x " exp(- -,' vg ——,
' gvg —f'v w), (A. 8)

VLU

where the principal-value prescription. is now

superfluous. If the double integrals are expressed
in polar coordinates, the angular integrations pro-
duce a Bessel function Io(fvgv)—= Jo(ifvui) of zero
order and imaginary argument3~

—4 1

Q =mPAe ~~ — dfRb X4
0

because the integrand is an odd function of its argu-
ments v and w. Consequently, a combination of
Eqs. (A. 5) and (A. 6) with the identity

—n lna qo& + 1 —q0A. (y
Q

AG. ~

g [-»(qadi)+Inn--, '],
87t PA

(A. 12)

g em(-x'-y')
Xd p e

w ~ jw+x+y~ (A. iS)

where geo = qo(pigg/2m)g g g. An orthogonal transfor-
mation x+y= v 2 s, x- y = v 2 t renders two of the
integrations elementary, leaving

Q„2= —2pA e

exp(- s')
w ~ (w+~s) (A. 14)

If s is resolved into its Cartesian components s,
and s, parallel and perpendicular to w, a straight-
forward integration over s, yields the two-dimen-
sional integral

where &g=4ggpe ~ eg/X is a dimensionless parame-
ter, and the last line omits terms that vanish fast-
er than cg for small cg.

The other contribution of interest is Q„„given
in Eq. (A. Sb). The dimensionless variables used
for Q~~ reduce this quantity to

2jgae~" e4 "
duQ„2=- —7 (P

A.

doAUexp —z 5 —
~ Qi I0 fvK . A9

0

The remaining integrations are expressible in
terms of known functions33 and may eventually be

ggo

n„=-~'"PA. ~' '
(A. 15)

where the new variables e = gv/v 2 and s = s„have
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been introduced and so= geo/v 2. Partial integra-
tion transforms the s integral as follows:

exp(- s')
ds p p8 —8

=2 dssexp(- s ) ln
Z+g

0

(A. 18)
and a combination with (A. 15) gives

where the order of integration has been reversed.
The z integral may be done exactly, and an expan-
sion for small zo leads to

—,ln, = s '[2+21ns+1n(2/u', )].
(A. 18)

Substitution into Eq. (A. 17) then yields

Q„2 = 2m PA e+'(e 4/X )[ln(qadi) —1 —
~ ln(2s) + 2 y j,

(A. iS)
where we used the definite integral

0„=—2m ~ Pge~s"r2 4
dslns exp(- s~) = ——,

' v ~~~(21n2+ y), (A. 20)

&& ds s exp(- s ) —
3 ln, (A. 1'1)

"d~ 'z+s
0 'a Z Z 8

with y = 0.5772 being Euler's constant. Equations
(A. 1), (A. 10), (A. 12), and (A. 1S) together give
Eq. (25).
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