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An expression is derived for the magnetic susceptibility of an intrinsic semiconductor in a
tight-binding basis that is valid for both crystalline and amorphous materials. In addition to
diamagnetic intraband terms proportional to the square of the tight-binding radii there are interband
terms involving intersite matrix elements. These additional terms are evaluated for a simple two-band
model and found to be paramagnetic. It is shown that in an amorphous material these paramagnetic
intersite contributions will be reduced, thereby producing a diamagnetic enhancement.

I. INTRODUCTION

The static magnetic susceptibility of dielectrics
has never attracted a great deal of interest. The
primary reason for this is that this quantity is
very complex and the information contained in it
is not readily apparent. Furthermore, the ex-
perimental susceptibility is often dominated by

free carriers or impurities. However, recent
work on amorphous systems reveals interesting
diamagnetic behavior. For example, CdGeAs&'

and Ge have significantly larger diamagnetic
susceptibilities in their amorphous forms relative
to their crystalline forms. The magnetic suscep-
tibilities of S, Se, ' As2S„' and As~See, ' how-

ever, show little change upon going from crystal
to glass. It mould therefore appear that the rnag-
netic susceptibility contains information relevant
to our understanding of the electronic structure of
solids and for this reason we have undertaken to
examine this question. In molecular systems the
magnetic susceptibility has already proven to be a
useful parameter in studying chemical bonding.
In combination with the molecular g factor, for
example, it enables one to obtain a direct mea-
surement of second moment of the electronic
charge distribution in the molecule with respect
to its center of mass.

In order to investigate the susceptibility of a di-
electric solid, let us consider the case of an in-
trinsic two-band semiconductor. To our knoml-

edge this problem has never been attacked di-

rectly, although much of the work on Bloch elec-
trons in a magnetic field alludes to this case as
a limit. These results often tend to be unneces-
sarily complex because they depend upon the
representation used for this more difficult prob-
lem. The calculation itself of the magnetic re-
sponse of a Bloch electron is also more complex
because one is generally interested in phenomena
involving closed electron orbits such as the de
Haas-van Alphen effect which cannot be studied
perturbatively. The static susceptibility, how-
ever, may be obtained from linear-response the-
ory. Ba,rdeen, for example, has demonstrated
how one obtains the Landau diamagnetism of a
free-electron gas using this approach. In this
paper we derive an expression for the magnetic
susceptibility of an intrinsic semiconductor that
is applicable to both crystalline and amorphous
materials.

ll. LINEAR-RESPONSE THEORY

The susceptibility is defined as the ratio of the
total induced magnetization to the applied field.
To find this magnetization we must first compute
the induced current density. The induced current
density is related to the vector potential by

j;(x/) = —— d s'd/'X, , (x/; x'I')
4m

x A, (x'/'),

where the kernel is given by

P 4I;,(xt; x't') = 2 (n»(xt)) 5(x - x') 5(t —I ') 6, /
—I —

2 ( [j»;(x/), j»,.(x'/') ] )9 (/ —I ') . (2)

This involves the communtator of the current operators for A= 0 mhich have the form

j», (xt)= —
2

. i/i» (xt)
S

i/'» (xt)-
S

— (~» (x/) i/ », (x/)!

Here i//»„(xt) is a field operator in the Heisenberg representation,

(~) ei»t/h j (g e-i»t /&
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where &=3C, —pÃ, X, being the Hamiltonian and p the chemical potential. The field operator is now ex-
panded in the eigenstates of the system,

tl), (x) = Q Q &„„(x)C„»

where v is a band index, 0 referring to the valence band, and 1 to the conduction band, A. refers to the
states within the bands and o.'is a spin index. Using Eqs. (4) and (5) in (3) we obtain

8
( f)

e Q Q (»s ( ) g (s') (j)+ (X) (j) (X) @sEt/» t~
i tr/ »

where

K=+ Q (&sr»
—i ) C„»asC„»ss .

By integrating the equation of motion for the Heisenberg operator it is easy to show that

e&Kt/h» -iKt/h i(6 &-p, )t/h
vka vAo

This enables us to reduce the operator factor in Eq. (6) to

«&/h ~» ~ e-«&/ h — ~ ~„y-&p y &&/ h
I/&0. u'O'O v/0, 'vk 0

The current-current commutator then involves

[C&»ss C & s» sex s C & ~ s» r a» Cx ~ e e» e ~ r» j —C &»& Czar» r a ~ t) 6» a &» ~ 6 )r ~ sera () (st) C ~ e» r e tst
C s»s cs f)»r s~ e» 5 &s~ ~ '(r '5 cs ()

If we restrict ourselves to zero temperature then the averages indicated in Eq. (2) just become the expecta-
tion values in the ground state, which is the filled valence band. This is readily generalized to the case of
multiple bands. It should be pointed out here that the assumption of a filled band excludes molecules such
as benzene which are noted for their large diamagnetism. In benzene the "Fermi Level" sits in the middle
of the g-electron band and one does not have all the necessary "band" states available from which to con-
struct localized states. The expectation value of Eq. (10) then becomes

t)»s ~ ~ » ()» er»a f)as»(f)vs axe () va ~ ~ v 0
—f)sr sax f)ss e xs 0)

%'e see that if this expectation value is to be nonzero v =- v =1 in the first term while v = v=1 in the
second.

Combining these results the expectation value of the current-current commutator is

2 2

(tj';ix(). ( ;ix s 11) = — S, 'Q ''{t,"„txl ('„,t )—
t t

e

x t ...tx ') , t c ,tx' ) — („,,tx
'
) ( ,„tx ')I e ' " ' ' "" " —(c. c . ) . ((2 )

I J

Jn a similar manner the expectation value of the number operator appearing in the first term in the kernel,
Eq. (2), becomes

(nr(xf)) = Q t()o» (x) tj'0» (x) .

The current, Eq. (1) becomes

. (,, Se', s'X' x
{

(;,(xl(s/ax, )(„.( ) —[telex)t(x))t„(xl, ,",
~&a' —~ox

x ' S'x' (',', tx'); ()„(x')— ~ 0;,.tx') ts,(x')Ixe(x') .
ex, ' ex,. (14)
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As long as the induced current is small in com-
parison witht the external current we may sub-
stitute for A(x) the value it would have in the ab-
sence of the medium. In the absence of the medi-
um we just have a uniform magnetic field 8, Since
the form for the kernel given by Eq. (2} assumed
a transverse gauge, let us write

A(x) = g 5xx .
The integral d x in Eq. (14) then gives

(f/}f}(1k'l5 I lok&,

where l is the orbital angular-moment operator
x xp. The total magnetic moment is given by

Mv= — d x lxxj(x)]2c

from which we obtain the susceptibility

22 g (Ok
I lxx (ff, xx)], IOk)

4 c'V,
2e' r (Ok [l, ilk')(lk'il~ iok)

+
20$ C P g gs

%/gal

CQy

(18)
where we have displayed the spin degeneracy ex-
plicity by the factors of 2 in the numerators of the
two coefficients.

Equation (18) is precisely what one would have
expected in analogy with a molecule. Expressed
in this form the susceptibility has a deceptively
simple form. This deception arises from the
fact that the states g„» (x) are the exact eigenstates
of the finite system. We cannot, for example, use
Bloch functions for these are the eigenfunctions of
an infinitely periodic system, and therefore
x{{1„»(x) is not normalizable. '0 If one wishes to
use Bloch functions then the operators must be
transformed in such a way as to make their matrix
elements well defined. There have been many ef-
forts in this direction and the results have general-
ly been extremely complex, Blount, for example,
finds that in the limit of an intrinsic semiconductor
the Bloch representation gives in addition to the
diamagnetic atomic and paramagnetic Van Vleck
terms a third "pseudoatomic" term whose sign
depends upon an effective mass. Fukuyama has
recently shown that the susceptibility of Bloch
electrons can be expressed in a relatively simple
form which allows reasonably simple calculations
to be performed. '2

The difference between the true states g„~ and
Bloch functions can be attributed to surface ef-
fects. Although the use of peri&ic, or Born-von
Karmin, boundary conditions only affects cer-
tain quantities such as densities of states by the
surface-to-volume ratio, '3 this is not the case for
matrix elements of "polarization" operators such

as occur in Eq. (18).

III. TIGHT-BINDING REPRESENTATION

In the case of an intrinsic semiconductor we

might expect to avoid these difficulties by working

in a tight-bindingbasis. Let us therefore introduce
orbitals lv, i, a&, where v is the band index, i is
a site index, and o represents additional degrees
of freedom. These might be Wannier functions or
they might be the bonding and antibonding hybrid
orbitals introduced by Heine in his treatment of
Weaire's model' of tetrahedrally bonded amor-
phous semiconductors. In this case there are four
orbitals associated with the same index i, i. e. ,

0. = 1, 2, 3, or 4. The eigenfunctions of the va-
lence and conduction band may then be expanded as

Ivk)= Q &vr alv'k) Ivi&) . (19}

(20)

when this operator acts on conduction band or anti-
bonding states while it gives zero when it acts on

valence band or bonding states.
The first step in transforming the susceptibility

into this tight-binding basis is to remove the ex-
plicit dependence upon the exact eigenvalues in

Eq. (18). This is accomplished by introducing an
integral representation. Thus

(Ok I l „[1k ' ) ( 1k '
[I„ i Ok&

A' la' Oa

=Q &oklI „„lok), (21)

where I.„„has the symmetrized form,

f. = —
I~i

dk (e"."Ol e» Ilk ) ( lk
-0

+I„I

1k') ( lk'
I
e ""'l„e""

Since the states in different bands are orthogonal
the expansion coefficients in Eq. (19) satisfy

(23}

Therefore the sum over the intermediate states in
Eq. (21) may be re-expressed in terms of the con-
duction band or antibonding orbitals,

For simplicity we shall assume that the index A

includes the spin index. Having identified the coef-
ficient in this expansion as the integral ( vlo, ivk&

assumes that the tight-binding basis is orthonor-
rnal. Also, notice that since these transforrna-
tions are confined to each band separately, there
will be closure relations for each of the function
spaces characterized by the band indices, i. e. ,
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2 I»'&&»'I =Z l»fI&&»6l

Similarily, the sum over the initial states may be
replaced by a sum over the valence band or bonding
orbitals.

The advantage of this formulation is that we
may now use a, tight-binding form for the Hamilto-
nian 3C, . However, the use of localized states
presents an additional complication. This has to
do with the fact that the values of coordinates or
angular momenta are dependent upon the choice
of origin. It can be shown that the susceptibility
given by Eq. (18) is invariant of the origin. The
proof is similar to that for a molecule' involving
the rela, tion

It also involves the use of the closure relation given
by Eq. (20). Our object now is to use similar
arguments to express the susceptibility in the

tight-binding basis but such that the origin for
each term coincides with the origin of the tight-
binding wave function. There are a number of
ways one might accomplish this. One would be to
multiply the tight-binding basis functions by phase
factors of the form exp[(ieH/fic)x;y) T.his cor-
responds to a gauge transformation which trans-
forms the origin of the vector potential to the ith
cell. " %e shall„however, employ a variation of
Van Vleck's technique for proving the invariance
of origin. Consider the diamagnetic term
(Oia I& Ioia) T.his may be written

& o a Ix'I oia& =
& o a

I
(~ -x,)'I o n&

+ 2X, (Oia
I
x -X,

I
Oin) +X, , (26)

where X, is the x coordinate of site i. The first
term has the desired form. The remaining two
terms represent "divergences" whose compensa-
tion must come, as in the proof of the origin in-
variance, from the paramagnetic part. Consider

&o~alf-Io«&=- ' dj Z 2 Z &(halo»&onle"~'[(~-x» -(y Y,)p,+-xp„Y;p, le—""'I»'&

"&»'I[(»-x~)p, —(y Y,)p„+x p-„Y,p. ]Ion"-&(on"loin&+. . .
Let us focus our attention on the term proportional to X;.

d& 2 2 2 &(hal»&&»" loin& [&»le""p" ""'I»'&&»'I»

Ion�

"&
2 a a' a"

+ &»
I p. l

»'& &»'
I

e ""p.s""'I» "&]xf (26)

Carrying out the integral and using Eq. (25) gives

-'2)f 2 2 2 &»a lon& &on"I o a) [(only I»'&&»'Ip. Ion"& -&»lp. l»'&(»'Iy Ion" &]x'. .

Let us now add and subtract the following terms to those within the square brackets in Eq. (29),

&only Ion')&on'Ip„Ion "& —&onlp„lon') &on'ly Ion" & .

(29)

The added terms, when combined with those in Eq. (29), enable us to remove the sum over intermediate
states by closure. These terms then collapse to (On I [y, P,]Ion") =i 55~ ~" . The resulting term just can-
cels the X, term in Eq. (26). Assuming the localized basis is real, the remaining terms from Eq. (29)
may be written in the form

g Z Z&oilylof&&otlp. l(h&(x, -x, ) x, .

The quantity within the @quare brackets clearly vanishes for j=i and falls off exponentially as j moves
away from i. If the material is reasonably homogeneous this quantity will be independent of i. Conse-
quently, if we choose the origin for the site coordinates such that g;X, =o, this term vanishes. This con-
dition restricts us to large systems. Similar arguments may be applied to the other terms. For example,
those terms proportional to X,Y, involve the commutator [y, P,] and therefore vanish.

The total susceptibility therefore becomes
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2 ~ OO

g &of~i(. -x,)'+{y -1~)'lof~&+»
y s & 4m' V

+&0 ~ If.*llama& &lj6lf.;(-l ) lof~&]. (»&

Notice that by removing the intermediate states
in the second term by closure it may be written in
the more compact form,

(aD/t. , —— z„(- —
) /o'a),2mcV

where the angular-momentum operator I, is now

assumed to have the non-Hermitian matrix repre-
sentation which only couples valence-band states
to conduction-band states. Written this way shows
that this term is manifestly positive and there-
fore paramagnetic.

Another point to keep in mind is that one cannot
write the diamagnetic first term in a tight-binding
basis as in Eq. {31)while writing the paramag-
netic term in the "band" basis as in Eq. (18), al-
though one often finds this done in the literature.

IV. DISCUSSION

We recognize the first group of terms in Eq.
(31) as the diamagnetic contributions from the in-
dividual tight-binding states. The second group of
terms represents the complicated effects of inter-
band and, because of the presence of the Hamilto-
nian in the exponentials, of intersite contributions
to the susceptibility. We can obtain some insight
by considering a simple two-band model. Since
the features we wish to explore are the roles of
the energy gap and the overlap of the wave func-
tions, let us consider the Hamiltonian,

3t.=f QQ lo, i+6, n&&o, f, o,
l

6

(32)

Here I; is a transfer integral between a site i and
one of its z nearest neighbors at i+5. This model
corresponds to a valence band of width 2zt and a
narrow conduction band. Using the expansion,

e"ae "=a+[A, a]+(1/2!)[A, [A, a])+ ~ ~ ~, (33)

we have evaluated the integrand in Eq. (31) to or-
der X . We have made the simplifying assumption
that the only nonzero matrix elements of the or-
bital angular momentum are between two states on
the same site, i. e. , (0,i, n (f!1,j, p& =f0, 6;, 0 z.
In the expansion one encounters terms involving
sums of the form

g g (0, ilo, i+6+6 ) .
6 6e

t

Here i+ g refers to one of the z nearest neighbors
to i while i+5+ g refers to one of the z nearest
neighbors to i+&. If we assume that our localized
wave functions are orthogonal, as is the case with
Wannier functions, then the only way that this sum
can be nonzero is for 5'= —g. Therefore, this
particular sum has the value z. If we consider a
simple cubic structure then terms of the form
(0, t'lo, i 5++6 +6"

& will be zero H.owever, in
fourth order we have an interesting situation.
Terms involving combinations of four near-neigh-
bor vectors can be nonzero in two distinctly dif-
ferent ways. One is for 5"= —5' and 5
That is, one moves away from i and then returns
over the same path. The quadruple sum gives z
in this case. However, it is also possible to re-
turn via a path that does not involve any retracing.
The number of ways this can be done in a simple
cubic system is z(z —1). Thus, to fourth order the
integrand in Eq. (31) becomes

2ll&
l

1 —xb+ 3, +
4~

~'zt' 3~'~zt' 6&4~'zt'
2 3I 4I

z{z —1) X /
+ + ~ ~ ~

4f

We recognize these terms as the leading terms in
the expansion of

z'I'X' z(z —1)!'!'2l„~ 1+-,'zt X+
~

+ -, + e

(35)
Carrying out the integral over X, the second term
in Eq. (31) becomes

iV e ~l~, ! b z(z —l)f, + 4 + . . (36)

The model, of course, is only valid as long as the
valence band does not overlap the conduction band,
i. e. , zt &4. The total susceptibility is the sum of
diamagnetic (x ) terms plus the parama. gnetic
terms given by Eq. (36).

Notice that in the limit of vanishing overlap,
i. e. , t-o, Eq. (36) reduces to the Van Vleck
paramagnetism associated with X independent
sites. Therefore, the total susceptibility reduces
to the sum of the susceptibilities associated with
the constituents. Such an additivity has been re-
cognized for a long time. However, we now have
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TABLE I. Decomposition of the magnetic susceptibilities of group-IV
and group-VI elements as well as As2S3 and CdGeAs2 ~ All values are in
units of 10 6 emu/mole.

C (di amced)
si
Ge
s
Se(trig)
As2S&

CdGeAs2

—5. 8
—3. 1
—8. 1

—15.52
—21.48
—88. 57
—82. 03

—0. 1

—5
—21
—47

r', ~, (A)

0. 77
1.17
l. 22
l. 04
1.14

As: l. 18
Cd: 1.48

X(g2)

—6 ~ 64
—15.33
—16.7
—18.17
-21.83
—77. 90
—52. 33

Xtgy (Xc gy+ X( 2))

+0.94
+13.2
+15.6
+3.65
+5.35

+10.33
+17 23

~P. W. Selwood, Ref. 17, p. 78.
L. Pauling, The Chemica/ Bond (Cornell U. P. , Ithaca, N. Y. , 1967),

p. 148.
'M. Owen, Ann. Phys. (Leipz. ) 37, 657 {1912).
Q, Busch, in Halbeiter und Phosphore Kolloquim Garmi sch-Partenkir-

chen, 1956 (Vieweg, Braunschweig, 1956).
'D. K. Stevens, J. %'. Cleland, J. H. Crawford, and H. C. Schweinler.

Phys. Bev. 100, 1084 (1955}; H. Bowers, ibid. 108, 683 (1957).

an explicit representation for the bonding cor-
rections or Pascal's constants as they are called. '

This model, characterized by the Hamiltonian of
Ett. (33) with the additional "site approximations",
is perhaps too simple to enable us to make any

quantitative comparison mith experimental data.
Nevertheless, it is possible to qualitatively under-
stand the difference between the group-IV ele-
ments and the group-VI elements.

Unfortunately, no one seems to have made a
systematic study of the susceptibilities of the
group-IV elements. The values found in the Lan-
dolt-Bornstein tables are listed in Table I. Note
that the value for diamond is that given by Owen
in 1912. Although a good natural diamond is
probably the best sample one could hope for, this
particular diamond did contain 15 ppm of iron.
Since nonmagnetic impurities can also affect the
susceptibility, one worries if such a value re-
flects the intrinsic susceptibility even though it is
temperature independent. Let us therefore re-
strict our discussion to germanium and silicon for
which efforts were made to remove the impurity
contribution.

From experimental data on ionic compounds in-
volving these elements it is possible, using the ad-
ditivity which we have nom established, to obtain
the susceptibility associated mith Si ' and Ge '
cores. These values as mell as the total experi-
mental susceptibilities are given in Table I. The
fact that they are very close indicates that the
diamagnetic and paramagnetic contributions from
the four valence electrons must nearly cancel each
other. To obtain an estimate of the diamagnetic
contributions, me have used the square of the co-
valent radii in the first term in Eq. (31). These

results are given in the column labeled x&„&& in

Table I. The paramagnetic contribution is then

given in the last column. The point to note here
is the fact that this paramagnetic contribution
from the valence electrons is large in comparison
with the total measured susceptibility.

We have made a similar decomposition of the
susceptibilities of sulfur and trigonal selenium.
These are also given in T'able I. Here we notice
that the paramagnetic contributions are small in
comparison with the measured values. We at-
tribute these differences to the differences in the
coordination of these two classes of materials. In
the fourfold coordinated materials there are a
greater variety of "paths" contributing to the in-
terband terms. In trigonal selenium on the other
hand the twofold coordination gives rise to a chain
structure in which there are no "nonretracing"
paths.

Let us now consider the implications of this
model for an amorphous solid. One of the features
of an amorphous solid is the possible appearance
of localized states. If the energy of such a localized
state is very close to the point at mhich the state
becomes delocalized one might expect such a
state to be characterized by a large orbit and

thereby give a large diamagnetism. In fact, White
and Anderson' suggested this as a tentative ex-
planation of the diamagnetic enhancement in amor-
phous materials. This, however, neglects any
renormalization of the chax ge distribution associ-
ated mith the delocalized states themselves. Kohn
and Onffroy~ have recently investigated this ques-
tion in the context of a one-dimensional periodic
la, ttice with a point defect. They find that even
mhen the defect is strong enough to pull off a bound
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state there is very little change in the %annier
functions associated with this system. This sug-
gests to us that the diamagnetic term in Eg. (31}
will not be greatly affected by disorder. Those
terms involving intersite matrix elements however
will be affected. To see how this occurs we note
that in a disordered system we expect the trans-
fer matrix elements to be different for different
pairs of sites. Thus the fourth-order contribu-
tion, for example, would have the more general
form

x(0, i~0, i+6+6'+6" +&"') .

Voids, dangling bonds, etc. will make some of
these transfer matrix elements zero. One mani-
festation of this may be to restrict percolation
paths to the extent that localized states are formed.
It wikl also introduce an effective coordination
number in Eq. (36) which will be less than that of
the crystal, thereby reducing both terms in Eq.
(36}.

Various models have been proposed for amor-
phous semiconductors, particularly the fourfold
coordinated semiconductors, which satisfy the
local bonding requirements, i. e. , do not introduce
dangling bonds. Since the paramagnetic term in
Eq. (31) becomes an expansion in the number of
returning paths this becomes the quantity of in-
terest in these models. The number of returning
paths up to 18 steps has been tabulated by Thorpe
et cr/. ' for the diamond lattice as well as the

Bethe lattice. The latter is an infinitely branching
tree-like structure with no closed loops or rings.
Since there are two sixfold rings per atom in the
diamond lattice the number of returning paths
associated with this structure exceeds those as-
sociated with the Bethe lattice for six steps and
the difference grows rapidly with the number of
steps. This suggests that the diamagnetic sus-
ceptibility of the Bethe lattice is larger than that of
the diamond lattice. However, since the Bethe
lattice is only one of many models suggested for
amorphous materials, we cannot prove that this
situation will always prevail.

Finally, let us consider the compounds As~83
and CdGeAsz. In its crystalline form As283 has
a layer structure. In such a two-dimensional
system we would again expect the number of "non-
retraceable" paths to be restricted. Consequent-
ly, the role of disorder would have less affect on
the magnetic susceptibility as is observed. How-
ever, recent experiments indicate that if AslS3
is evaporated onto a cold substrate one can achieve
enough, disorder to affect the susceptibility.
CdGeAsz on the other hand is a three-dimensional
network and its susceptibility should therefore be
sensitive to disorder according to our arguments
above. This again is consistent with what is ob-
se rved.
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