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The correction to the chemical potential of a high-density electron gas due to the presence of charged
impurities is calculated using Green’s-function techniques. In first order, a r''? correction is
determined as compared to the r'’? correction previously determined by Bonch-Breuvich and Zyagin.
In either case, however, the contribution is small compared to the contributions from electron exchange
and correlation. The upward shift in the Fermi level as a function of impurity concentration is
contrasted with optical experiments of Hill on heavily doped GaAs. A discrepancy is noted between

experiment and theory.

INTRODUCTION

Theoretical investigations of interacting electron-
gas systems have in the past found fruition in the
study of heavily doped semiconductors. As has
long been realized, many semiconductors doped
with moderate impurity concentrations become
degenerate at low temperatures. This result is
reflected in the parameter », which defines the
average interelectron spacing in units of effective
Bohr radii;

r=2,2=(3 >1/3<h—2€>-1
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where n is the electron density, m* is the conduc-
tion-band effective mass, and € is the static di-
electric constant. The high-density gas regime is
defined by concentrations for which 7, is less than
unity. In many semiconductors €> 1 andm* < 1
justifying the assumption 7, < 1 for doping of the
order 10""-10'® cm™3. Thus n and »; become con-
tinuous variables for studying the electron gas in
semiconductors with suitable values of € and m*.
The significance of the relation 7, <1 is manifest
if one examines the Hamiltonian for an electron
gas in an environment containing charged im-
purities (we neglect lattice effects which are
negligible for the physical quantities considered
here):
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The first term is the electron kinetic energy, the
second and third terms describe the Coulomb
interactions between electrons and electrons with
ionized impurities, respectively. The Pauli prin-
ciple restricts not only the momentum space avail-
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able to electrons but also discourages close prox-
imity in configuration space. The ultimate effect
on high-density electron gases is occupation of the
higher momentum states subsequently increasing
their kinetic energies. The time each electron is
in the vicinity of another is reduced. The kinetic
energy is considerably larger than the interaction
energies, rendering these as perturbations on the
nearly-free-electron gas. Field-theoretic tech-
niques can be applied to determine the ground-
state energy of the system from infinite perturba-
tion series. Certain contributions to the ground-
state energy including kinetic, exchange, and cor-
relation energies, have been calculated and are
well known.! The electron-impurity interaction
however has not been as completely investigated.

A number of experiments have been performed
to elucidate the optical properties of III-V semi-
conductors particularly GaAs.2™ GaAs is a direct
gap semiconductor—hence it is a system whose
optical absorption processes can be simply in-
terpreted with the selection rule Ak=0. Experi-
mental results in general exhibit a shift in the
absorption edge to higher photon energies as
doping is increased in n-type material. Burstein
originally attributed this shift to a change in the
electron’s effective mass with impurity concentra-
tion causing the absorption edge to progress up-
ward with the Fermi energy.5'® Kaiser and Fan
derived the formula’

hV(a)=E,+[§—kaTln(g-°—l>] <1+1n-€> (1)
a m,

in an attempt to describe the progression as a
function of the absorption coefficient @ which in
turn is a function of impurity concentration; ¢ is
the Fermi level, a, is the absorption coefficient
for pure material and m,/m, is the ratio of con-
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duction-band effective mass to heavy-hole valence-
band effective mass. Hill measured the optical
absorption edge for different doping levels and
fitted his experimental results to Kaiser and Fan’s
expression determining the rise in the Fermi
level.® The fit, however, gave the anomalously
large electron effective mass of 0.12m,. Since
GaAs has a dielectric constant of 13 and conduc-
tion-band effective mass of 0.072, it is a definitive
system in which to study the properties of the high-
density electron gas when n > 10" cm™%. One
should be able to ascertain the Fermi level using
many-body theory and compare this with Hill’s
experiment.

The chemical potential of an interacting electron
gas in the presence of charged impurities has been
the object of several theoretical studies. The
density of states p(€) is given by Green’s-function
relation

o(€) =T2§17)7 f ImGX(k, E) dk (2)

where ImG®(k, E) is the imaginary part of the
retarded many-body Green’s function. Several
authors, notably Bonch-Bruevich,®'® Kane,°
Zvyagin,'! and Wolff'? have calculated p(¢) each
deriving similar results regarding the structure
of p(€). Kane found a tailing of p(€) into the gap
while Wolff found what appeared to be a band-edge
shift. Bonch-Bruevich’s results indicated the
existence of a finite density of states throughout
the band-gap, but the contribution in the gap was
negligible. Furthermore, Bonch-Bruevich and
Zvyagin independently used the relation between
the electron density and the density of states

n=fp(e)n(e)de=fe c(_f,)”de (3)

to calculate u, the chemical potential as a func-
tion of electron density. For heavily doped semi-
conductors n is equal to the impurity density—
hence the effect of doping on u can be verified.
The formulation used by Wolff corresponded to that
developed for impurity scattering by Edwards,'®
Kohn and Luttinger, among others.'**'®* Un-
fortunately, the p(e€) calculated using Eq. (2) ren-
dered a rather tedious integration which was nu-
merically evaluated. A deduction of u from Eq.
(3) is inconvenient utilizing Wolff’s result.

In this paper an alternative procedure is given
to calculate the correction to the Fermi level.
It is also predicated on the techniques of Edwards
et al; however, it differs from Wolff’s approach
in that we derive the correction to the thermo-
dynamic potential of the interacting gas Q(T,V, u).
The zero-temperature limit then gives the ground-
state energy from which p is determined.

_3E(V,N)| _ & /.
ey aN(l;f':,Q(T’V’“)) , (4)

As with the above theories, the contribution from
the electron-impurity interaction is shown to be
small compared to those of electron-electron
exchange and correlation.

THEORY

In finite-temperatures Green’s-function formal-
ism, the expression giving the thermodynamic
potential is'”

_ Ldx d32 1
Q(T) V’ “‘) 'Qo(Tr V! “’) + V’L Y (2”)3 Bh-

x 3 e HEND, p)CME, b, (5)
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where GNP, p,) is the many-body electron Green’s
function, (5, p,) is the electron self-energy, A
is the coupling constant ¢?, and 1 is a convergence
factor whose limit is zero following evaluation of
the frequency summation p,. We write

ZMB, p,) =22 B, 0 + 20, (B, 0 (6)

where =}_, (5, p,) is the self-energy contribution
from all electron-electron interactions, including
direct, exchange, and correlation energies.
Writing (B, p,) in this fashion allows us to take
advantage of the extensive properties of Q and
write

Q(Ty Vy ‘-") =ﬂ°(T, Vv ﬂ') +Q'-.(Ty V; #)
+Q, AT, V,u). )

The contribution of Q, and Q,_, to the total ground-
state energy in the zero-temperature limit has
been evaluated and is well documented.!"!” We
designate the result by E,(V, N) [see Eq. (32)].
Our concern is with £2_,(B, p,), the self-energy
of the electron-impurity interaction. First we
must interpret the exact nature of this contribu-
tion. Several authors have discussed =)_,(5, p,);
we briefly summarize the argument principally
of Edwards.?

Consider the model Hamiltonian

H=H,+V. (8)

V is the electron-impurity interaction and has the
form

V=Y e dpg)viq), ®
g
where
p(@) = Zr: ci{a cr (10)
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FIG. 1. Diagrams corresponding to Eq. (11) showing
the contributions to the self-energy due to electron-
impurity interactions.

is the electron-gas density, V(q) is the Fourier
transform of the electron-impurity interaction
and ﬁ, represents impurity positions. H, is the
unperturbed Hamiltonian which includes the elec-
tron-gas kinetic energy and electron-electron
interaction. Taking the thermodynamic averages
necessary to compute =2_,(B, p,) we discover an
explicit dependence on the impurity coordinates
ﬁ,, These coordinates must not appear in the
self-energy, as the impurities are assumed ran-
domly distributed; therefore some averaging pro-
cedure must be adopted to extricate them. The
argument originally due to Kohn and Luttinger!*
and Edwards®? stipulates that if the fraction of
atomic sites occupied by the impurities is small,
a configurational average can be carried out which
eliminates the coordinates. When this process is
completed we obtain a series expansion for

z)_ (B, p,), represented by the diagrams in Fig. 1:

zz—l(ﬁv pn) =2}(a)(§o P.) +z}(b)(.51 pn)
+2} B b+ 2B P 00,

(11)
where

Z;‘( a)(ﬁ, pn) =n,V(0),
SholB 20) = [ GBIV B-BIWA ' -PIG(5",5,),

XD, b = f . (12)

7, is the impurity density and appears for each
impurity center in a diagram.

The electron-electron interaction has two ef-
fects we must consider before evaluating the above
self-energy. First the electron-impurity inter-
action is screened. Thus the V(g) in Eq. (9) is
actually

Vig)= ‘{qf“” . Vo(q)=—4ne?/q?, (13)

€g,0)’

where €(§, 0) is the static dielectric constant, the
electron-impurity interaction being a static inter-

action. This is obtained after summing an infinite
set of ring diagrams.

The second effect is to modify the unperturbed
electron Green’s function G°(p, p,) given by

5 py=— L
G (P,P..)—ip"_ {,h—-l ’ (14a)
where
hZ 2
£,=€— #=§n'£,,7-u- (14b)

In writing Eq. 14(b) we have implicitly considered
the nonparabolicity of the band in the effective
mass m*(r,). In the Appendix we derive expres-
sion (A3) giving m*(r,) as a function of doping
density.

Since H, contains the electron-electron inter-
action, our new unperturbed Green’s function can
be written using Dyson’s equation'’

G (B, pp) =GB, p,) + GO, DT -o(B, ba)
XGMB, p,), (15)

or

’ 1
GXO (57 ) = - -
P GG, pT -5 1)
: ! (16)
ipn- §,h' - on-c(ﬁ9 pn) ’

With the above considerations we may evaluate
Z}(@®,p,). We note that =}, (B, p,) cancels the
direct term of the electron-electron interaction,
since it has the same magnitude but opposite sign.

- This reflects the charge neutrality of the system.

All diagrams representing the multiple scattering
from a single impurity other than T},,®, p,) are
neglected. These diagrams are proportional to

7, however, they contain powers of e? larger

than second order and can be shown much smaller
than =}, B, p,)- Z}o)D, p,) also corresponds to the
highest-order terms in the coupling constant re-
tained in evaluating E(V, N). We also neglect terms
which are greater than first order in n,. That is,
we neglect multiple scattering from different im-
purities. Since the concentration of impurities is
about one in 10° atoms of the crystal we expect
these multiple-scattering events to be small. How-
ever, if there exists clustering or some other
preferred arrangement of impurities, the above
assumption is rather tenuous. From Eq. (12) we
have

3 o}
h'E}(b,(ﬁ,p")=n‘f ?2:)3 [VMa)F

ipp— £ - HZ, B-T,0s)

(17)
Hence
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vy [(lax (dp 1
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XHZ} (B, )G (B, p,) - (18)

We approximate the electron-electron self-energy
by the exchange self-energy. This is a reasonable

J

approximation, since ZM{,p,) is the largest con-
tribution to Z)_,(, p,) -

HEXE,p) =-n)~ [ @V E-Dm@.  (19)

This self-energy is independent of the frequency
pn; hence the Matsubara sum in Eq. (18) can be
easily evaluated

aur, v, weny [ 2 [ &8 (&4 V@ (5=

=2 [ S & [am @) g

The Fermi-Dirac distribution in the zero-temper-
ature limit agssumes the form

np(x)=1, x<kg

=0, x>kp (20)
where kj is the Fermi wave number.

Z:}( p) can be evaluated in the zero-temperature
limit if V(%) is taken to be the screened Coulomb
potential in the Thomas-Fermi approximation.
The resulting expression is rather unwieldy.
Therefore we follow Wolff and expand T2 (p) about
p=0.22 Wolff’s self-energy is given by

np(B - ) - np(D) \
g+ [2ME-9) - 22®)] )
ng( p)

-3+ (220 -2X-D]F

r

The shift 6* subtracts out, giving a simple inte-
gration over p:

2,0, v,m=-28kee] f o f dqq* [VM(g)]?

ke q° 2kp+q
[1+q(1-4k2>1 B ] (24)
Define
ke (,_4° 2kptq
m(g)=1+-E p <1—4k;)1n %, —q|"

We write for V*(g) in the random-phase approxi-
mation

2
X(p) =220 + £ 227(0), (21) @) e MTE 25)
q%+(\/2)a%n(q)°’
where
. where a? is the square of the reciprocal Thomas-
5)0) =__k< 4 ) (m(r.)ze ) -5 (22a) Fermi screening length
anr, 2¢
and a?= <4°'>r kZ=2pr k2.
” A 8ar
z}7(0) =) (W) . (22b) Hence
Q-0 1 d ° q%n(q) d
Here a =(4/97)'/? and € is the dielectric constant. 17700 ) 1+(4/m)Br 1 J, [q? +()~./2)a’1r(q)]2 4,
Wolff states that the above approximation is cor-
rect to within 25% of k=kg. Z2(0) represents the (26)
downward shift in the band and =2 "(0) gives the with
change in the effective mass as a function of 7,.
The effect on the integrand of Eq. (20) is to re- Qo= (4Nkp/1?) Ey(7,);
normalize the band effective mass m*(r,);
E r,)=m*(r,)e*/2€%R2 . 27
1 _ 1 <1 N ).8ar,> (23)
m) m*(r,) T2 : Set x=q/ky and the X integration is immediate:
—
(% f‘ ( 1 )( 1 AL S 1 )
& (ﬁr, k,) odx S v\ 1z (487,/m) f(x,7,)) \1- (4Br,/7) f(x, r.) M FG, )1+ (@B, /m)] [ fl7r)+1

(28)
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where
flx,7,)= x2/Br,m(x) . (29)

If the usual Thomas-Fermi approximation is made
m(x) -2 and Eq. (26) becomes

2
Q‘}(o’ V’ N) =QO <2kp(2ﬂ&r )375)

{4 o

The ground-state energy of the electron gas is

E(V,N)=E(V,N)+ Q,(V,N) (31)
Now EI(V, N) is given by'®
E(V,N)= " <%_ 0-916 , 5.0622 1n, - 0. 084>
£ s

(32)
Hence, using Eq. (4), we obtain for the chemical
potential

w=Efr )[2 21<924"‘*(’) 1) (o.:us +o.084)<____9'24”:*(’=)-o.33>

m

*
+0.06221n7, (ﬁ“_”:—(ﬁl

where p, is given from Eq. (28):

+o.33> - 0.021] +uy, (33)

flx,7)+1

32

T E Y R oL

This integral must be numerically evaluated. We
note that when 7, ~0 and the Thomas-Fermi ap-
proximation [Eq. (30)] is used, the first-order
correction p,; is given by

pfF==0.61[E,(r,)/r}?] .

It is instructive to compare Eq. (33) with the re-
sult of Bonch-Bryevich for finite temperatures®

tpp=Ey(3.68/72)[1-0.3227,
-3.95x 10" k5 Tr%(1+0.2027,)] . (35)

Numerical comparison of Eq. (33) and Eq. (35)
with T =177 °K shows agreement with 5% to 10%
over most of the 7, range 1> 7, >0, indicating
the temperature dependence is unimportant in
this temperature regime.

COMPARISON WITH EXPERIMENT

Hill measured the absorption coefficient as a
function of the optical absorption edge for both
n- and p-type GaAs containing various doping
levels. For n-type material he observed a shift
in the optical absorption edge to higher energy
with increased doping. He fitted his data at fixed
absorption coefficient & =300 cm ™ to Kaiser and
Fan’s formula and determined the rise in the ab-
sorption edge with Fermi energy. Using the val-
ues T="11 °K, E,=1.500 eV, m,/m,=0.144, and

1-(4Br,/m)f(x,7,)

(1 (47, /ﬂ)f(x, f(x,r )[1+(4B7,/m)]

1 1 1
- Fery 1) “TrEETR TRer) T f (34)

a,= 9000 cm ™! (as determined from Sturge’s
data?) his fit gave a conduction-band effective
mass of 0.12m,.

It is possible to extract the progression of the
Fermi level with doping from Hill’s data in two
ways. First, one may use Hill’s fit to Eq. (1),
where he has plotted the various experimental
points at different doping concentrations and ob-
tained a value for the Fermi level at each point.
(This corresponds to Hill’s Fig. 3). One may ob-
tain the absorption edge directly from Hill’s data
for the absorption coefficient versus absorption-
edge energy at various concentrations. (This is
Hill’s Figure 2). Fixing a at 300 cm™' we have
plotted the absorption-edge threshold as a function
of concentration as curve (B) of Figure 2. We have
also plotted the absorption edge as determined by
the fit to Kaiser and Fan’s formula by adding E,
=1.500 eV to the Fermi level, these points are
denoted by X’s in Figure 2. Curve (A) gives the
theoretical absorption edge obtained by adding
E, to Eq. (33).

We do not add the exciton binding energy since
the dense electron gas screens the electron-hole
interaction, preventing a bound-exciton state from
forming.*'?° Two immediate observations include
the discrepancy between theoretical and experi-
mental absorption edge and the difference in
slopes of the two curves. It appears that the con-
tribution from the electron-impurity self-energy
is too small. There are a number of diagrams
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| PROGRESSION OF GaAs ABSORPTION
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FIG. 2. Theoretical absorption edge [Eq. (33)] plus
1.500 eV given by curve (A). Curve (B) and the solid
dots represent the progression determined from Hill’s
data; the x’s give the progression obtained by fitting
Hill’s data to Eq. (1) and adding 1.500 eV.

we neglected, among those are vertex corrections
representing higher order exchange effects and
diagrams which account for polarization due to
the impurities. Since the impurity density is not
large, we expect the latter to be unimportant.
Vertex contributions have not been fully investi-
gated. One primary concern must be with multiple
scattering events from different impurities, that
is, those diagrams of order 2 in n;. Wolff has
shown these self-energy terms may contribute
corrections of the same magnitude as Eq. (17) for
small r,. The Bohr radius of the electron is about
105 cm in GaAs; hence for high enough doping
levels the electron orbit may encompass several
impurities, thereby increasing the probability of
multiple scattering. Terms involving the square
of the density may therefore be important; indeed
the question of convergence has not been fully
explored. Wolff'? has suggested a self-consistent
method of eliminating the possible divergences.
We are presently examining these self-energy
terms.

APPENDIX

Kane determined the dgviation of the GaAs band
from parabolicity using kP perturbation theory.!®
His result for a two-band model is

I’k E +5(E} +8P?%)'". (A1)
2m 2
E, is the conduction-band energy, and P is pro-
portional to the matrix element of the momentum
operator between conduction-band and valence-
band states at the band edges. The second term
in the square root is small for all & up to the
Fermi wave vector; hence we may expand the
square root to obtain a wave-vector-dependent ef-
fective mass:

L s~ad (1, 22_4D7 1)
m*(k) m E,  E: 2m)’
with

EG

(A2)

2D=(2m/K%)%P?~ 19.3 eV.

We note that this k* dependence will contribute
negligibly to the integration in Eq. (24) since the
coefficient is small. The significant contribution
is when k& is equal to the Fermi wave vector, i.e.,
those electrons involved in optical transitions.
We therefore set k=k=1.92/r, and obtain for the
effective mass
_ _1.._=_1{1+32[1_2_D<1f1>1-§§]}
m*(r,) m E, Ei\2m/) vy 1Y
The coefficient of the r, term is small, thus to a
good approximation m*(r,) can be written as

oy - (55 ) o

&

Here m* is the empty conduction-band effective
mass 0.072m and E, is the hydrogenic donor depth
0.006 eV.

In summary, we have approximated the correc-
tion to the conduction-band effective mass as being
equal to the ratio of the density of states for a free-
electron gas at the Fermi level to the band gap.
From the above considerations this seems a rea-
sonable estimate. However, for 7, less than about
0.2 we must consider higher-order terms in the
expansion.
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