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Structure of the moving piezoelectric polaron
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Both the intermediate-coupling theory and a strong-coupling theory appropriate for a moving polaron

give an anomalous energy-momentum relation, F.(P), for the piezoelectric polaron. This relation starts

out quadratic at small P, but at large P it asymptotes to a straight line with slope equal to the speed

of sound s. It is shown that the states represented by this anomalous F. vs. P relation are such that

the electron is clothed by .its concomitant lattice distortion and that this lattice distortion becomes

larger as the polaron velocity v ~ s. This indicates that in this limit an increasing number of phonons

are gathering in the "phonon cloud" around the electron, In both theories the constant lattice-potential

surfaces become flattened in the forward and backward directions as the polaron starts to move.

I. INTRODUCTION

In a recent series of papers' it has been
argued that the piezoelectric polaron obeys an
anomalous energy-momentum relation E(P) The.
E-vs-P curve which is thought to be correct
starts out quadratic at small P, but at large P
asymptotes to a straight line with slope equal to
the speed of sound s. This behavior is predicted
by energy-level crossing arguments' which con-
sider the degeneracy inherent in the system of non-
interacting conduction-band electron and acoustic
phonons. The electron-phonon interaction causes
the degenerate states to split, leaving the lowest
state of the system with the anomalous E -vs -P
relation described above. Both the intermediate-
coupling theory ' and a version of strong-coupling
theory appropriate for a moving polaron' yield
this type of anomalous behavior. ' For the inter-
mediate-coupling theory, it has been shown that
neither the inclusion of anisotropy nor the intro-
duction of a screened interaction cause this anom-
alous behavior to disappear and that this behavior
persists even at finite temperatures.

However, the anomalous E(P) relation at large
P is similar to the curve for a free acoustic pho-
non and this suggests that the states giving the
anomaly may be composed of a slow electron plus
a free acoustic phonon with momentum =P. If
this were the case these states should not be
thought of as polarons.

A quite different physical picture and one which
is supported by the calculations in this paper is
that as the electron approaches the speed of sound
the electron-phonon interaction becomes strength-
ened because of the degeneracy. This causes an
increasing number of acoustic phonons to take part
in forming the lattice distortion around the elec-
tron. The large lattice distortion then traps the
electron preventing it from traveling faster than
the speed of sound.

In a spherically symmetric formulation the
Frohlich Hamiltonian for the piezoelectric polaron
is

H-Q +H~„+H],t, (la)

where

t
Ht, h +a a~qa~q & (de (1c)

and

(1d)

The electron coordinate and momentum operators
are r, and p. The operat. ors a; create and annihi-
late phonons of an effective acoustic mode q. The
volume is U and n is the effective coupling con-
stant. ' ' The units are such that 5 = m = s = 1,
where m is the conduction band mass and s is the
speed of sound.

The interaction term, Eq. (1d), is just the po-
tential energy of the electron in the polarization
field of the lattice. Thus, except for a factor of

In Sec. II of this paper we calculate the potential
caused by the lattice distortion around the electron.
We calculate the potential rather than the strain
tensor because it is much simpler and still illus-
trates what we want to know. We find that as the
polaron velocity v-s the lattice potential around
the electron deepens indicating that the lattice
distortion grows larger in this limit. This result
contradicts the naive expectation that the polaron
should shed its "phonon clothing" as it starts to
move and agrees with the physical picture de-
scribed in the preceding paragraph.

II. LATTICE POTENTIAL
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electronic charge e, the lattice potential at r, is
given by H&„.

A. Strong-coupling theory

The trial wave function used in strong coupling
ls

) e(%4q p(r ~r) es&) ~()) (2)

S( )=gd i~e' ' —a 8 '
)

The parameter d; is determined variationally to
be

The lattice part of the wave function e ' '10) de-
scribes a lattice distortion centered about the point
r. The operator S(r) is given by

(8)

The parameter P is found variationally to be

P (v) = 3 v m t(/o( ln
1+v

1 —v

The energy is then given by
3

!I" !=( s-)' ~ ,—J~"(—'('(

This is accomplished with the use of a Lagrange
multipler which turns out to be the polaron velo-
city v.

Solving for the energy in the state I()(sc), a self-
consistent eigenvalue problem results for &f&(r).

However, this problem is difficult and it is cus-
tomary to approximate the solution by

y(r) (2/vP2)s/4 e-8 I /s

with

1 Q(q)V&. +p )
2 Q)a-vs q

(4a) +(4 n} (Re p, )'

with v determined by the constraint equation

p, = d'ry'(r 8"'y(r . (4b)

The wave function P(r, —r) is taken to be a normal-
ized electronic bound state centered around the
lattice distortion. The factor e' '~+ sets the entire
system in motion with W determined variationally
to be

W=v- d'ry'(~ py(r .

4m@ q, (Re pa

These equations are very similar to those obtained
for the intermediate-coupling theory [cf. Eqs. (21)
and (22) below].

The expected value of the potential in the space
described by the lattice wave function is

v ls)=(0/e r"( "')e rv'/o)

The wave function ~()(sc) is not an eigenfunction
of the total momentum operator

% =p+g qa', a, .

Rather, the momentum P is introduced as a con-
straint

P = &()sc ~&
~
4sc&

2= ——gQ (q)df cos(q ~ R) (12)
e a

where R= r —r, is the distance from the center of
the electronic wave function. Note that there is
symmetry in the forward and backward directions
and that the problem possesses cylindrical sym-
metry around the direction of the polaron velocity.
Using the geometry in Fig. 1, where 8 is the angle
between R and v, Eq. (12) reduces to

2 1/3 2 d(cos8') e
Vsc(R, 8) =-

s pe, [(1—t(cos8 cos8')s- v sins8sins8']'~s

For n = 0, Eq. (13) yields

Vsc(R) = —(2(s/R) erf (v 2 R/fj), (14)

which gives spherically symmetric potential sur-
faces as we would expect.

For v 0 0 the numerical evaluation of Eq. (13)
presents little difficulty, although care must be
exercised as v 1 because the integrand diverges
for 8 = e' when v = 1. This divergence can be traced
to d~, which diverges for all values of q. Hence,

the point q=0 plays no special role here as it does
in the intermedia, te-coupling theory.

The surfaces of constant potential now become
flattened in the forward and backward directions.
Constant potential contours are given in Fig. 2 for
0. = 5 and for v = 0.0, 0.9, and 0. 99. For those
contours shown the radii of the circles and the
minor axes of the elliptical-like contours are equal
as one moves outward from the centers. These
distances were chosen as 0. 125, 0. 250, and 0. 500,
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FIG. 1. Geometry for integration of the lattice poten-
ti 1. Because of the cylxndncal sym ry '~ ~ met in the direc-
tion of motion, v can be taken to lie in the k, -k~ plane.
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res ectively. (For CdS, our units are such that
R = 1 corresponds to - 2000 A. ) For a co
f th or axis the potentials increase in mag-

nitude for small R as v - 1, but this ceases o e
true at argerer R {note crossing of curves for V„
below'. Note that the center of the electronic wave
function coincides with the center of the potential
surfaces and that these surfaces become increas-
ingly more "pancake shaped" as v -1.

We find that at large distances from the electron
the potential
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FIG. 3. (a) V„(strong coupling, 0. =5) vs the distance
te f the lattice distortion for various

values of y l. (b) V~ {strong coupling, a=5) vs the is-
tance from the cen r ote f the lattice distortion for various
values of p l.
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FIG. 2. Constant potential contours xn the strong-
coupling theory 0. =(0.= 5). The constant potential surfaces

ted b revolving these contours abou an axiare genera y re
ave functionparalle 1 to The center of the electronic rv

coincides wi e cen'th th nter of the contours {surfaces).

which on restoring units becomes

(16)

V(( —Vsc(R 8 = 0)

2e5s 1
eR [1 —(c'js')sin'e]"'

This has the same form as the Lienar - *ard- Wiechert
t. Thistential with s replacing the speed of ligh .

result is not surprising because Vsc aand the Lie-
lutions of thenard-Wiechert potentials result as so u

'

This is true ofinhomogeneous wave equation. is is
Vsc because the strong-coupling polaron theory
treats the lattice in a non-quantum-mechanical

approximation.
To study these potentials further we define
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B. Intermediatewoupling theory

The trial wave function used in the intermediate-
coupling theory is
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where

T& = exp —i qa, a, ~ r
I a

r~= xxp Ff;(af —a;)) .

(19a)

(19b)

(19c)

FIG. 4. V„/V~ (strong coupling, 0, =5) vs the distance
from the center of the lattice distortion for various values
of y 1.

The f- are variational parameters given by

Q(q)
+q —q ~ v

(20)

i. e. , Vsc in the direction parallel to v; and

V~=-Vsc(R, B= —,'v) . (18)

This wave function is an eigenstate of O'. Thus,
the energy is an upper bound for each value of P
and is given by ~

Ez= ,'P --,'(-P-v)~

i. e. , V~ in the direction normal to v. Curves for
V„and V, are given in Figs. 3(a) and 3(b) for n
= 5. It is seen that the potentials diverge at R =0
as v-1. It is clear that V» and V~ differ consid-
erably even for distances relatively near the cen-
ter of the lattice distortion. The ratio V„/V, vs R
is shown in Fig. 4. For each v the ratio V„jV~
approaches a limiting value some distance away
from the center of the lattice distortion in agree-
ment with Eq. (15).

In Fig. 3(a), it is seen that the curves for V„
cross for different values of v. This effect can
be traced to the collapse of the electronic wave
function as e - 1 [cf. Eq. (9)]. The electronic and
lattice wave functions are treated self-consistently
in strong coupling. As v increases the lattice dis-
tortion grows larger causing the electronic radius
to become smaller which in turn causes the lattice
distortion to become narrower. This eventually
leads to the crossings in Fig. 3(a).

Increasing 0. in this theory causes the potentials
to become deeper as expected. However, increas-
ing o also causes the potentials to become narrow-
er and forces Vsc to assume the form in Eq. (15)
for smaller values of R.

4po 1
&q —,'q'+q-q. v '

with v give n by

4m a.
1lq (-,'q'+q —j ~ v)'

(21)

(22)

Note the similarity between these equations and
those obtained in strong coupling [Eqs. (10 ) and

(11)].
The expected value of the lattice potential in

the intermediate-coupling theory is

= —P Q(q)icos(q ~ R),

where R is the distance from the electron site.
The same symmetries hold here as in the strong-
coupling theory. Using the geometry in Fig. 1,
Eti. (23) reduces to

(23)

where

af
V (R, B) = —~ dP'

J
d(cosB')F(8', P'; 8),

(24a)

F(B', P '; 8) = (cia, —cia) cosf+(sip —sip) sing, cos8" «0

with

~ q~+ 1 —v sine cosset)

1 —v sinBcosg
cosa'=O (24b)

p = 2R cos8' [—,'q +1 —v (sin8sin8' cosP'+ cos8 cosB')], (24c)
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L = 2R cos8' [1 —v(sin8 sin8' cosQ'+ cos8 cos8') ) . (24d)

The functions si and ci are the sine and cosine integrals. ' In our units, the maximum wave vector is q
=300. Note, from Eq. (24), that the coupling constant in this theory affects the potential only as a multi-
pl. icative factor.

For v=0, Eq. (24) yields

V~(R) = — ——(sin(2R)ci[(q +2)R]
4o
ge R

—cos{2R)si[(q +2)R]+ cos(2R}si(2R)

—sin(2R)ci(2R)+si(q R)+-,'m], v=0 .
(25)

Note for R -~

VI (R)- —2n/eR, v = 0

as in strong coupling [cf. Eg. (15)].
For v e0, Eq. (24} can be evaluated numerical-

ly. ' Here also care must be exercised in the lim-
it v-1 because the integrand diverges for 8 = 8'
when v=1 [ci(x)-~ as x-0]. In these integrals
small wave vectors play a dominant role. How-

ever, it was shown before that the system has the
same qualitative behavior if we cut off the inter-
action ai small q. Also, that the strong-coupling
theory makes no special use of the q =0 phonons
suggests they are not essential to produce the
anomaly that we are concerned with here.

The contours corresponding to the constant po-
tential surfaces are given in Fig. 5 for v =0.0,
0. 9, and 0.99. For those contours shown, the
radii of the circular contours and the minor axes
of the elliptical-like contours are equal as one
moves outward from the centers. These distances
were chosen as 2. 5, 5.0, and 10.0 (note, the scale
of length is 20 times that in Fig. 2). As v in-
creases the potentials increase in magnitude for a
constant value of the minor axis. Note that the

electron is at the very center of these contours
(surf aces).

Potentials V„and V~ can be defined similar to
Eqs. (17) and (18}. The curves for V„are given
in Fig. 6 for R relatively close to the electron
site. The curves for V~ are approximately the
same as those for V„at these distances. For R

Vg A/R and V~- 8/R to first order in 1/R.
Vile could not determine the parameters A and 8,
both of which appear to be functions of velocity.
The ratio V„/V~ vs Ris shown in Fig. 7. It can
be seen that V„and V, differ for large R. It is
clear that the potential surfaces in intermediate
coupling have the same qualitative behavior as in
strong coupling except that the flattening occurs at
larger distances from the electron because of the
emphasis of the long-wavelength phonons in this
theory. The potentials do not approach the Lie-
nard-%iechert form at large R because the inter-
mediate-coupling theory does not treat the lattice
classically as the strong-coupling theory does.
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0.75 l.00
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III. DISCUSSION

The conclusion drawn from the preceding calcu-
lations is that in both the strong-coupling and inter-

v = p p
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FIG. 5. Constant potential contours in the intermed-
iate-coupling theory.

FIG. 6. V„(intermediate coupling) vs the distance
from the center of the lattice distortion for v= 0.0 and
y= 0.9999. (The coupling constant is 0,'. ) The curves of
pl) for intermediate values of z lie between these two
curves. The curves of V~ vs R are approximately the
same as those of V(( for this range of R.
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FIG. 7. V„/V~ (intermediate coupling) vs distance from
the center of the lattice distortion for various values of v.

mediate-coupling theories the electron continues
to be "clothed" by its concomitant lattice distortion
even as the polaron velocity approaches the speed
of sound. In fact, the lattice potential around the
electron deepens as v-s, indicating that the lattice
distortion grows larger in this limit.

Although the strong-coupling theory requires
larger values of 0, than are known for existing
piezoelectric crystals, the theory is very useful
in the present context because it shows very clear-

ly what is happening to the polaron as it approaches
the speed of sound. As v-1 the lattice potential
flattens in the direction of motion and becomes
much deeper pulling the electron into the central
region which is still spherical. This in part ex-
plains why when a "pancake-shaped" electron
wave function was used in a previous work, only a
slight lowering of the energy was obtained.

The behavior in the intermediate-coupling theory
is roughly the same as for strong coupling except
that since the interaction with long-wavelength
phonons is emphasized, the flattening takes place
at larger distances from the center of the lattice
distortion (from the electron site).

As has been mentioned previously it is inter-
esting to note that since the lattice distortion grows
as the polaron velocity approaches the speed of
sound, one would expect that the strong-coupling
theory would be favored at high velocity even in
cases where weak coupling is better at v = 0,
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