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Electronic properties of a semi-infinite linear chain of an ionic crystal, simulated by assigning s and p
orbitals on alternate sites, have been studied by using the Green’s-function method. We obtain the same
results for the energy and the decay constant of the surface states as those obtained by using the
linear-combination-of-atomic-orbitals (LCAO) method. The Green’s-function method also allows us to
study the properties of the bulk states which show severe modifications owing to the presence of the
surface. In particular, we show that the bulk local densities of states develop strong oscillatory behavior
and that there exist certain Bragg-like conditions at which both the real and the imaginary part of the

local Green’s function go to zero.

I. INTRODUCTION

The existence of a surface in a solid leads to
various important and interesting modifications of
its properties. The surface states and their prop-
erties have been studied by many authors by vari-
ous methods. Historically, Tamm! first used the
Kronig-Penney model to study the surface states
of a one-dimensional crystal and showed that under
certain conditions surface states might exist.
Goodwin? was the first to apply the linear -combina-
tion-of -atomic -orbitals (LCAO) model to study the
Tamm states of a crystal. In this model the
Coulomb integrals and the resonance integrals of
the surface atoms are taken to be different from
those in the bulk. This method was further gen-
eralized by Koutecky® and Koutecky and Tomasek*
to study the energy and existence conditions of sur-
face states.

Recently Kalkstein and Soven (KS)® introduced a
Green’s-function formalism to study the surface
states of a semi-infinite crystal. This turns out to
be a very powerful method by which both the sur-
face and bulk properties of a semi-infinite crys-
tal®? can be studied to obtain exact results. In this
paper we have studied the electronic properties of
a semi-infinite one-dimensional ionic crystal by
this Green’s-function method. The study of such
a simple one-dimensional model would enable us
to draw certain general conclusions regarding the
surface properties of a three-dimensional ionic
crystal such as NaCl and CdS (in general known as
MX ionic crystals). Since the surfaces of ionic
crystals are usually natural crystal surfaces and
have almost no surface reconstruction, it is very
simple and convenient to apply the Green’s-func-
tion method to such a system. Surface states of
such an ionic crystal have been studied by several
authors®1° by different methods. Recently Levine
and Davison (LD)! have made a detailed study of
the surface states of a one-dimensional ionic crys-
tal using a band-edge LCAO method. By this

method they were able to show that under certain
existence conditions a M-like (X-like) surface
state would appear in the energy band gap some-
what below (above) the conduction (valence) band
when the chain is terminated by an M-like (X-like)
atom. In this paper, we first show that, for this
model, the Green’s-function method produces ex-
actly the same results for both the energy and the
decay constant of the surface state. By this method
we have also been able to calculate the densities of
the bulk states which show severe modifications.
The bulk densities of states develop oscillatory
structures and the band edges get modified due to
the presence of the surface.

In Sec. II we discuss the Green’s-function for-
malism for an ionic crystal and present our re-
sults. In Sec. III we briefly discuss the main con-
clusions of our work.

II. FORMALISM

Following LD we assume that in an ionic crystal
the resonance integrals B created by the s orbital
on the M sites and the p orbitals on the X sites have
alternate signs along a chain. As shown in Fig. 1,
we thus consider a one-dimensional representation
of a semi-infinite ionic crystal of the MX-type
where we assume that the M-like states are located
in the even-numbered sites and the X-like states in
the odd-numbered sites. For the purpose of our
calculation, we also suppose that the crystal is
terminated at the zeroth site where the Coulomb
integral €] is different from the Coulomb integrals
€, on the other even sites inside the bulk. We rep-
resent the Coulomb integrals on the X sites by ¢,.
Following KS we assume this this crystal is formed
by starting with an infinite perfect crystal and then
passing an imaginary cleavage plane between site
number 0 and site number - 1. Thus the resonance
integral B which couple the two sides of the cleaved
crystal is set to be zero and the difference between
the Hamiltonians of the cleaved crystal and that of

3534



10 ELECTRONIC PROPERTIES OF A SEMI-INFINITE IONIC... 3535

M X M X M
® 00 ® 0 ®

€e P € B € B Eo P Ee
n=20 I 2 3 4

FIG. 1. Semi-infinite one-dimensional chain of an
ionic crystal showing the M-like and X~-like atoms. The
symmetry types of the orbital wave functions, Coulomb
and resonance integrals are also shown.

the perfect crystal is treated as the scattering po-
tential. The Green’s function for the cleaved crys-
tal is expressed in terms of the Green’s function
for the infinite perfect crystal and the scattering
potential by a Dyson equation

G=G+GVG, )
where G and G satisfy the equations of the form
(E-H)G=1, (E-H)G=1, (2)

where H and H are the Hamiltonians for the
cleaved and perfect crystals. The perturbation
potential V in Eq. (1) is given by V=H-H,

In our present model the matrix elements of H
between localized functions centered on different
sites are

H,,=€,, m even

=€,, modd;

®)

these are the so-called Coulomb integrals we have
referred to before. Like LD we assume €,> €,.
Also the resonance integrals between the nearest
neighbors in our model are

Hy 1= =Hp my=B8, m even

=-p, modd.

)

We ignore all other resonance integrals, i.e.,
we retain only the nearest-neighbor interactions
in our calculation.

Let us now write down the various matrix ele-
ments of the scattering potential V. Since the
Hamiltonian of the cleaved crystal cannot have any
matrix elements between localized functions centered
on different sides of the cleavage plane, we must
have

H(Q0, -1)=0,
otherwise

H(m, m+1)==H(m, m -1)=H(m, m+1).

Also as noted before the Coulomb integral of the
M atom at the surface is H(0, 0)= €, otherwise

H(m, m)=H(m, m) for m>0.

Thus the various nonzero matrix elements of the
perturbation potential are

v(0, -1)=-H(0, -1)=-8,
V(-1,0)=-H(-1,0)= -8, (5)
v(0, 0)= H(0, 0) — H(0, 0) =€/ ~¢,.

In the present localized representation, the oper-
ator equation (1) can be expressed as a set of alge-
braic difference equations,

G(m, m")=G(m, m')+2 G(m, 1)V(1, 1)
. (6)
X G(l', m’").

Remembering that the only nonzero matrix ele-
ments of V are given by Eq. (5) and that G(m, m’)
=0 if m and m’ refer to sites on opposite sides of
the cleaved crystal, we have from Eq. (6),

G(m, m)=G(m, m)

[E(m,g)V(O, 0)"’5(""2 = I)V( - 1) 0)15(01 m)
*1-5(0, 0)v(0, 0) - G(0, —1)V(-1, 0) (7)'

The local density of states (LDS) at the site m
will be given by

Pm(E)= - %Im [Gm, m)]. (8)

Also the energies of any possible surface state
can be determined from the zeros of the denomina-
tor of Eq. (7), i.e., the surface-state energy is
given by the solution of

1-Goe(0,0)V(0, 0) ~ G0 (0, ~1)V(-1,0)=0 (9)

In Eq. (9), the subscripts ee and eo refer to the
matrix elements of G between two even sites and
between one even and one odd site, respectively.
The various matrix elements of the perfect Green’s
function G in our model are found to be

1 462 -1/2
E—E.(l_(E—G.)(E—-éo)) ’

Goe(m, m)=
m even
— E-€, -
Goolm, m)= oo Ge(0,0),
(]

m odd
Eu(m’ 0)= 6,,(0, m) = G,,(0, 0)
x{3[a - (a® -4)]*3}™2, m even

B

=E—€°

Geolm, -1) [Ges(0, m) = Goe(0, m+2)] ,

(10)
m even

Goelm, 0)=G,,(0, m) = Ef—(- [G,e(0, m+1)
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=Geo(0,m =1)], m odd
'G‘o,,(m,-1)=E'€ G (0, m+1), m odd
E-¢,
where
azz_(E_—E%(g:q)_, (1)

Expressing G,,(0, —1) in terms of G,,(0, 0) from
Eq. (10) we find that Eq. (9) reduces to

608(0, 0)(2€; - €= E) = 1; (12)

substituting for G, (0, 0) from Eq. (10), Eq. (12)
becomes

(E - €,)(E - €)(€; - €,) = B*(E - ;)= 0. (13)

The solution of this equation for E then defines the
energy of the surface states for a semi-infinite
ionic crystal terminated by an M-like atom at the
surface. This is exactly the result obtained by LD
[cf. Eq. (34d) of Ref. 10].

Notice that in order that the surface state may
|

_[Glm+2,0)v(0,0)+G(m+2, —1)V(-1,0)]G(0, m+2) |
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lie in the band gap, i.e., in the region ¢,<E<g,
we must have from Eq. (13)

(E -€l)el-¢,)<0, (14)

which implies that the surface state will lie in the
band gap if €< E<¢€,. The position of this surface
state in the band gap has been graphically analyzed
by LD.

We expect that the wave function corresponding
to the surface state would decay exponentially into
the bulk., Let us then proceed to calculate the de-
cay constant of the surface state corresponding to
the crystal terminated by an M-like atom. Such a
decay constant L is given by

Lz - ng (Egur(go)

Pm (Esurﬂcl) ) (15)

As indicated in Eq. (15), this ratio must be cal-
culated for the surface state only, i.e., for energy
E equal to the surface energy. Using Eqs. (7) and
(8) in Eq. (15), we obtain

L3=

Again using Eq. (10) in Eq. (16), we get

-G

17)

E=Egurtace

Thus the decay constant of an M-like surface state,
using Eq. (10) in Eq. (17), becomes

G(0, 2)
G(0, 0)

Substituting for G(0, 0) in Eq. (18) from Eq. (12),
we obtain

’
- E-¢;
€e—€;

This is exactly what was obtained by LD [cf. Eq.
(34a) of Ref. 10] for the decay constant of an M-
like surface state.

To study the nature of the decay of the surface
state and the modifications of the bulk states owing
to the presence of the surface we have calculated
numerically the local density of states (LDS) via
Egs. (7) and (8). The results of our calculation for
€,=—-¢€,=1, =1, and €,=0. 5 for the surface layer
and the first three interior layers are shown by A,
B, C, D, respectively, of Fig. 2. The dashed
curves in this figure are the LDS of an infinite
perfect crystal. Notice that the surface state oc-
curring at E =0. 76 decay exponentially (denoted by

L= =3[a-(a®-4)"?] (18)

E=Egurtace °

L (19)

[G(m, 0)V(0, 0)+ G(m, —1)V(-1, 0)]G(0, m)

(16)

IE=Esur£aco

the height of arrows representing the surface state
at each layer) within each sublattice. However,
because of the presence of the two sublattices, it
appears that the surface state decays in an oscilla-
tory fashion. It is also interesting to note that the
LDS at the surface layer does not have much re-
semblance with the LDS for the pure crystal. The
band -edge singularities of the infinite pure crystal
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FIG. 2. Local density of states for the surface (m =0)

and first three interiorlayersfor €,=-¢€,=1, =1, and
€,=0.5€,. The dashed curves in A and B are the in-
finite crystal density of states at an M and X layer, re-
spectively. Surface state occurring at E ~0.76 is shown
by an arrow,
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FIG. 3. Local density of states for the surface (m =0)
and first three interior layers for €;=-€,=1, =1, and
€, =€, Notice no surface state appears in the gap.

are smoothed out. Observe that at the interior
layers the density of states start showing some
oscillatory behavior. For the sake of comparison,
in Figs. 3 and 4, we plot the LDS for the first four
layers for €,= -€,=1, B=1, and €;=¢, and 1. 5¢,,
respectively. Since for these values the existence
condition [Eq. (14)] for a surface state is no longer
satisfied, we do not obtain a state in the band gap.
Otherwise, the density of states for the various
layers show approximately the same structures in
all these cases except for the fact that the peaks
in the LDS for the conduction band are somewhat
enhanced in Figs. 3 and 4.

As we get into the crystal, we would expect that
the LDS would start to resemble the LDS of a per-
fect infinite crystal. In order to check this point
we have calculated the LDS for the 19th layer for
€,=-€,=1, p=1, and €¢/=¢,, which is shown in
Fig. 5. We notice that even at this layer, the LDS
shows very strong “resonance” -like oscillatroy
structure and has no resemblance to the LDS of
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FIG. 4. Local density of states for the first four
layers for €,=—¢_ =1,8=1, and €;=1.5 €,
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FIG. 5. Local density of states for the 19th layer for
€,=—¢€,=1, =1, and €, =€,, Notice strong oscillations
persist even at this layer.

a perfect crystal except for the envelope. This
oscillatory behavior can be attributed to an inter-
ference effect owingto surface scattering. Such an
interpretation of the oscillatory behavior can be
verified by reexamining the local Green’s function
at the mth layer which is given by (Eq. 7)

G(m, m)=G(0, 0)(1 +e*™V?)  m even (20a)

= ?; G(0, 0)(1 - &!™V?)  m odd,
- €0

(20p)
where
e’ =4[a+i(d - a®)V?] if e<E<(e2+4p%)"2
(21a)
$[a-i@ -a®"? if - (+4B%)Y2<E<ec.
(21b)

Here we have let €=¢,=-¢,. From Egs. (20a)-
(20p) we derive the condition for G(m, m)=0 as

ei(m»l)a ==1 ,

and

m even (22a)

{(m+1)8 _ 1
’

e m odd. (22b)

Thus the values of 6[=6,(m)] for which G(m, m)=0
(except those at the band edges) are given by

oy(m) = ZLELT

where (23a)
n=1,2, ... (3m-1) for m even

and
0u(m) = 2L,

where (23b)

n=1,2,...[(m-1)/2] for m odd.
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FIG. 6. Energies E,(m) and the wave numbers %, as-
sociated with the local “pseudo energy gaps” (indicated
by the dots) in the LDS (upper band) for the 19th layer.

Using Eqs. (11) and (21)-(23) we obtain the energy
values

E,(m)=+[e®+2B%+2B%cosb,(m)]'"?, (24)

at which both the real and imaginary parts of the
local Green’s function G(m, m) at the mth-site
vanish, Note that these energy values vary from
site to site and their total number at a particular
site is determined by Eq. (23).

For the sake of comparison, we recall that the
energy dispersion for the perfect crystal in this
model is given by

E=zx[e?+2p% - 2p%cos(2ma/N)]"2, (25)

where A is the electronic wavelength, The band
edges for such a crystal at which the Bragg-dif-
fraction condition is satisfied, are given by the
condition

27
= -— =% .
ka N a=ET

By comparison we see that for the cleaved crystal
the same criterion is satisfied by Eq. (24), which
can be written as

n'A=(m+1)a, m odd

(26)

(n'+3)A=(m+1)a, m even,

where n’=m +1 - 2n and possible values of n are
given in Eq. (23). Equation (26) thus represents
the Bragg-like conditions which define certain local
“pseudo energy gaps” that occur within the allowed
bands of the perfect crystal, because of the pres-
ence of the surface., We can also calculate the
number of these local “pseudo energy gaps” or en-
ergies at which the surface Green’s function goes
to zero in the upper (conduction) and the lower
(valence) bands from Eqs. (23a), (23b), and (24).
We notice that each 6,(m) corresponds to two zeros
(one in the conduction band and one in the valence

band) of the Green’s function. Thus we conclude
that there are m — 2 (m > 3) zeros (excluding those at
the band edges) for the even layersand » - 1 zeros
for the odd layers. All these features show up in the
numerical calculations as demonstrated in Figs.

3 and 5. The energies of the local “pseudo energy
gaps” and their associated k,’s (=27/),) are plotted
in Fig. 6 which illustrate the consequences of the
Bragg-like conditions [Eq. (26)]. As mentioned
before the conditions (23a) and (23b) do not include
the conditions on the band edges at E=+¢€ and
+(€2+48%Y2 which we now consider more care-
fully. At these band edges we can calculate ana-
lytic properties of the LDS exactly. At the inner
band edges, i.e., at | El 2 € the density of states
given by Eqs. (8), (20a), and (20b) can be shown

to be

b= = 2 1m[B0, 0))= 25 (£~ ) (B+ 7,

m even (27)

2
P = % (mT-;_sl_)_ (E-€P?(E+€)*?, m odd.

As shown in Figs. 3 and 5, at the upper edge of
the valence band, i.e., at E= —¢, the shape of the
LDS is determined by (E +€)!/? at all layers; at the
lower edge of conduction band, i.e., at E=¢, the

LDS varies as (E —€)*/2 at all odd layers and has
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FIG. 7. Blowup of Fig. 3 in the vicinity of E =€,
The scale for curves A and C (representing the zeroth
and second layer) is on the left and that for the curves
B and D (representing the first and third layer) is shown
on the right.



a singularity of the type (E ~ €)"'/? at all even lay-

ers. The blowups of LDS in the vicinity of E=¢
for the first four layers have been shown in Fig. 7.

At the outer edges, i.e., at E=z (e?+48%)"2
the LDS can be shown to vary as (e?+4p% - E2)1/2
at all layers as depicted in Figs. 3 and 5.

The criterion for G(m, m)= 0 will however be
modified when the surface perturbations V(0, 0)
are no longer negligible. As shown in Figs. 2 and
4, the oscillatory structures in LDS still persist,
but at shifted energies, and it can be shown that
the real and imaginary parts of G(m, m) do not
vanish simultaneously. This strong oscillatory
behavior in the LDS should persist even in a three-
dimensional crystal if the LDS is measured at the
surface with a fixed wave vector &, in a direction
parallel to the surface.

III. CONCLUSIONS

In this paper we have applied the surface
Green’s-function theory to study a semi-infinite
one-dimensional ionic crystal and have been able
to compare the Green’s-function theory with the
conventional LCAO method. We have shown that
as far as the energies and the decay constant of
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the surface state are concerned, these two the-
ories produce exactly the same results.

The Green’s-function theory also allows us to
study the properties of the bulk states. Our study
shows a strong oscillatory behavior of the LDS for
a one-dimensional crystal. We have also shown
that in the absence of the surface perturbation, not
only the LDS oscillates but the entire local Green’s
function (both real and imaginary parts) goes to
zero whenever a Bragg-like condition is satisfied.
We attribute this oscillatory phenomenon to an in-
terference effect due to surface scatterings and
show that certain local “pseudo energy gaps” would
appear at those values of E at which the Bragg-like
conditions are satisfied. Thus these oscillatory
features should, in principle, persist infinitely
deep into the crystal. But the observability of such
oscillations in any experiment would be limited by
the imperfections of the lattice, the resolution of
the instruments, and the presence of other bands
which have not been considered in the present
model. It should be mentioned here that the ap-
pearance of these “pseudo energy gaps” is strictly
a local property and their effects will be smeared
out in the average bulk density of states.
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