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The crystallographic phase transition in the compound VS is explained in terms of the formation of a
charge-density-wave {CD%) state. In an attempt to neutralize the charge density of the electron gas,
the positive ions shift in position and produce a superlattice structure. In VS it is found to be
energetically favorable for the superlattice to have a periodicity which is commensurate with the
undistorted lattice, as found experimentally. The elementary excitations in the CD& state contain an

acoustic-plasmon branch which is mixed with the transverse-optical phonons.

INTRODUCTION

Vanadium and sulfur form the compound VS~,
„

for
a rather wide range of positive and negative values
of x. The crystal structure of the compound is the
hexagonal NiAs type at high temperatures and the
distorted MnP type at low temperatures. ~ The
structural phase-transition temperature T, depends
on the value of x. Many other physical properties
of the crystal, e.g. , the specific heat, 3 magnetic
susceptibility, Knight shift, 4 and electrical resis-
tivity, ' are found to vary drastically at T,. In a
recent publication Liu ef, al. showed by a detailed
band calculation that the phase transition may be
explained by the formation of a charge-density-
wave (CDW) state, and the CDW state is stabilized
by the particular Fermi-surface structure of VS in
the hexagonal phase. '

In this paper we give further discussion of the
physical properties of the CD%' state as found in
VS. The basic theory of CD% state was expounded

by Overhauser in a series of articles. '7 Halperin
and Rice gave an exhaustive review of the many ap-
plications of the idea. ' Therefore, we will not re-
iterate the theory here, but will concentrate on its
application to VS.

In general, the periodicity of the CD% state is
determined by the Fermi-surface geometry, in
analogy with the spin-density-wave (SDW) state.
It is not necessarily commensurate with the lattice
structure. We will show by a generalized suscep-
tibility calculation that the Fermi-surface geometry
of VS will support a CD% state whose periodicity
is very close to twice the lattice periodicity in the
basal plane. Then a simple consideration of the
strain energy shows that the CD%' tends to lock on

to the lattice periodicity as observed experimental-
ly. Finally, we show that the elementary excita-
tions in the CD% state include an acoustic-plasmon
branch which is mixed with transverse-optical
phonons.

ENERGY BANDS, FERMI SURFACE, AND

GENERALIZED SUSCEPTIBILITY OF VS

The crystal structure of VS in the high-tempera-
ture phase (¹As type) is shown in Fig. 1. The ar-
row on each atom shows the direction of displace-
ment of the atom in the low-temperature phase
(MnP type). The Brillouin zone of the NiAs-type
crystal is shown in Fig. 2. In Ref. 5 it was pointed
out that the atomic displacements in the basal plane
corresponds to a superlattice with wave vector I"M.

The vanadium atoms in neighboring basal planes
also shift in opposite directions, but there is no

change in the c axis periodicity of the crystal be-
cause each period consists of two V layers. One
can visualize the phase relationships of the dis-
placements of V layers as a macroscopic conden-
sation of transverse optical phonons at the zone
boundary point and polarized in the a direction.
Similarly, the displacements of the S atoms cor-
respond to the condensation of transverse optical
phonons at M with polarization vector in the c di-
rection.

The energy bands of VS in the hexagonal NiAs

phase is reproduced in Fig. 3. The detail of this
calculation wiQ be published elsewhere. ' The
Fermi surface is shown in Fig. 4, from which one
can see that the three sheets are largely in the
shape of cylinders along I'A and ML axes. We
pointed out in Ref. 5 that the inner cylinder along
1"A and the cylinder along ML are responsible for
the stability of the CDW states. The generalized
susceptibility function is defined by

where c„~is the energy of band n and wave vector
k, f„tis the Fermi distribution function. The sum
on k is over the Brillouin zone. Under some sim-
plifying assumptions a peak of this function gives
the periodicity of the CD% state. We calculated
this function by numerical integration for the two
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CD% case.

EFFECTIVE ELECTRON-ELECTRON
INTERACTION

In the existing literature on CD% states the elec-
tron-electron interaction is treated as a phenome-
nological potential. %'e wish to show briefly that
the effective interaction consists of a repulsive
electrostatic term, an attractive electron-hole cor-
relation term, and an attractive electron-phonon
term. The Coulomb interaction operator is

&.=2 Z, (2)
E' q

where e(q) is the dielectric function and the charge-
density operator p(q) is given by

I IG. 1. Lattice structure of VS in the NiAs phase.
The open circles are V atoms and the solid circles are
S atoms. The arrows on the atoms indicate the direction
of lattice displacements in the MnP phase.

bands that give rise to the two important sheets of
Fermi surface. The bands were first interpolated
to a total of 1000000 points in the Brillouin zone,
then pairs of band energies a„"„and&„., ~,+ were se-
lected for the sum, where &„p&E~, e„.,„",+&E~, and

Q in the I'M direction. %hen the energies differ by
less than 0.0001 Ry, the pair was excluded from
the sum. The result is shown in Fig. 5. Two
curves are presented. The one labeled by EJ;
= 0.654 Ry was calculated using the Fermi level
deduced fram the integrated density of states. " It
has a peak at 0.88 t&7 I, where 7 is the reciprocal-
lattice vector in the 1"AI direction. The curve la-
beled by E~ = 0.659 Ry is for a shifted Fermi level.
The reason for this shift is that there are numerous
inherent uncertainties in the band calculation so
that the energy bands and the Fermi level are un-
certain by this order of magnitude. One may notice
that this curve has a strong peak at M. The con-
clusion js that the band structure of VS does tend
to stabilize a CD' state, and the characteristic
wave vector of the CD% is very close to ~ v.

The observed lattice distortion has the wave vec-
tor exactly equal to ~r. There are two mechanisms
which help to lock the CD% to the lattice periodic-
ity. Falicov and Penn' showed for the case of
spin-density waves (SDW) that in a commensurate
structure the two standing waves with wave vectors
Q and v -Q coalesce, making the commensurate
structure stable even though the Fermi surface may
give a Q slightly away from ~7. Herring' showed
that the magnetoelastic interaction between a SD%'

and the latt;ice also favors a commensurate struc-
ture. These arguments apply equally well to the

p(q) =e Q&n', k+q~e"'~nk)

xC„.,g,q C~+H. c. (3)

In Eq. (3), C~ is the annihilation operator for an
electron in band n and wave vector k. In the CD%
state we have a periodic charge density given by

p(q) =eg(&2, R+q~e"'~Ik)
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FIG. 2. Brillouin zone of the hexagonal NiAs-type
crystal.

x & Cs i+i Cif) + c ~ c. ) ~

where 1, 2 are the electron and hole bands that
give rise to the nesting Fermi surfaces. The ex-
istence of the electron-hole correlation is charac-
teristic of the CD% state.

Strictly speaking, the dielectric function in a
multiband metal is a tensor, and the Coulomb
screening involves the inverse of the dielectric ten-
sor. %'e shall continue to write a scalar dielec-
tric function purely for convenience. Further-
more, in e(q) we' take into consideration all screen-
ing effects except that due to the above-mentioned
electron-hole correlation. In other words, e(q) is
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FIG. 3. Energy bands
of VS in the NiAs phase.
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the total dielectric function of the undistorted
phase. The effects of the electron-hole correla-
tion will be discussed later when we study the dy-
namical properties.

By taking suitable expectatien values of the Cou-
lomb interaction operator we find that the CD%
state has an excess Coulomb energy

V, =
s Z &2, k+qle'e'llk&

f(Q 0 kgb'

x(lk'le "'l 2, k'+q& &c,',;.,c„-&

x(C,p C, ;.,o&

and a correlation energy
4m'~

», f(}k-k l)}k-k'l2

x&2, k+qle* ""l2,k'+q&

x&1k'le «""llk&

&Cs, i+e C~k) (Cga Ca, P+e &,

which arises from Coulomb exchange.
Now we investigate the electron-lattice interac-

tion. For a qual. itative description it is convenient
to use a rigid-ion model such that the one electron
Hamiltonian in a distorted lattice is

p'
ff= + g V.(r-R,.),

feO

where i sums over all cells and e sums over all
ions in the cell. For a periodically distorted lat-
tice

w w(0)
R R(0) ~ ~4Q R]o (8)

where & is the displacement vector for the eth
ion in the unit cell. In the lowest order of the dis-

placement we can write

H=H0+Hg,

where H0 is the one electron Hamiltonian in the un-
distorted phase and H~ is the correction due to dis-
tortion. In terms of electron operators

H~=-N f M„„.k C„.j"„~C~,
nn'k e

where

I ..(k) =(~', k+Ql f. ~ &„v,(r -R."') ln, k&

(10}

and f is the unit vector along E . In the CDW
state the expectation value of H, is

(ff,)=-XP fm„„()k( ,'C, -„„-C) .

This is the driving term which distorts the lat-
tice. The actual amount of distortion is deter-
mined by minimizing the sum of (H~& and the elas-
tic energy.

Since we are working in a region of wave vectors

A

FIG. 4. Fermi surface of VS in the NiAs phase.
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The expression for the elastic energy is

Ei, =- Q & IRi —R,
fee

(12}
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where the constants & are elastic moduli. For the
lattice distortion in Eq. (6), we find

EI, = —,
' N Q&o e~ .

The minimization of Ez, +&Hi) yields

80—
e.=(~.) 'Q Mia. (k)&c,';,-, c„-&

and the net elastic energy is

(13)
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FIG. 5. Generalized susceptibility of VS in the NiAs
phase along the I'M direction.

Ei, +&H,&
= —jH Q Q (&,) 'M„,(k) Mi~m (k')

i, i'
&&&c,',-„„-c„-&&c,';, c,,„-.„-). (14)

Adding the results of Eqs. (5), (6), and (14), we
obtain the total interaction energy

Vi+ Vg+Ei, +&Hi&

where the phon6n spectrum is relatively flat, we
will approximate the lattice by the Einstein model. where

=-P ~E &Cs. pgic E&i&Ci'f Cs, f"Q& (15)
fr.,f'

x&» k++I"' ""'I2,k'+i&&lk'le """Ilk&+-'H P &".) 'Mia-(k) Mim. (k') . (16)

This is the effective electron-electron interaction potential that enters the gap equation. The t.DW state
is stable at low temperatures if Vp„.is attractive (Vii. & 0) for large regions of k and k over the bands 1 and
2 near the Fermi level. The first term of Eg. (16) is largely repulsive, and the second and third terms at-
tractive.

PROPERTIES OF DISTORTED PHASE

In the distorted phase an energy gap develops
over the nesting portions of the Fermi surface.
According to the simple theory the gap depends on
the temperature in the same way as described by
the BCS theory of superconductivity. ' The low-
temperature gap 2&(0) is related to the transition
temperature T, by the simple ratio 24(0)/kT, =3.5."
In reality, the gap function is modified by the im-
perfect Fermi-surface nesting and the phonon and
impurity scattering, ~~ so the situation resembles
more closely the antiferromagnetic state of chro-
mium alloys, ' and we expect 2d(0)/kT, =4 5. As-
an example for VSj.«, with T, =839 K, we esti-
mate 2&(0) =0.3 eV, wlrich should be readily de-
tectable by optical absorption measurements.

The nesting portions of the Fermi surface are
destroyed by the energy gap. This causes a sudden
decrease of the density of states at the Fermi en-

l

ergy when the temperature drops below T,. We see
evidences of this effect in the 30% drop of vanadium
Knight shift, 4 and a similar reduction of the elec-
tronic susceptibility. Also, the electrical resis-
tivity increases drastically just bejow T~ indicat-
ing a sudden decrease of the number of carriers.
The specific heat has a peak at T, very similar to
that seen at the Noel temperature of chromium.

The gap equation has the form

EE = P VB.&Ci, f...c Cif. ),

where the correlation function &C,,f.,e Cmf. ) is re-
lated to &„-.. When the phonon and impurity scat-
tering effects are included, Zittartm pointed out
that ~p is the order parameter, not the true gap.
In seeking a simple solution one often makes the
approximation that
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Vp„.= V for
~ «„;-Er ~, ~

«~. —E~
~

& bandwidth,

=0 otherwise.
V.= - Vo 2 Cif Ca,f"x Ca C2,I.K ~

kk'K
(20)

Then

~= VS&Ca.f.eCif ) (ia)

%e may approximate the expression for the lat-
tice distortion [Eq. (13)]by replacing the matrix
elements by its average

« =
&

P&C),i.eC&I) ~
&M.)

Thus, we find a simple relation between the lattice
distortion and the order parameter

«. = (&M.)/1.V) n, . (19)

This shows that the lattice distortion may be re-
garded as the order parameter for the phase tran-
sition, and it has the temperature dependence like
the energy gap of a superconductor or the magneti-
zation curve of an itinerant antiferromagnet. This
has recently been confirmed by Franzen's mea-
surements. ~

COLLECTIVE EXCITATIONS

The collective modes in the CDVf state have been
found to be charge-density fluctuations (plasmons)
with a linear dispersion relation. ~0'3' %e will add
here that since the lattice is involved in the forma-
tion of the condensed phase, the plasmons will be
mixed with the phonon modes. To study this effect
ee calculate a dielectric response function and look
for self-sustaining modes by examining the analytic
properties of this function. It is necessary to sim-
plify the model somewhat so that the mathematics
will become tractable without distorting the physi-
cal content. The Coulomb part of the interaction
(the first two terms of Vg. ) will be approximated by
a constant V0. Then the effective Coulomb Ham-
iltonian has the expression

The important part of the electron-lattice interac-
tion involves the scattering of an electron from band
1 to band 2 and vice versa, so we write

H) =N Q «N(k) (MN)Q(C[f Cz, g, [I + H. c.), (21)
Ke «g k

where we have extended the results of Eqs. (9) and

(13) to include lattice displacements with wave
vector K =Q+q, and approximated the matrix ele-
ment by its average. For q& 0 the displacement
may be written in terms of phonon operators. For
the Einstein model we have

«(k)=(2NmNQ ) (b I b+, f), (22)

where 5 g creates a phonon with wave vector k in
the mode 0., m is the mass of the eth ion, and
0 is the mode frequency

n =(Z,/m, )"'.
In this grossly simplified model of lattice dynamics
the mode index is the same a,s the ion index a. %e
also adopt a simple band model for the electrons
in VS. The model consists of an electron band
centered around FA and a hole band centered
around L,M

«,f = (1/2m)(k', +k~),

«2I = 2g —(1/2m) [k2+ (k, —q) ~] .
The effective masses of the two bands are the
same, and the Fermi surfaces are two cylinders
of equal sizes.

The calculation of the dielectric response func-
tion is very similar to the works in Refs. 20 and

21, and to the calculation of dynamic susceptibility
function of an itinerant antiferromagnet. ~'~3 %'e will
leave out all details and present only the final an-
swer. %'e define two dielectric response functions~4

x, (C(, la.)=Qf (Tc[x( )c,,;.„-(.)c[,-„,;(o)c„-,(o))e' "o, ,
0

ig
Xa(qo (x)~) = Q (T'C~„(v)C~.g,„(r)C,qI".(0)Clg, x(0),) e, ' &' d~ ."

ksk

The integral equations of these functions are represented by the ladder diagrams in Fig. 6. The solutions
may be written

1 (0) g) S) (0)
~1 XR X1

x (- [x +c (Ro )](x"'+xxo')'(-[x ~ c ([( )[(x"'-Xp')) ' (24)

The expression for X3 is similar except for a nega-
tive sign in front of the second term in the paren-
theses in Eq. (24). In the above equation the quan-

tities y1 ', ~ ' are the Hartree-Fock approxima-
tions to the dielectric susceptibilities, and Do(R,~„)
is the phonon propagator given by



3624 S. H. LIU 10

I I I I I I I I 2 I

~l 3 2' D ~l'~x
2 2 2 2 2 2 2 2 I 2

I I I 2 2

2 2 2 2 2 I I 2

I 2 I 2 I I 2 I 2 2~xx: Q', '( ~ Q', ~x ~ ~x,
2, I 2 I 2 2 I 2 I I

I I I 2 I 2 2 2
X2 ~ &

Xl

2 2 2 I 2 I I I

FIG. 6. Diagrams for the renormalized dielectric
susceptibility functions in the NnP phase.
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In the limit q = 0, +„=0 one can show that the re-
sponse functions are singular on account of the gap
equation. For small but finite values of q and &„,
the divergence of the response functions leads to
the following dispersion relation of the mixed
modes:

~(M )'
~ -c q, +PZ ~ ~=0,

Xo Qo —(d

where f =4' /N(0)V, q, =q„+q~, c=kz/(2)
kr = (2mEz)', X(0) is the density of states at the
Fermi level for each band, and

v=v, +Ng

I0

FIG. 8. Diagrams for the renormalized phonon prop-
agator in the NiAs phase.

We have also transformed back to the real frequen-
cy domain.

For cq, «Qo, we get an acoustic branch co2

= (c*q~)~, where

and optical branches given by

~(M )~ I

The modes are all mixed phonon-plasmon modes.
The velocity of the acoustic mode is reduced by the
interaction, whereas the optical frequencies are
shifted. In Fig. 7 we show schematically the dis-
persion curves of the mixed modes.

The velocity of the acoustic mode is highly an-
isotropic because of the Fermi surface geometry.
In the real crystal the Fermi surfaces are not per-
fectly cylindrical, so there will be a small velocity
in the e direction.

Above T, the phonons interact vrith short-lived
charge-density fluctuations, which are analogous
to the paramagnons in an itinerant electron antifer-
romagnet. ~ Since phonons are stable for tem-
peratures much higher than T„it is more appro-
priate to study the Collective modes above T,
through the phonon propagator. The method of cal-
culation is very similar to that for the dielectric
susceptibility functions, so we will leave out the
detail and present only the final result. We find by
summing the diagrams in Fig. 8 that

NAVEVECTOR q

FIG. 7. Schematic diagram of the dispersion curves
of the mixed phonon-plasmon modes in the MnI' phase.

D(K, (d„)=Do(K, (d„)

I —VoX' (&T (d,)
I —[v, +D,g, ~„)]qP'

It is easy to verify that D(Q, 0) diverges at T,. At
first sight one might take this as an indication that
the phonons become soft at the critical tempera-
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ture. ' However, a detailed study of the spec-
tral density function of D(K, &o) revealed that just
above T, a peak appears at & =0 and K =—Q. In ad-
dition, there are peaks at the optical-phonon fre-
quencies. The zero-frequency peak increases in
size as the temperature approaches T, and K ap-
proaches Q, while the optical-phonon frequencies

remain constant. Below 7'. , the zero-frequency
peak splits into toro at +e*q, and becomes the
acoustic-phasmon modes. The optical-phonon fre-
quencies shift upward. The acoustic plasmons and
the short-lived charge-density fluctuations appear
in the phonon propagator because of the electron-
phonon interaction.
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