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Expressing the quantum mo:hanics of Bloch electrons in a solid in terms of the Weyl transform
instead of quantum operators and the Wigner function instead of state vectors, the method used by
Wannier and Upadhyaya for calculating the trace of the n th po~er of the Hamiltonian operator is
generalized as a series expansion in powers of g of a cosine function of a sum of Poisson-bracket
operators. The expression is calculated explicitly to order h . The result is applied to the derivation of
the magnetic susceptibihty of solids with substitutional impurities, to order I, as well as to other
problems where spatial inhomogeneity is present.

The need to evaluate the trace of the nth power
of an operator such as the Hamiltonian operator in
solid-state theory arises in many instances. One
example is the calculation of the magnetic suscep-
tibility of the system from the formulas
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Wannier and Upadhyaya' (to be referred to as WU)
evaluated TrX" up to the second order in the mag-
netic field strength for the case of Bloch electrons
in a uniform magnetic field. Their method is very
fascinating in that the result for TrX" assumes a
particularly simple form such that one almost im-
mediately knows p once TrX" is obtained. Their
method is essentially based on the existence of
localized functions A„(x, q) and extended functions

B,(x, p}, where X labels the energy band, q, labels
the lattice points, and p labels the crystal momen-
tum gk. A„(x, q) and B„(x,p) are known as the mag-
netic Wannier functions and magnetic Bloch func-
tions, respectively. The purpose of this paper is
to generalize their method of evaluating TrX".

The urgent need to have a complete theory of the
magnetic susceptibility of alloys, spurred on by the
availability of extensive experimental data in the
last two decades, has attracted many theorists. ~

Until now, however, only perturbative solutions in
powers of the strength of the impurity potential
exist and only in the special case of a free-elec-
tron band does the problem seem to have been
formulated by Kohn and Luming.

Here we extend the work in VfU and find a general
expression for TrX". The fundamental assumption

made is that there exists a complete set of local-
ized functions labeled by band index X and lattice
points q, and a complete set of extended functions
labeled by band index X and crystal momentum p.
The two sets are connected by a unitary "lattice
Fourier transformation" which is defined below.

Let N)„(x, q} be any localized state labeled by a
band index )( and lattice point q. Let b„(x,p) be its
lattice Fourier transform. Thus we can write

b„(x,p) = lp, )() =
l p),

w, (x, q) =
l q, x ) =

l q ),
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By using the closure relation, Eqs. (14) and (15),
the following identity holds for an arbitrary opera-
tor A:
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Introducing the notation

b, (x, p) =(Nff') ' g e" "'~'~M&„(x, q),
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where N is the total number of lattice points. For
convenience, we introduce the Dirac ket and bra
notation:
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p =p+u
y

Af)
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q =q+v,
~//
q =q-v,

and using Eq. (11), we obtain

A=(Xp') ' Q A», (p, q)n, », (p, q),
j$,$, XgX'

where

(17)

A, (p, q) =pe&"'"»'( q- v, ~ IA Iq+v, x'&,

A, (p q) =gee'~"'~ 6(p+u, GAIA Ip —u, x'&, (20)

, (P q) =Bee' "'~'~ lq+ v, x&(q- v, ~'I . (21)

In Eq. (17) the operator nature of A is transferred
to &».(p, q). The reader who is familiar with the
alternative formulation of quantum mechanics in
terms of the Acyl transform and the signer func-
tion' will recognize that A», (p, q} and n, ».(p, q)
correspond to the %eyl transform of the operator
A and to the 4 function, respectively, in that for-
malism. We will refer to A». (p, q) as the lattice
Weyl transform of the operator A. [Our definition
of A», (p, q) differs from that of the continuous (p, q)
formalism by a factor of 2 in the exponential and
the absence of —,

' inside the ket and bra, and, of
course, by the replacement of the integral with the
summation. ] Thus an alternative formulation of
the quantum mechanics of solids is possible using
a complete set of functions w„(x, q) labeled by a
band index ~ and lattice point q and a complete set
of functions b„(x,i) labeled by a band index X and
crystal momentum p, the two complete sets being
connected by a unitary lattice Fourier transforma-
tion. Examples of these complete sets are the
Wannier functions and Bloch functions, both with
and without a magnetic field. Blount's "mixed
representation'*4 and %annier's formulation of the
dynamics of Bloch electrons in a solid both are
an embryonic form of a discrete (p, q) versionof the
statistical formulation of quantum mechanics when
considered in terms of the %eyl transform instead
of operators and the signer function instead of
state vectors. The power of this method of doing
quantum mechanics in solid-state theory has re-
cently been demonstrated by the authors in cal-
culating the magnetic susceptibility of bismuth.

In this paper we will restrict our treatment to
the derivation of the expression for the trace of

n». (p, q) =gee' "»'6IP —u, x&(p+u, A.
'

I
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By applying Eqs. (5) and (6) it is easy to obtain the
following equivalent expressions for A», (p, q) and

(p, q):

the nth power of an arbitrary operator A, particu-
larly the Hamiltonian operator X. To the author' s
knowledge, this is not given in the continuous

(p, q) formalism.
From Eq. (17) we can see that, because of the

way the operator 4 is defined, the only nontrivial
way in which the lattice Weyl transform of 5, ex-
plicitly occurs is when one takes the lattice Acyl
transform of at least a product of two operators
A and B. Therefore we have as fundamental bi-
nary operations the taking of the trace and the lat-
tice %eyl transform of products of two operators
or, equivalently, the trace apd lattice Acyl trans-
form of products of two b, 's.

Let
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The last line is obtained by writing q, ~ (p, —p)
+@~ (p —p,}as p ~ (@—q, ) + q, p, —@ p, . We thus
obtain, using Eq. (17},

TrAB=(Nh ) ~ P A, (p~, q~)B~~. (pz, @)
~2t~i& Ns N'

jfgy ~p~8, 8'yy, f
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In taking the lattice Weyl transform of n, (p„q,}
xnzz, (pz, @) it is convenient to use the expression
in Eq. (20) applied to the 4 operator in Eq. (19).
%e therefore have

(&..(Pi, qi)&s (Pa, @}]„(p,q}

&..(p„q,) =Ze"'"'"'"Ii,—u&, o&&R+ui, &'I,

(22)
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Then we have
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where superscripts (a} and (b) indicate the objects
of the differential operator.

In matrix notation we may write

ential operator operating to the left. Summing over
p (I p&, q& and using Eq. (8) we finally end up with

8{a) 8Q) 8{a» 8{a)
(AB),„,(p, q) = exp —.

2i 8p 8q 8q 8p

61~/-5~63& 5-51~so ~ o '8~8'w'
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(AB}(p,q} = e)(p —..2i 8p 8q 8q 8p

xA(p, q)B(p, q) .
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where the last line is obtained by writing q ~ (p( —p&)
+q& (pm-p)+q (p-p&} as (p&-p} (q -q}+)q,-q}
~ (p —p, ). Introducing P =p), —p and q =

q3 —q, the
lattice Acyl transform of a product of two opera-
tors A and B may now be written as

(AB)». (p, q) =(NK') ' Z e)(p
g [&'(q& —q}

81s ~1e&e&s&

It is easy to see that the lattice Acyl transform of
the anticommutator of A and B is

8{a) 8{b) 8 {o) 8 {b)

Q, B](p, q) = cos-
&p sq &q Bp

x[A(p, q)B(p, q) + B(p, q)A(p, q)]

{) 8 {&) 8 8) 8 {j}')

2 Q ()f[ sq sp

x (p&
—P)] A&(&(p&, q&)B(&a~(p+P, (l+q) .

(33)
Further simplification of the above expression de-
pends on our assumption that there exist two con-
tinuous functions of q having an infinite radius of
convergence, which are equal to A~(p„q, }and

B(&~.(p+p, q+q), respectively, at all lattice points. '
(We need not worry about the p dependence since,
in the limit of infinite volume, p becomes continu-
ous. ) Therefore we can expand B()„,(p+p, @+q) in
a Taylor series around B(&„.(p, q) and obtain

(AB)».(p, q) = (Nfl ) ' g exp —[p ~ (q, —q) —q
~1&~1~~~4l~t)

x [A(p, q}B(p,q} —B(p, q)A(p, q)] . (38}

Putting A =8 in the last expression we obtain

{1) 8{3) 8 {1) 8 {3)
A (p, q) =cos

2 8p 8q 8q 8p

x-,'[A"'(p, q)Ae&(p, q)+AN&(p, q)A('&(p, q}] .
(38)

By reiterating the binary operation prescribed by
Eq. (39) one can easily convince oneself that for
any power n

tl

A"(|I,g) =cos —g 8q

x &[A(1)(» }AN)( ~) A(II)( ~)

X (p& p}] '!A&((&(p&I q1)

8 8
&(exp P.—+q ~ ~ B~„gp, q)

I
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S1.&1J)e&.&

(34)

+A'"'(p, q)A'" "(p, q) ~ A '(p, q)A"'(p, q)] .
(40}

Equations (28) and (40) are all we need to evaluate
the trace of the nth power of an arbitrary operator
A. Thus by using Eq. (28} we have

TrA" = (N8'} ' Tr~ ~+A" '(p, q)A(p, q), (4I)
SfI

xexp [p (@-q)-q (p—, -p)]e
4- 4—
8 8 8 8x exp —.—~ ~ ~ ~ B(&&s(PI q}

(38)
where the arrows pointing to the left mean differ-

and with the aid of Eq. (40) we end up with

T rA" = (Xlf') '
Tr&,~, Q
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x —,'[A"'(p, q)A s}(p,q) ~ ~ A'"'(p, q)

+A("}(p q) ~ ~ As}(p q)A'"(p q)] (42)

where Tr~ ~ means trace over band indices. To
make explicit progress beyond Eq. (42), we ex-
pand the cosine function to order g~ where we
have

TrA" =(~g')-'Trg [A(p, q)]" 2, 2 2
[A(p, q)]"-'I&

Ss4 epep ' eqeq

IPA(p, s). 33A(p, q}, frr —1)(s —2)(ss —3) 12 —1)(s —2} - -,„, 3 A(p, 2) PA(p, q) sd(p, 2)

I

SSA(p, q). SA(p, q) SA(p, q) 1PA()r, . q) SA(P 2) SA(P 2) +A(P 2):.SA(P 2} SA(P q)I)
peg ' ep ep

s(s —1)(n -2) Q-1)(s —2) „, eA(p, q) e A, (p, q) eA(p, q) eA, (p, q) e'A(p, q) eA(p, q)
2 p' q

ep egep eq eg epeg 8$
~ ~ ~ ~

eA(p, q) e A(p, q) eA(p, q) eA(p, q) e A(p, q) eA(p, q)
epep eq ep eqeq ep

(42)

f; $ is a symmetrized tensor contraction, i.e. ,

e'A(p, q) ~ e'A(p, q) e'A(p, q) e'A(p, q)
8p8p ' Sq8q 8p 8p) 8q eq~

e'A(p, q) e~A (p, q,)
8$ g Sgf 8p) Spy

and moreover, the p's must never have identical
indices as well as the q's where repeated indices
are summed over. In evaluating the summation by
an integral, (I/ÃK') Q }I goes over to h ' fd'pd'q.
Equation (42) indeed will give us a systematic ex-
pansion of TrA" in powers of ga.

If A(p, q) is of the functional form
A(p —(e/c)A(q) f$ q)), where f(p, q) Oas-
Iq, I- ~, then integration by parts permits the re-

duction of the [A(p„q)]" term to the form of the

[A(p, q)]" term plus gradient terms which do not
contribute after integration with respect to p and

q. To prove this, one has to make use of the
periodicity in p space and also the fact that the re-
sult of p integration of an integrand, which is a
function of [p —(e/c)A+q] only, does not depend onq.

The final result can be written
s

TrA"=Tr„~~h" d pd q A, q

1 5 + -~
A ~P

8A p, q ~ 8A P, q
~P~P ' ee@v

e A(p, q) ~ e A(p, q) 0( A) (44)
epeIt

and the trace of an arbitrary function of operator
A defined in terms of power series can thus be ex-
pressed as

3

Trp(A)=Tr 3'f d'pd'2 p(A(p, q))

q

3'A(p, ql. ssd(p, q)I
8p 8p ' eq8q

e'A(p, q) ~ e'A(p, q) ( 4)
eqep

(45)

Ne wish to point out that TrK" in VYU exactly
follows from Eq. (44), where the lattice Weyl
transform Hgp, q) of the Hamiltonian is H(p, q)
= W(p —(e/c)A(q); B)5~2 W being referred to in WU

as the renormalized-energy band function. (For
the case where spin-orbit coupling is included,
for each band index X, lV is a 2x2 matrix, and
this is given by Both.'

Because of the particular combination of p and

q in W~(p —(e/c)dp}. (q); 8), q did not explicitly ap-
pear in the problem considered in %U. In the pres-
ence of a substitutional-impurity potential, q will
explicitly appear in the problem. The virtue of
Eq. (42) is that it allows inhomogeneity in direct
space.

Using the above trace formulas, we have ex-
tended the work in %U to the derivation of the mag-
netic susceptibility of dilute alloys to order P~.
The result given for y is valid for general Bloch
bands to all orders in the impurity potential and
reduces to all known limiting cases discussed by
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where

+ X.,i.(0)&a /r, (45)

Hebborn and Scannes. ~ In the free-electron-band
model the expression for 4X per solute atom gives
a firm theoretical foundation to the formula used
by Henry and Rogers, as pointed out by Kohn and
Luming, which accounts quite well for their ex-
perimental results on dilute alloys of Zn, Ga, Ge,
and As with Cu. This is given as

——Tre(X)
8

8p,
(54)

6 qnq (55)

the local particle density n(q) can thus be obtained
as a series expansion in powers in @, which can,
in principle, be obtained to all orders in g . Then
the self-consistent potential due to an impurity
charge Ze located at the origin must satisfy the
Poisson equation in electrostatics:

v'V(g) =4wen((l} —4nen, —4vZe5((l) .

ap(q) =
y fd (f'()") )')f"()") )' (1))

Zo= + V (q),

(49)

(51)

(52)

(53)

The result for the potential screening at zero field,
low fieM, and very high magnetic field is given by
the author in a separate paper' and agrees with the
general result of Horing, ' to order g, obtained
by the Green's function method and random-phase
approximation using linear-response theory. The
present formalism has the advantage that it can be
applied to particles of arbitrary dispersion law.
Thus it finds an immediate extension to potential
screening by a relativistic quantum plasma using
H(p, (1) for the Dirac particle given by Blount" and
Suttorp. '~ The result of this calculation will be re-
ported elsewhere.

Finally we would like to mention the calculation
of the density of states D((.'), which is just e(lual to
dN(a)/d» for T= 0, where & plays the role of the
Fermi energy. We find for the Hamiltonian
'jt= )5 /2m —eV(Q),

a(r) = „,' ' fd )d q()(((('p, t)') —a)

+
'

5 "(H(p, q) —~)~'V((l) +0(a') . (»)

The derivation of the above result and detailed dis-
cussion is given in a separate paper. The general
result for X can also be applied to bismuth, where
the effect of the impurity potential should be
large/'0 Using the Lax k p model for bismuth,
which is equivalent to the Dirac Hamiltonian by a
simple velocity scale factor" one may make use
of the result of Blount and Suttorp for H(p, q)
in the form given for Dirac particles.

The potentiality of the forma1ism presented here
cannot be underestimated. It is applicable to a
vast number of quantum-mechanical problems.
Indeed the formalism yields a rigorous quantum-
mechanical basis of the distribution-function
method in potential screening, the Thomas-Fermi
method" in the absence of the magnetic field,
and the quasiclassical approximation for nonzero
magnetic field. '4 By means of the formula

The above result leads to a necessary, though not
sufficient, general condition for the existence of
bound states for a given potential function V((l).
To the author's knowledge nothing of this sort of
generality has been given in the literature. Fur-
ther discussion will again be given in another com-
munication. Another foreseeable application is
perhaps in the theory of disordered systems ap-
proached along the lines given by Kane. '8
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A803 (1964). The operator method of Roth and Blount
[see Ref. 7 and Phys. Rev. 126, 1636 (1962)] accom-
plishes basically the same thing as that of Wannier
and Upadhyayain that they were able to calculate TrF (X)
to second order in 8. Their method both makes
use of a multiplication rule (see Ref. 12) which is gen-
eralized here to arbitrary power n and a product of
operators. Also the use of the Wannier function as
basis states greatly simplifies the operator method as
rigorously formulated here {see also Ref. 6). The
fact that Tr X" is infinite in general does not cause any
difficulties in the treatment considered here since
taking the trace over band indices and the integral over
p and q are left for the 1.ast stages of the calculation of
TrE {X).
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