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Validity of approximate methods in linear response theory for an interacting spin-phonon

system*
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In order to gain insight into their degree of validity, certain commonly used approximate methods for
finding dynamic susceptibilities are compared with the exact Kubo susceptibility for a linearly

interacting spin-phonon system. Approximate methods investigated include: truncation or decoupling of
equations of motion for the' commutator and anticommutator Green's functions, and a memory-function

method suggested by Gotxe and %oNe. It is shown that approximate methods, awhile adequate for
weak dipole-phonon coupling, can lead to conspicuous deviations from the exact susceptibility in certain

frequency ranges. Results are also sensitive to the shape of the phonon spectrum. Ergodic and

nonergodic cases are discussed.

I. INTRODUCTION

The dynamic dielectric response of a system
characterized by a Hamiltonian H and dipole mo-
ment operator M is given by the Kubo (or isolated)
susceptibility'~

( )= 'li d '"' '([M (f), M (0)]),
s ~0

where cu is the frequency of the external probe field
and M&(f) = e'"'Mq e '"', M& being the fth Cartesian
component of M. Two questions arise in connection
with this expression.

First, does Eq. (1) give the susceptibility that
one would measure under typical experimental con-
ditions f)' Uneasiness in this regard is aroused by
the known fact that for nonergodic systems the
static (~ = 0) limit of (1) differs from the static
isothermal susceptibility. We have, in a recent
paper (PD), investigated this question for a class
of models for linearly coupled dipole-lattice sys-
tems for which the isolated susceptibility (1) could
be found exactly. Ne found that the conditions for
the system to be ergodic were strongly related to
the form of the dipole-lattice coupling. In partic-
ular, ergodic properties were found if the coupling
was such as to allow the existence of Markovian
transition processes in the system, which are re-
sponsible for the hydrodynamic-type (Lorentzian)
behavior of the susceptibility at low frequencies.
These are the processes which bring the system to
thermal equilibrium. Conversely, if the coupling
excluded the existence of Markovian processes the
system was nonergodic. Furthermore, we con-
cluded that the systems investigated were ergodic
if they were free of degeneracy, as actual systems
of interest usually are. For nonergodic systems
the isothermal static susceptibility which can
always be calculated formally is not a physically
meaningful quantity due to the lack of hydrodynamic-
type relaxation processes which would establish

thermal equilibrium. On the other hand, the iso-
lated susceptibility (1) may be meaningful in such
cases, corresponding to photon absorption by
acoustic phonons rendered optically active by the
dipole. Equation (1) can thus describe two phys-
ically distinct types of linear response which in a
general ergodic case will be superimposed on each
other: namely, hydrodynamic relaxation and the
phonon-mode absorption just mentioned.

The second question concerning Eq. (1) arises
from the fact that it is seldom possible to evaluate
it exactly. The validity of the approximations
which are used to get around this fact is usually
very difficult to judge. In particular, it is not ob-
vious whether a certain approximation is part of a
systematic chain of converging approximations,
since higher steps in the sequence are so com-
plicated to evaluate as to be inaccessible in prac-
tice. Thus the question arises whether an approx-
imate method is capable of describing both types
of linear response, and under which conditions,
concerning the strength of the coupling and the
range of frequency or temperature, it correctly
represents the isolated susceptibility. To inves-
tigate this question we use in this paper a model
which we have previously studied and which will
be described in the next section. Sections III and
IV discuss two approximation methods. In Sec. V
we analyze the validity of these approximate
methods.

A preliminary report on the results given here
has been presented elsewhere. '

II. THE MODEL AND THE EXACT ISOLATED
SUSCEPTIBILITY

The model which we shall use has been discussed
before in the literature and we have treated it in
some detail in PD to which the reader is referred
for more detailed discussion. Ne present enough
here only to have a convenient presentation of no-
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tation. Our model will be a two-state electric di-
pole coupled to phonons with Hamiltonian

H=2~((d, ((),(I), +P,P,)+2~ F,Q,o, i)E-o„e'"',
a

4I

where the terms from left to right are the lattice
phonon Hamiltonian, the dipole-phonon coupling
term and, last, a term representing the interaction
of an oscillating probe field E with the electric di-
pole moment of magnitude p. g, are Pauli spin
matrices normalized so that g, = 1. The frequen-
cies, normal coordinates, and momenta of phonons
are given by ~, , Q, , and P, , and E, is the dipole-
phonon coupling coefficient. %e wiQ not consider
a static transverse field along 0, which was pres-
ent in PD.

In PD it is shown how the exact isolated suscep-
tibility X ((d) can be found for Hamiltonian (2).
The result is given by

III. DECOUPLING APPROXIMATIONS

A frequently used method to calculate isolated
susceptibilities (1) is based on the properties of
so-called double-time thermal Green's functions.
The essential point of the treatment lies in the fact
that the Fourier transform of the retarded Green's
function obeys an equation of motion which offers
the opportunity for approximate solutions. We will
use our model to point out the limits of applicability
of this method which cannot be found in cases which
are not exactly soluble.

Ne use the following standard notation for the
Fourier transformed Green's function:

«A II» =-i 2, e'"'0(t)&[A(t), II(0)],&dt. (7)
1

~(O

The upper and lower signs mean the anticommutator
and the commutator, respectively, of any two
operators A and Ii, and 8(t) is the unit step func-
tion. Clearly, for our model with M = 0„,

X l(~) i Iim die((atilt (el(t ) eI( t))-
8~0 0

(3) X'(~)= —2v&(o„, o„)) .
where we have set p equal to unity, and

I(t)=p
2
' [tl,(e'"' —I)+(I,+1)(e '""—1)],l r, l'

ff (4)

with n, = (es"~ —1) and p= I/kT. The subscripts
on X have been dropped for convenience. In PD
several special cases of Eq. (3) have been worked
out. The phonon spectrum was obtained from an
isotropic Debye model. Three forms of j', were
considered:

F, = d/V'+ (piezoelectric coupling),

F,= s&u,/V'+fl (strain coupling),

(5a)

(5b)

and the additional case of piezoelectric coupling
confined to a limited range of frequencies from

Q to Q. In (5a) and (5b), d and s are coupling
constants, V is the crystal volume, and 0 is the
Debye cutoff frequency.

In the present work we will use a modified form
for the Debye density of phonon states,

3 2

p((u) =, , [1 —((u/II)']'+, (d ( II
2x

where e is so defined as to preserve the notation
used in PD, i.e. , e= (Vo/4e)'+0/2 with Va being
the volume of the unit cell. The last factor of (6)
introduces a Van Hove-type singularity at the cut-
off frequency which is known to occur in a realistic
spectrum at the zone boundary. The effects of this
singularity on the dynamic susceptibility will be
discussed in Sec. V. The advantages of using such
a phonon density of states were pointed out to us by
%. Gotze.

It can further be shown that the imaginary part of
the isolated susceptibility can also be directly ob-
tained from the anticommutator Green's function,

Im X'(~) = 2v tanh(~/2) Im &(o„; o„)),. (9a)

It will be useful also to have the relationship

Im«o„, o, ».= coth —ImX~((o)

——lim ([o,(t), o(0)]&„5((d)
t ~~

(Qb)

~«A; a», = 2, &[A, a],)+i«[A, H]; a», ,
(10)

which can be obtained by partial integration of (7)
with [A, H] =i (d/dt)A. This equation introduces new
Green's functions (([A, H]; B», for which another
equation of motion like (10) can be written. In this
way, one can generate a sequence of equations of
motion for a set of Green's functions. In general,
both the sequence and the set are infinite so that
to make progress the sequence is usually truncated
by what is called a decoupling approximation. 9

Ne apply one such method to the functions
((o„; o, )),. Using (10) with Hamiltonian (2) without
the external field term, the sequence of equations
of motion for the commutator function, for ex-
ample, begins as follows:

~«o„; o, )) = iQ ,F-«,(I)„o,o

where the 5-function term arises in nonergodic
cases from the nonvanishing of the correlation func-
tion in Eq. (7) at t- ~. The functions (7) satisfy
the equations of motion
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In an analogous way we can find the anticommuta-
tor Green's function:

+ i Q E,. ((q,q, o„, o„)) 1 2
«c„o„)&.—2 S( )

. (19)

+ «P,o„,' o.&) (12)

1
(d&(P,o„; o, » = —

2 2i&P,o, )

Sp(s))&(„',)) =2 ( )

where

Si(&)=(dg s a
IE,I'&I q, l )

S( ) 2 g,&q, .&

(16)

(18)

The average in (18) to linear order in E, is &q,g, &

E, (/&g2, ). In zero order, (] q, l ) = coth(%$2)/
(2((),). The superscript d in (16) refers to the de-
coupling approximation. Evaluating such thermal
averages is to some extent arbitrary. Since the
whole decoupling procedure is not a perturbation
expansion, there is no clear criterion to decide the
order in coupling parameter to which these aver-
ages should be evaluated.

+ -g E,, (([q...P,],.o, , c,)&„
1

(13)
i(o,—«q, o„; a, &)

The particular decoupling approximation which we

employ consists in terminating the pile-up of pho-
non operators in higher order Green's functions by
writing

«q, q;c, ; o, )) = &q,q~&&&c, ; o,))
= 5„, (I q, I &«o„o,», (14)

«[P, , qe ],o„' o„&) = & [P, , q~] &&&o, ,' o, && =—0 .
(15)

Other decoupling terms, like for example

&q,e, &«q,.; o,)), vanish.
There are two steps in this approximation: The

first is to factor out or decouple pairs of phonon
operators as thermal averages. Second, the aver-
ages over phonon operators are evaluated to zero
order in the coupling strength. This means that
the coefficients of decoupled Green's functions are
evaluated to order E, only. Note that the function

((q,q,.o, ; s,» itself is not calculated to order E, ,
because «o„' o, )) in (14) is kept as an unknown

and thus contains arbitrary powers of E,.
Using the decoupling approximation (14), (15) in

(11)-(13)we can solve for «c„' o,&) . The result
is:

S,"((d)= —(v/2) A&a" coth(go/2) g 1 —((g/n)

x e(1 —
I
~/II

I
);

Sg((o) = —vA(u"-'$1 —((d/fl)'e(I —
I
(d/0 I) .

(22)

(23)

The real part of S& is given by

S,'(~) = vX(~/fl) [1-$1 —(fi/~)'

x e( I
u/0

I
—1)] (piezoelectric coupling) ~

(24)
S2((d) = —vB((d/0) [-,' —((o/fl)'+ ((d/fl)'$1 —(0/(d)'

xe(I(d/AI —1)] (strain coupling) . (25)

The real part of S,((d) is found from (20) by numer-
ical integration with the integral interpreted as a
principal-value integral.

%e can now derive two versions of the isolated
susceptibility in the decoupling approximation, X~,
and X~ . From (8) and (16) the real and the imag-
inary parts of the commutator version of the sus-
ceptibility are:

S('S2' —((() —S,')Sa
(26)

8'8" —S"8' —(dS"
x (( ( ) ( sl}R (sl )2/ (27)

From the anticommutator Green's function (19) and

One cannot in practice understand the meaning of
the decoupling approximation by introducing the de-
coupling either earlier or later in the sequence of
equations (11)-(13).. . . Decoupling earlier, e.g.
«q, o„; o,» = &q, )«e„; o,&), gives the trivial re-
sult ((o„; o„&) =0. Decoupling at the three-phonon
operator stage or higher would be a very formidable
task and does not appear to have ever been carried
out. %'e can, however, compare the expressions
for the isolated susceptibility obtained from (16)
and (19) with the exact result (3).

The sums in (17) and (18) are evaluated by using
the coupling constants (5) and the modified Debye
density of states (6). The results are."

S,(a)=A~J'~** to( ()(./2)/1 —(x/0) (J — )';
0 (20)

s, ( )=2& f sxx" '/( —(x/(()'(w' —x') ', (u)

where n= 1 and A=3d /(4r~c ) for piezoelectric
coupling while for strain coupling g = 3 and A is to
be replaced by B/Q with B=3s /(4v c').

The real and imaginary parts of S&(~) and Sq(&u)

for &=&+za with a 0, are calculated by standard
procedure. %e obtain for the imaginary parts:
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(9) we obtain:

2 tanh(P&g/2)S&' &oSq'
g+ ( Sl)2+ (Sll)R (~ St)2+ (Sll)21 1 1 1 (28)

where the last result follows from the explicit
forms of SP and Sz" as given by (22), (23). The
real part of X~,(&o) can only be found by performing
a numerical Hilbert transform of (28).

By comparing (27) and (28) we realize that the
decoupling approximation yields two different re-
sults for the isolated susceptibility depending on
whether we use the commutator or the anticommu-
tator version. Clearly, this is an inadequacy of
our decoupling approximation because no such dif-
ference is possible if X, (&o) is calculated exa.ctly.
This is not a special feature of our model because
the method is applicable to any system and the use
of commutators or anticommutators is equally jus-
tifiable. In fact, both versions of this method have
been used for more general spin-yhonon sys-
tems. ' If fermion or boson operators appear in
the Green's function, the natural choice seems to
be the anticommutator and commutator, respec-
tively. However, there is no a prz~z reason for
not using the alternative method in such cases. It
can be shown that the difference between (27) and
(28) will be negligible at high temperatures (PA «1),
however, it can become quite important at low tem-
peratures. We mill return to this problem in our
discussion of numerical results.

has been suggested by Kadanoff and Martin.
Mori' has used a projection operator technique to
derive a formal expression for N(&u) which, eval-
uated to second order in the dipole-phonon coupling
strength, is the same as Now(&u) below in Eq. (33).

Following the ideas of GW we calculate N(&o) ap-
proximately in the lowest order with respect to the
coupling parameter. We expand (30) as

&u x (&u) =N(&o) +o(N ), (32)

(33)

The Green's function in (38) has been calculated to
the order F, from Eqs. (12), (13). The notation
Nov is used to emphasize the fact that (33) has been
obtained from (32) and not from (29).

The expression (33) is then substituted into (30)
using (31); the resulting approximate expression
for X'(co) will be called Xo„.

noting that for weak coupling N(&u) is approximately
given by the left hand side of (32) with X~(ap) being
calculated to the order g, only. This approximate
X~(m) will be denoted as X~(&u). The calculation of
Q~(~) is accomplished by considering the equation
of motion (ll}'for the Green's function «a„, o,)}
which together with (32) leads immediately to

Xo„((o)= (uX'((o) = »i+ F,«q, o„; o„))

IU. THE MEMORY FUNCTION APPROXIMATION OF
GOTZE AND WOLFLE ( )

x'4) Sp(&u}

1+x'(~)/x' ~ -s (& )/x' ' (34)

~x'(~)
1 —x'(~)/x'(0) ' (29)

which in view of the above properties of X (&u), is
nonsingular and can be expected to have a smoother
behavior than X~ itself. Therefore, N(u&) might be
easier to calculate by some perturbation expansion
than X'((o}.

Knowing iy(ap), one can find Xl(up) from the in-
verse relation

Using the analytic properties of X (~) with &o

complex, Gotze and Wolf le" (GW) have shown that
in general X (~) X XI(0}for Im~ a0. They introduced
a new analytic function, also called the memory
function, '

Like the decoupling approximation, this procedure
clearly produces an approximation which contains
terms of all orders in I', . It differs from the exact
susceptibility but it may, under some circum-
stances, be a good approximation. It has the ad-
vantage that it is simpler to find in practice than it
is to perform the decoupling scheme.

If the approximate xX~(+) in (84) happens to be
more singular than the exact x'(~), the resulting
xov will contain singularities which are not present
in the exact susceptibility. As pointed out by GW,
the method is not useful in such cases. In our
model, this occurs if the Debye density of phonon
states does not contain the square-root factor in
(8), as will be demonstrated later.

~+ iv(~)/x'(0)
(30) V. COMPARISON OF SUSCEPTIBILITIES AND

DISCUSSION

It is then assumed that the system is ergodic so
that x~(0) is exactly equal to the isothermal static
susceptibility

X'(0) = X' = p S&o„)/SE
~

(ergodic) . (31)

That the longitudinal susceptibility behaves like
Eq. (30) in the low frequency (hydrodynamic) range

A. Piezoelectric coupling

It is of interest to first investigate the static lim-
its of X«and X,. The ~- 0 limit of (34) will be
given by the isothermal static susceptibility X* if,
for example, Sz'(&u)- const and Sz(~)~ &o for small
&u. From (22)-(25) it can be seen that this behavior
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is found in the ergodic piezoelectric coupling case.
In a recent paper, Gotme and Schlottmann' have

shown that )P, which appears as an unknown pa-
rameter in (34), can be determined self-consistently
by employing the general sum rule

—,
' {[a„u,].) = 1=— d&u coth

2
g"((o)

(35)

X C40J

X'Co)

0.5

Xd

X'

PQ ~O.I

4 ~0.OI

This result foQoms by integration over all ~ of the
anticommutator form of Eq. (7) with A = B=u, and
using relation (Qb).

In the ergodic case the last term in (35) is zero.
To calculate Xr self-consistently, we replace g"(&o)

by the imaginary part of Eq. (34). Using Eqs.
(22) and (23) and introducing an integration variable
y = &u/0 leads to the transcendental equation for

TXov:

-05-

0.4

X C40)

&AX'Co)

0.2

O. I

O.OI

y 1-y + coth P2 y-21g 0 2

X6% +

~rg+rg
0.)

0
0 l.5

&o& ~J ~ x ( )
~en

(3V)

This equation can be solved numerically. The re-
sult for A = 0.1 appears as Xo„(0)in Fig. 1 as a
function of PQ.

It is interesting to compare this self -consistent
Xos with the exact yI(0) and with g~,(0). The latter
quantity can be found numerically from the
Kramers-Kronig relation

40

9
FIG. 2. Real and imaginary parts of approximate sus-

ceptibilities for moderate piezoelectric coupling and high
temperature. ~ ~„and X~ are indistinguishable in
this case.

bility calculated using equilibrium statistical me-
chanics to second order in F, , an often used ap-
proximation. From Eq. (22) of PD with 6=0 we
find

with g~",(&u) given by Eq. (28). For further com-
parison we have included also the static suscepti-

y/8

g,'(0)=P+2 der(-O, ).
0

(36)

) )(, I)

x~
o3 ~.

& )( I}

A~0.I

X@)
O5

pQ

FIG. 1. Static susceptibilities for piezoelectric cou-
pling in various approximations. X2(0) is based on equi-
librium statistical mechanics and XI(0) is the exact static
susceptibility. The others are based on, approximations
to the dynamic isolated susceptibility.

These quantities also appear in Fig. 1.
Note that Xz(0) is the most accurate approxima-

tion in this case. X ~, the self-consistent version
of the static susceptibility from Eq. (36), is a good
approximation only at high temperatures. For PA
& xA it can be shorn that this approximation breaks
down because of a singularity of go„(&o) near ru = 0
due to the vanishing of the denominator in Eq. (34).
g~, (0) is not a useful approximation except at very
high temperatures where it equals P. y~ (0) is
equal to P for all P.

To investigate the frequency dependence of vari-
ous approximate susceptibilities, are have numer-
ically calculated X~ (&o), g~, (&u) and ~„(v) and
plotted them together with the exact g~(ap) in Figs.
2 and 4. For further comparison the simple
Lorentzian form

x (~)=1,",
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is also included. Here, v = vA/P is the one-phonon
relaxation rate as has been shown in PD. The sub-
script m on g is a reference to the fact that the
susceptibility (39) results, for a two level system,
from a treatment of Markovian master equations. 6

Figure 2 sho~s the exact and approximate sus-
ceptibilities for high temperature (PA= 0.1) and
moderate coupling. In order to exhibit the low fre-
quency behavior of g"(&u) in Figs. 2 and 4 we have
in each case plotted the quantity y"(&u)/(&oP). Note
that g~„', X~"„and X 0'„are indistinguishable in this
case, as are also y~ (&u), y~, (v), and gov(a&). This
can be understood by comparing (16) and (34) using
the fact that the Xr in (34) calculated self consistent-
ly from (36) is very close to P in this case and

Sa(&u) = P 8&(e) by (20) and (21). The real parts of
approximate susceptibilities become negative at
large frequencies in agreement with the exact re-
sult. There is, however, a discontinuity in the
slope of X, ~ at & = A which is due to the sharp cut-
off of X~" at the same frequency as discussed be-
low. If a simple Debye model for the phonon spec-
trum is used instead of the modified form (6), X~I

contains a singularity in the neighborhood of &u = A

which is due to the vanishing of the denominator
in (27) at ~ slightly above A. Both y,' and 1," can
have very large values for &u & A but no singularities
occur in this region. (See Fig. 3.)

Numerical calculations show that in the limit of

pQ= 10
A=05

05
X'(~)
x'(o)

O)- Xd.

PQ =10
A =0.5

0
0 I.o

X

l.5

FIQ. 4. Heal and imaginary parts of approximate and

exact susceptibilities for strong piezoelectric coupling
and low temperature.

0,5

X (~J
0

x'(o)

-05-

-i.o-

X

X'

/

I

x4

A~GO)

gQ~O. t

0.5

0
0 I.O

FIQ. 3. Same parameters as I'ig. 2, but calculated
using a simple Debye spectrum instead of the modified
form of Eq. (6).

small couplmg (A & 0.001) all approximate methods
together with X become very close to the exact X

at all frequencies below A except in a narrow range
near A. '~ Above A, the real parts are still a very
good approximation to X'(&u)', the imaginary parts
of X,„and po„being equal to zero in this region.

Figure 4 shows the low temperature results
(PA= 10) for strong coupling (4=0.6). There is
now a large difference between X~ and XG„at low
frequencies due to the fact that X~„&P. Again, for
ar & A both approximate real parts converge towards
)( (&u)'. We can clearly distinguish between the
commutator version of the decoupling approxima-
tion, X~", and its anticommutator counterpart, X~",.

A general feature of both the decoupling and 6%
approximations is that they always give good re-
sults for the real part of the susceptibility at large
frequencies (v & A) even for strong coupling. This
suggests that the equation of motion method which
is used to derive X, ~ and NG„ in yo„ is equivalent
to an asymptotic expansion of y~(ur) for large &u.

As already mentioned in connection with (10), in-
tegration of (7) by parts produces an equation for
the Green's function with a new Green's function
appearing in it. Repeated partial integration, which
is a standard method for obtaining asymptotic ex-
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pansions of nonsingular Fourier integrals, pro-
duces an asymptotic expansion of (7) or, alterna-
tively viewed, a sequence of equations of motion.
The decoupling method is a truncation of this as-
ymptotic expansion with a special treatment of the
remainder term. It is not understood why this
truncation yields a good representation of X~(&u) at
low frequencies. The termination of the asymp-
totic expansion at the lowest order, that is at
J E,), is responsible for the vanishing of X„"and

g&+ for co &A. This termination limits the relax-
ation processes to one-phonon transitions which
become forbidden by energy conservation for co & Q.

a(r)
x~ (0)=

1+—a(r)
wB

where

(40)

0 1

a(T) = (mo/2)( f dxx tmth(ilx/2) 41 —(x/AI'

(41)
For high temperatures (PA«1), h(T) =—P. Except
for very strong coupling (large 8), the static limit
(40) will be much different from the isothermal
static susceptibility x* as expected for this non-
ergodic case. This is due to the lack of Markovian
transitions between the two states of the dipole.
As shown in PD the one-phonon relaxation rate v

is zero in this case and the first non-vanishing,
five-phonon rate is estimated to be negligible. For
the same reason, the Lorentzian expression (39)
cannot be used in this case.

An interesting problem arises in connection with
the method of GMf. As noted before, the method
has been developed for ergodic systems with
X'(0) = X . However, the arguments of GW" leading
to Eg. (29) are valid as well for the nonergodic
systems for which X~(0) IXr. Thus, it seems plau-
sible that the function iV(&u) defined in terms of the
exa,ct X (co) in (29) must be nonsingular also in the
nonergodic case and that Eq. (30) can again be used
as in Eqs. (32)-(34) for generating an approxima-
tion to X (&o). The result is Eq. (34) with X re-
placed by x~(0). The real and imaginary parts of
Sm(u&) are obtained from Eq. (25) and (23) with s = 3,
respectively. At low frequencies Sz'(&o) is now

proportional to &u and Sz(~) to &u. The zero fre-
quency limit of Xo„(~) in the strain coupling case
would be

B. Strain coupling

The decoupling approximation can be applied to
this case without difficulty. The static limit of X~„
turns out to be

The applicability of approximate methods in-
vestigated here depends on the properties of the
system through the shape of the phonon spectrum
and the strength of the dipole-phonon interaction.
As expected, for weak coupling, all methods are
good approximations to the isolated susceptibility
in a wide frequency range. The simplest to apply
is the I orentzian approximation which, however,
fails in representing the real part of the suscepti-
bility at frequencies larger than the cut-off fre-
quency A. Also, this approximation is not appli-

OOI

A = I.O

P& = 100

-O.OI

-0.02-

0.03-

X (~)
X&to) 0.02-

I
I

I
(

&I

x, !I
II

/

/(

A =1.0

O.OI

0.5
I

I.O 15 2.0 2.5

X'(0) could, like Xr in (34), be treated as parameter
to be evaluated self-consistently as done in the last
section with Xr. Notice from (42) that X~(0) calcu-
lated in such a way is not equal to X~(0). Its phys-
ical meaning is not clear. More importantly, it is
not clear how such a self-consistent calculation
could be performed. The sum rule (35) in this
nonergodic case now includes the last term on the
right hand side of (35). This term along with the
x'(0) which is to be determined self-consistently
comprise tgg0 unknown parameters, since the limit
of ([o,(t), o,(0)j,) as f goes to infinity, is not known

to us.
In Fig. 5 we have plotted )(,„,and X, along with

g for a nonergodic strain coupling case. There
are marked discrepancies between the exact X and
the two decoupling approximations.

C. Conclusions

x'(0)
xov(0) =

1+—x'(0)
wB

(42) FIG. 5. Decoupling approximation and exact suscep-
tibilities for a strong strain coupling case at low tem-
perature.
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cable in the nonergodic strain coupling case. The
decoupling approximations and the method of Gotze
and%olfle give, in general, good results for the
real parts of the isolated susceptibility at large
frequencies but are poor approximations to the
imaginary part near and above the cutoff frequency.
For v- 0 the de'gree of accuracy of the imaginary
part is much better when a modified Debye spec-
trum of the form (6) is used instead of the usual
Debye spectrum. For m=0 all the approximations
treated were worse than a simple second order
calculation based on equilibrium statistical mechan-
ics.

The decoupling approximations and the method of
G% are characterized by certain factorization
schemes for the Green's function (7) in the frequen-
cy picture which lead to the results (16), (19), and
(34). The factorization occurs in the lowest non-
zero (second) order with respect to the coupling
strength. This is responsible for the nonphysical
sharp cutoff in the imaginary part of the suscepti-
bility at ~ = Q. Factorization schemes can be in-
terpreted as a crude extension of the simple
Lorentzian result (39) by introducing ad Roc fre-
quency-dependent relaxation rates S, (&u) or Sq(&o)/X

in lieu of 7 . A constant relaxation rate 7
' is only

meaningful if the irreversible time evolution of the
polarization can be adequately described by Mark-
ovian master equations. These equations are only
approximately satisfied in some systems in a cer-

tain range on the time scale, and have to be re-
placed, in general, by the integral (non-Markovian)
equations. ' The discrepancy between the commu-
tator and anticommutator decoupling method results
suggests that the factorization methods implicitly
introduce irregularities into the time behavior of
the correlation function (A(f) B(0)) figuring in (7)
since a properly behaved correlation function can
only lead to identical results in both cases.

To improve the decoupling approximations and
the G% method, one is tempted to develop more
complicated schemes through various corrections
to the functions S,(ar) and Sz(&u) in (16), (19), and
(34) in higher order of the coupling strength, for
example, by including the perturbed phonon fre-
quencies (d into Sg and Sp, etc. However, it is not
clear whether such schemes would lead to the cor-
rect time dependence of the correlation function.
To avoid this difficulty one should consider a per-
turbation expansion with a factorization scheme in
the time picture by writing the correlation function
in a form which has the correct limit for both short
and long times. %e will discuss one such method
and its application to a more general model of spin-
phonon interaction in a future publication.
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