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A study of the hot-carrier effects for electrons in silicon inversion layers is reported. Measurements of
the warm-electron coefficient p at 77 'K give —2, X 10 s cm2/p2 in the (110)and —5 X 10 cm2/V2 in the
(100) direction on a (110) silicon surface. A theory of P is given for the two-dimensional carrier gas

model. The two-dimensional Boltzmann equation is solved in the diffusion approximation. Explicit
results for the distribution function are given for scattering of the electrons by acoustic phonons,
surface roughness, and optical phonons as well as for scattering by combined acoustic phonons and
surface charges. The current-voltage characteristic is also calculated for high electric fields using a
Maxwellian distribution with electron temperature T, . These results are compared with experimental
values obtained in this paper and those given by Fang and Fowler.

I. INTRODUCTION

This paper concerns the motion of electrons in
silicon inversion layers in strong electric fields
parallel to the surface. A n-type inversion layer
is produced at the surface of a P-type semiconduc-
tor when the energy bands near the surface are
bent down enough, so that the bottom of the conduc-
tion band lies near the Fermi level. We assume
that the electric field associated with the inversion
layer is strong enough to produce a potential well
whose width in the direction perpendicular to the
surface is small compared to the electron wave-
length. Thus the energy levels of the electrons
are grouped into subbands.

The case when only the lowest subband is popu-
lated is called the electrical quantum limit. There
exists strong experimental and theoretical evi-
dence that the charge carriers behave as a two-di-
mensional gas in such a surface-inversion chan-
nel. '3 The energy difference between the first
subbands is of the order of 10-100 meV. From
this one can see that even if more than one subband
is populated, the motion and scattering of the car-
riers perpendicular to the surface must be consid-
erably impeded, since the phonon energies are
smaller than 100 meV. Most of the perpendicular
transitions are, therefore, forbidden.

As a consequence of the two-dimensional struc-
ture, the density of states in the different subbands
does not depend on energy &, as d~„d&, is simply
proportional to da. This causes drastic changes in
the scattering processes, since the scattering
probability is proportional to the density of final
states. The scattering probability, e.g. , for scat-
tering by acoustical phonons, becomes independent
of energy, whereas in the three-dimensional case
it is proportional to e'~ .

The high-field behavior of bulk semiconductors
ha.s been investigated in considerable detail. A

comprehensive analysis was given by Conwell. 3 It

turned out that the assumption of a carrier tem-
perature T, larger than the lattice temperature
gives a useful semiquantitative description of the
high-field transport phenomena. It was pointed
out, ' however, that this concept breaks down if
inelastic scattering dominates. One of the main
reasons for the breakdown is that the number of
carriers no above the optical-phonon energy S~~
is overestimated. This leads to large errors in
the calculation of the mean energy loss, which de-
pends strongly on no, as only the carriers above
Scu„can emit optical phonons. Criteria have been
given in the literature for the validity of the elec-
tron-temperature concept. All of them, however,
are rather crude.

We will show, by solving the Boltzmann equation
in the diffusion approximation for a two-dimen-
sional carrier gas, that the use of the electron
temperature concept is better justified as compared
to the three-dimensional case.

In Sec. II we establish the Boltzmann equation.
The collision operators are given for scattering by
acoustical as well as nonpolar optical phonons. In
Sec. III we give approximate solutions of the Boltz-
mann equation for the warm-carrier region and in
Sec. IV for the region of very high electric fields.
These solutions are compared with the approxima-
tion using the electron-temperature concept. In
Sec. V experimental results for the warm electron
region are presented. Our samples were n-chan-
nel Si-field-effect transistors with (110) surface
and (100) and &.110) channel orientation.

Finally in Sec. VI a comparison between the
theory and experimental result is given.

II. TWO-DIMENSIONAL BOLTZMANN EQUATION

As mentioned, Conwells gave a comprehensive
analysis of the formulation of the Boltzmann equa-
tion for the three-dimensional ca,se. Since all the
calculations proceed very similarly for the two-
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we obtain for the field term

(3)

after replacing }f~k2~/m by its two-dimensional av-
erage value.

Inserting for

s(k ) =-~ gg„it
one obtains from Eq. (2)

and

e RE&.„df,
d6

where v„ is the momentum relaxation time, where
for simplicity k is dropped in later use.

dimensional case considered here, we give only a
brief description of the main new features.

The structure of the subbands has been given by
Stern. ' The lines of constant energy are eQipses
which arise from the intersection of the ellipsoids
with the surface plane. We will give the magnitude
of the axes of the ellipses whenever a comparison
with experimental results is made. In this sec-
tion, however, we will write down the equations in
the starred system of coordinates for the ith el-
lipse in which the ith ellipse is a circle. In the
interest of less cumbersome notation we do not
mark the quantities of the starred system sepa-
rately, except where this would lead to ambiguity.
In this case, we mark the quantities of the starred
syste~ by an asterisk.

As in the three-dimensional case a relaxation
time exists in the low-field region since the two-
dimensional optical matrix element does not de-
pend on the wave vector k of the electrons. Be-
cause of the lack of a better theory we assume the
scattering to be isotropic. Furthermore it is as-
sumed that the momentum randomization is mainly
governed by elastic scattering processes. This
assumption seems to be quite reasonable, as in
most of the experiments of strongly inverted sur-
face, surface-roughness scatteringv'8 plays an im-
portant role. With this in mind we write for the
distribution function f:

f=fo(e) +k~, (e),

where fo(&) is spherical part of f, g, (&) is the drift
term, 4~ is the component of k in the direction of
the electric field E, and & is the carrier energy.
Writing the Boltzmann equation symbolically:

Now we need to calculate the collision operator
(Sf+/Sf), for scattering by acoustical and optical
phonons. The collision operator is written as
usual:

, LPGA-R —, Pk -k d'a'.
('})

P(k- k ) d }&
' represents the probability per unit

time that a carrier with k is scattered into the ele-
ment of area d 0'at k.

The square of the matrix element for scattering
by acoustic phonons is written

~(k~H ~k+q}~ =(Z„}f&o,/2~+, }(f&} + —,
'

p —,')5f, ~;.,

(3)
where h, is the energy of a phonon with wave vec-
tor q, N, is the phonon occupation number, u, is
the longitudinal sound velocity, A is the surface
area, and Z& is the acoustical surface deforma-
tion potential in eV. p has the dimension of an
areal mass density. Detailed analyses have been
given by Kawaji and Ezawa et a/. which show the
physical significance of p and Z„. The papers of
Kawaji and Ezawa et al. are referenced in foot-
note 9 and denoted by K1 and K2 as well as El and
E2 in the following. Based on a two-dimensional
lattice model it is shown in Kl that p = p+ «& &&d.

Subsequently Kawaji (K2} refined his calculations
to show that }&=}& «&«xQ. Here d=3/b and f&

is defined by the Howard wave function ~ e' "' as
employed by Stern and Howard. '

It was concluded, however, in E1 and E2, that
the interaction of the channel electrons with
"surfons" (the quanta of Reileigh waves) is weaker
as compared to the interaction of the electrons with
ordinary bulk phonons. This conclusion is based
on an "accidental" cancellation of tensor compo-
nents of the deformation-potential constant, which
appears in the matrix element for "surfonscatter-
ing,

We should like to note, that deformation-poten-
tial constants as given, e.g. , in our Refs. 15 and
20 would not lead to the result of E1, though sur-
fons would still be less important.

The fact that scattering by bulk phonons domi-
nates does not mean, of course, that scattering in
& direction is important for the mobility. Howard's
wave function was used in E2 to calculate the form
factor of the matrix element. As shown above this
wave function decays exponentiaQy in ~ direction
(typically b 3X106 cm &) and makes the transition
probability in z direction very small.

The formulas for the transition probability and
the momentum relaxation time which are given in
E2 are equivalent to our Eq. (8) and the following
Eq. (13) and to the equations given in Kl and K2
except for the interpretation of the constants de-
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noted by p and Z& in our paper. %e determined Z~
and p by fitting the experimental values of the mo-

bility as was done previously, ~ since we feel that
this phenomenological pro edure will provide the
best results at the present status of the theory.

The matrix element for optical or intervalley
phonons is given by~

~{k~H„,[k+q}( = (Z„K+„/2',)(f)I ,' y-,')5—f, „-„-
(9)

The various quantities are indexed now with R to
distinguish them from the corresponding acoustic
quantities. Inserting Eq. {S)into Eq. (7}we ob-
tain in cylinder coordinates

+q&(q —q.) [f,(k -q)Ã, -f,(k)(X,+I)]]. (10)

Here q =2kcosg —2mu)/8 and M=z~ m, m, /
2m'mh pu, . Integrating first over q and then over
f one obta1Ils:

= 2m, m, g~ g

cesses. The relaxation time TI for scattering by
surface ions is more complicated. ' From the
analogy to the three-dimensional case one can ex-
pect a strong anisotropy. Furthermore, it depends

on a number of quantities, e.g. , the spatial distri-
bution of the electrons and the ions in the interface
region, ion position correlation, and electron
screening. In order to simplify the calculation we

write

I/r, = e'/e.

Here &' is only weakly dependent on & and it is as-
sumed to be a constant to be extracted from the

experiments using

I/r =1/r +1/r„, + 1/r, +1/r„.

The value of e''is given in Ref. 10.
One can now formulate the equation for the

spherical symmetrical part f, of the distribution
function f by combining Eqs. (5), (6), (11), (12},
and (16):

P S„of)f„+l)f, (x+x~) Ng, (x)+-8(x —x,)

x [I)IA(x x,} —(&m+1)f0(x)1 )

where x=a/ksT, f0=f0(x), and S„=2m,m, Z~jk~p.
%'e also find the collision operator for optical

modes by inserting Eq. (9) in Eq. (7):

Sj(Ns+ I)fo(x+ xs) I)fsf0(x)-
s~ a,a

+e(x —x„)[N„f,{x x„)—(X„+1)-f,(x)]],
(12)

where 6 is the step function, xs=K~„/ksT, and

S =(m m )"'Z'a)d/2ff'pu'

Next we need to know the momentum relaxation
times v for calculating the fieM term which are
given below. The relaxation time due to scattering
by acoustic phonons does not depend on energy. It
is given byl

coax x

m&~T dx x

Note that electron-electron scattering has not been
included in Eq. (17) since explicit results cannot
be obtained. Its effects will be discussed briefly
in the next section.

If we confine our calculations to the case where
the subband under consideration contains only
identical valleys (valleys with parallel main axes)
Eq. (17) has to be solved subject to the following

boundary conditions:

2 +on(,3 f))(x) dk, dk ~
= r) .

1/r „=(m, m, )"'Z'„k,T/k'pu', . (13}
Here n is the number of electrons in the valley
under consideration, and

The relaxation time for scattering by surface
roughness~' is also independent of energy. %e can
therefore combine it with v ~ for many purposes.
%'e denote the scattering by surface roughness by
v „and the combined relaxation time by r~, .

The relaxation time for optical-phonon scatter-
ing ls

I/r„, = Q [{m,m, )"'Z'„k~42ff'pu')]

&& [(N„+1)e{x—x„)+IV,].
For n-silicon R runs only over intervalley pro-

Iimx'f, (x) =0 for n &0. (19)

As pointed out by Adawi, " (19) is necessary for the

moments of the distribution to be finite.

III. SOLUTIONS FOR SMALL E—WARM ELECTRONS

For small electric fields E we write

f,(x) =a [I+ (E/E, }'g(x)]e-", (20)

with Jo e "g(x)dx= 0 to fulfill Eq. (18). We now

solve Eq. (I'j) for three different cases. In all
cases under consideration Eq. (19}means that the
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If the electrons are scattered by acoustical pho-
nons and surface roughness only, and E is weak
enough so that all powers of E except the second
can be neglected, Eq. (17) reads:

d dE d—xe —=—(xe *),
dX X „dX

with EO=S„m&eT/e2r~„and r '„=r ', +r,'.
The solution of (21) is:

«(x) =x —1.

(21)

(22)

This solution is equivalent to the first-order ex-
pansion of a Maxwellian distribution function with
electron temperature T~ since

e~ I &ere —e~ &&&&re r+r) e-x/[I +x(T T)/T]

for small (T, —T)/T. Note that the analogous
three-dimensional solution is not Maxwellian,
which is '

«(x) =lnx- x' e "lnxdx=lnx —0.03234.
0

2. A coustical phonons and surface ions

At very low temperatures optical phonons are
unimportant and v = T,. Equation (17) can then be
written

first integration constant, which appears by solving
Eq. (17) is zero.

l. Acoustical phonons surface roughness

slow electrons and the distribution function is
shifted to higher energies. The inclusion of optical
phonons causes the reversed effect a "high-energy
depletion" as we will see in the next section.

3. Acoustical and optical phonons

In this case the calculations are complicated be-
cause of the cumbersome terms f(x+xo), which
arise from the convolution in Eq. (7). If we con-
fine ourselves to one optical phonon mode only and
insert Eq. (20) into Eq. (17) we obtain

—xe " —+ (Se/S„)Nee "j[«(x+xs) —«(x)]
d „d$
dx dx

+ e(x —x„)e""[«(x—xe) —«(x)]}=g(x) —(xe *),

(25)

with EO=S„mkeT/e r~ „and g(x) =r„t/(r„, + r„,).
An equation similar to Eq. (25) arises in the

three-dimensional case. Variational methods have
been used to solve it. ' In our case, however, we
can obtain an explicit solution for large values of
xR. For large x» NR is very small and the ab-
sorption term in Eq. (25) can be entirely ne-
glected. '~ The emission term however is propor-
tional to e"R and is therefore large even for very
low temperatures. g(x) is a step function as can
be seen from Eqs. (13) and (14). We will denote
it by g& and g& for x ~ x„and for x & xR, respective-
ly. Thus for 0&X~XR we have

d .„dg d—xe *—=x—(xe '),
dx I

with Eo=mS„e'/em.
The solution of Eq. (23) is

dt „d( d—xe " —=g&—(xe ")
dx, dX dX

and the solution is

«(x) =a,x+ b, ,

(26)

(27)

«(x) = ~x + x + Inx+ Kq . (24)

K~ can be obtained from the normalization condi-
tion. For small x& it can be approximated by Ej
=y —2. @=0.577 2j.57 is Rulers constant. Thus
the distribution function shows a "low-energy de-
pletion. " One can understand this from the fact
that the probability of a carrier being scattered de-
creases with increasing energy, when impurity
scattering dominates. Thus electrons with high

energy gain more energy from the field than the

The constant E~ has to be determined from the
boundary conditions. Care must be taken for
small x where lnx becomes negative. To avoid
negative f~, we have to require that fo is zero be-
low a certain x value denoted by x~. Equation (20)
gives for x~

(-,'x', + x, + lnx, +If,)(E/Eo)' = —1.
For small x~ values this reduces to

x =exp{- [(1+K&( EE/)3)/(E/E, )~]}.

where a, =g& and 5, is given below.
For xe&x~2xe Eq. (25) reads

xe " —+ (Se/S„)N~ "e"&[a,(x —xe) —b, —«(x)]
d „dg

d
=g)—(xe *).

dX

Since «(x- x„) belongs (for the above given range
of x values) to solutions of (26) and is therefore
given by a~(x —xe) —b~ .

As can be found by inspection the solution of Eq.
(28) js again a polynominal of first order

«(x) =a,x+ b, . (29)

The process can be easily continued for 2xR & x
~ 3xR, etc. For all practical purposes however
the knowledge of the distribution function above 2xR

is not necessary because of the strongly decreas-
ing exponent. Remember that the whole solution
is only valid for l.arge xR.

Inserting Eq. (29) into Eq. (28) we find for aa
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a& = (g&+sg&}/(I+a),

b2 [Q2 g& —S (g&xs 51)]/S ~

(30)

(31)

where s = (SR/S„)Ns e"sand b~ is obtained from the
normalization condition

—I 1
=g&&(2 xs}+&2[1—&(2, .xR}]

+ [(a2-g&-sxsR'&)/s]e "s.
Here

Xg
y(2, x„)= xe *dx

One of the most important quantities for the de-
scription of hot-electron phenomena is the mean
energy loss per carrier to the lattice (de/dt) given
in two dimensions by

Edk„dk .d 1 2 "
sfo

t n (2x)' „st (33)

In some cases (de/dt) depends strongly on the num-

IQ

)Q
2

)Q-3

lQ

to'
Q

I

tQ

FIG. l. Spherical part of the distribution function for
acoustical plus optical plus surface-roughness scattering.

is the incomplete y function.
A distribution function according to E&ls. (27)

and (30)-(32}is shown in Fig. 1. The parameters
used are listed in Table I, set 1. The effective
masses are calculated for the lowest subband of a
(110) silicon surface and E =500 V/cm in (110) di-
rection. Note the distinctkink at x„ in Fig. 1 which
indicates that the number of carriers above x~ is
strongly reduced by the optical phonons as compared
to a Mamvellian distribution at electron temperature
T, as indicatedby the dotted line. Although this de-
pletion of electrons occurs at high-x values where
the number of electrons is small, it can be impor-
tant for various transport phenomena as we will
show below.

4. Tmnsport quantities

ber of carriers no above x„, since only these car-
riers can emit optical phonons. The warm-elec-
tron coefficient defined by p, = p, o(1+ PE ) is closely
related to the energy loss. To show this we define
as usual an energy relaxation time v, by the equa-
tion.~"4)
where ~ is the mean energy deviation from k~T of
the carriers: &=(e-ksT). In the stationary state
the power dissipation to the lattice equals to the
power supplied by the field

(
da—=epE =ep+ .3 2

dt

Expanding now y, in terms of 6: p, =go+(dp/d6)d
one obtains for I[3:

As one can see from the definition, v, is a con-
stant as long as the expansion of E&I. (20) holds.
The expansion of p, in terms of b however is rather
crude and holds only for a limited class of distri-
bution functions. The Maxwellian with an electron
temperature T, belongs to this class.

Let us consider now how scattering by optical
phonons acts on p. To do this we assume first that
the term dp/db does not depend on the optical cou-
pling constant Z&. The whole dependence of P on

Z„ is then contained in 7, , Let us further assume
that P is known from experiments and Z„ is ex-
tracted from the experimental value of p. Now we
distinguish two cases:

(i) Zs is large, but we do not know this. Then if
we believe that the distribution function is Maxwell-
ian with electron temperature T„we would over-
estimate the energy loss, as we overestimate the
number of carriers above x~. It follows that the
values of 7, and p calculated using the Maxwellian
distribution with T, with the correct Z„would be
much too small. To fit the p value, we must use a
value of Z~ which is much smaller than it really
is. This conclusion is self-consistent as the dis-
tribution function tends to a Maxwellian when ZR
is small.

(ii) Zs is small, but we do not know this. Then
if we believe now that the distribution function is of
the type shown in Fig. 1, we would underestimate
the number of carriers above x~ as long as ZR is
truly small. Thus we have to choose a fairly high
value of ZR in order to fit the experiment. Again
our conclusion is self-consistent, as the distribu-
tion function has the form shown in Fig. 1 for high
Z~. As a numerical example, if one fits a value
of y, =1.4X10 ~ sec for T=150'K, 0=670'K and
the masses of Table I one obtains: (1) 5=5. 3 us-
ing a distribution function from E&ls. (2V), (30),
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TABLE I. Constants used in the calculations.

7.65 eV

Set 1 for T=77 K

Zf SC y' PR f

17.6 eV 6x 10 ~3 sec 670 K 0.55m

Set 2 for T=77 K(Z~, m~, m& same as set 1)

17.6 eV
IC f'

x 10~ssec 190 K

and (31); (2) b = 1.'l using a Maxwellian at T, .
Here b=( Zs/Z„) . Z„ is given in Table I. The
agreement becomes better however if dp, /dh also
depends on the optical coupling constant.

Distribution functions as shown in Fig. 1 arise
also in the hot-electron region of the three-dimen-
sional case, as obtained from various numerical
methods. ~ 2 The number of electrons above s„
is reduced by optical scattering also in these
cases. The optical phonon emission seems to
"overkiQ" itself quite generaQy. In Appendix A we
will show that the simple method for calculating f,
used in this paper can partly be applied to the
three-dimensional case and yields qualitatively the
same results as those for two dimensions.

So far we did not consider electron-electron
scattering. The inclusion of e-e scattering mould
make explicit results impossible. It is also clear
that distribution functions like that of Fig. 1 cannot
be described well by a variational method, since
the approximation of ((x) with one single polynomi-
al would require a large number of terms. In the
three-dimensional case, e-e scattering shifts the
distribution function to the Maxwellian type. 8 One

can expect that it has the same effect in two dimen-
sions.

Using the distribution function Ae *[1+ (E*/Eo)
&& $(x)] and calculating the current j from

e~ g
"

dfo
2 =-—&s &

—&m«~p
p Efx

we obtain for the two-dimensional P,

P...= " r xe "g(x) — dx. (36)

Here we have assumed that E points in the direc-
tion of one of the main axis (l, f} of the ellipsoid.

We did not find a solution for ((x}, for the case
that all mentioned scattering mechanisms are im-
portant simultaneously. However, we can find a
value for P using the Maxwellian approach and Eq.
(34} including now all scattering mechanisms. In
order to get explicit results we take into account
only one type of optical phonons and assume v ~

Combining Egs. (13)-(16)and (34) and taking the
two-dimensional average for calculating (er)/(e),
we obtain

P...= ((V+pr){(1-e *&)(I+v~sN„) +e '"[1+r~„(2 „+1)] j
+x'„e *&[(I+~~"ebs„)' —[I+r„8„(2X„+I)J ']&(p/p~)(&i, ~/& T), (36)

where 4 =(e -ksT) and p, the mobility due to scat-
tering by ionized impurities. p. is the mobility due
to all scattering mechanisms involved.

From Eqs. (33) and (11) we obtain for the energy
loss due to scattering by acoustic phonons

I

here xs = K(da/ksT
For &~T, -A'~T, =- «&k~T one can expand

exp(- x~z) in terms of 4 which gives e *"(1+x„n/T}.
Equations (SV) and (38) are then linear in 4 and

~&, , can be calculated from the relation

(SV)

x [N„(N„ I) e p(- x'„)], (36)

The combination of Egs. (33) and (12) gives for the
loss to optical phonons

= [(mmmm, )"'Z'„ff'~'/2k'pu'g]
t ,yq

Figure 2 shows p values calculated for set 1 of ma-
terial constants of Table I. The upper curve (I) is
calculated with the distribution function given in
Sec. III 3, the lower (II) with a Maxwellian at T, .
The increase of P with temperature at low temper-
ature arises from the fact that 7 „is independent
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of energy and the deviations from Ohms law are
governed only by optical scattering which becomes
stronger at higher temperature. At still higher
temperatures, however, the optical energy loss
becomes very strong and P decreases.

IV. HOT ELECTRONS

In the preceeding section we analyzed the warm-
electron cases. In this section, the characteris-
tics of the solutions of the Boltzmann's equation
for the hot-electron-high-field range are studied
in the various sections given below.

I. Acoustical phonons and surface roughness

For only acoustical phonon and surface rough-
ness scattering in strong electric fields Eq. (1'I)
reads:

6ffp e E I „G, 4fp

The solution is

f, = A exp [-x/(1+ E~~/E20) j, (40)

)0-6

~- l0
N+

E

8
O

~ )0-8

wher«0 =~&sT&Je T~, and A is a normalization
constant. This means that f~ is a Maxwellian dis-
trihution with electron temperature T, = T(1+E~z/Ezo)

Since for many experimental conditions v „is
important we can conclude that a Maxwellian dis-
tribution will be a better approximation for the
two-dimensional case than the three-dimensional
case, as in three dimensions the distribution func-
tion is not Maxwellian even for acoustical scatter-
ing alone.

2. Combined acoustical and optical phonons
and surface roughness

&&o . ~&x+~sxR
Jo«

the solution of Eq. (41) is

g e Sg&g~ {ST SAR g)~ e Sg&~'le 8+Bg ) )
~p

(41)

(42)

Here S~ = —eaE ~a~ „/mksT and A is a constant.
A distribution function derived in a simQar way

for the three-dimensional case was given in Con-
well. e

fo from Eq. (42) is very nearly Maxwellian
with T, for not too large a. 8& in contrast to the
corresponding three-dimensional distribution func-
tion. Equation (42) seems, however, to have no

practical interest. In the range of its validity all
subbands are populated due to high electric fields
and the scattering cannot be regarded as two di-
mensional.

3. Current-voltage characteristic for a Nuxwellian-type
distribution fu nction

With the assumption of v equivalent valleys in
the lowest subband and isotropic scattering, the
current equation in a direction for the ith valley is

(42)

Here we allow the number of electrons n' in the ith
valley to be different for different i. Whereas in
Sec. III 4 a repopulation of carriers was not con-
sidered.

The reason for this specialization will become
clear in Sec. VI, where the arrangement of the
valleys in the different subbands will be discussed.

The electron temperature in each valley can now

be derived from the steady-state power balance
condition

dEeE' ~ p' (T')E*=-
d$

(44)

The particle number in the different valleys can be
calculated from

At very high electric fields the mean energy of
the electrons becomes much larger than the optical-
phonon energy. One can then make the following
expansion:

f,(x+xs) =f,(x)+xs —.dfo

After one integration, Eq. (17) reads

io' I

50 1 00 !50 200 250 500
T (K)

FIG. 2. %'arm-electron coefficient P for E in ( 10)
direction using a non-Maxwellian 6} and a Maxwellian QI}
distribution function and the same set of material con-
stants.

(45)

Where g& means the sum over all valleys except
the ith. (Sn/St);, is the transfer rate of carriers
from valley i to valley j given bys
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This gives

where

f ' = g [Ns+ (Ns+ 1) ex p(h&u s/ bs T',)]fi&d„Z~„.

The calculation proceeds now as usual: (i) cal-
culate T', from Eq. (44) with help of E&ls. (31) and

(38); (ii) calculate n' from E&l. (47); (iii) calculate
the current from E&l. (43).

V. EXPERIMENTAL RESULTS

We performed experiments at 77'K. The sam-
ples used were typical n-channel field-effect metal-
oxide-semiconductor (MOS) transistors, with

0.002-in. channel length and an oxide thickness
of 5000 A. The devices are made on a (110) p-Si
surface with an acceptor concentration N„= 2. 2

x 10'4/cms. The channel was oriented in (100) and

(110) direction. The devices with different chan-
nel orientations were processed in two device
fabrication runs: (i) on separate wafers with both

wafers being processed simultaneously and (ii) on

the same wafer. These devices were fabricated by
Edwards'6 and some results on orientation depen-
dence of low-temperature (4. 2 'K) and low-field
mobility'~ were reported.

The samples with the same channel orientation,
obtained from both device runs show nearly identi-
cal conductivity. The mobility versus gate voltage
of samples with (100) and (110) channels was ex-
tremely uniform. For nearly flat band condition
the 77 K conductivity mobility was: p, (,0~& =4000
cm /V sec, p«~1&~/~=2800 cm /V sec. For high

gate voltages, when the number of the inverted
carriers is about 3x 10' /cm typical values are:
p3, so) = 2350 cm'/V sec and p, I|~sI =1900 cm / V sec
at 77'K. The number of surface state charges Q»
of these samples has been measured with various
methods. s

Qss is less than about 5x10 /cm .
The source-drain conductance at high fields was

measured using a standard pulsed bridge technique.
Source drain formed one arm of the Wheatstone
bridge. A dc bias was applied to the gate for in-
verting the surface. For balancing the bridge an
oscilloscope with differential plug-in was used.
The pulse width was typically 800 nsec. Mea-
suring points have been taken after 400 nsec. No

time dependence of the pulse could be observed
from 100-800 nsec.

Since the drain depletion with increasing drain
voltage couM cause a considerable amount of the
deviations of Ohm's law in these devices we used
the following method of evaluation.

For small deviations from Ohm's law due to
warm-carrier effects, the equation for the drain
current can be written as'8

fs = (Z/ )» o( + ~E )((Vo —Iso —4m, +Vs s /Cs) VD —
2 Vs - (+ps Vs) [(1+Vs/2p )'~ s —1]}

+( /~) Co dV (VG —Iso —& +as /Cs)/2.
C

Here Vs is the drain voltage, Vs = (4qNsKse, gs/
Cs) ~, Ks is the dielectric constant of the semi-
conductor, Cs is the oxide capacity per unit area,
Qs is the Fermi potential in the bulk, and Pss is
the surface potential for zero drain to source bias.
The last term arises mainly because of the de-
pendence of all the scattering mechanisms on the

mean distance of the electrons from the surface. +"
For our devices all nonlinear terms in VL) are

estimated to be smaller than about 3 of PE in the
range of fields E and gate voltages investigated.
However, we eliminated the effect from other non-
linear terms by the following procedure. If one
measures at two different gate voltages, a and 5,
with constant drain voltage one obtains from Eq.
(48)

+
2 d Vs Vs=P(Vs+- Vs+)(Vs/f) .1 d info 2

C
(49)

Here + is the resistance of the channel at VD =0
and R is the resistance at V~ ~ VG+ = Vg $gp
—P, + Qss/Cs. The indices a or b indicate that
the values are taken at gate voltages a or b. To
obtain E&l. (49) from E&l. (48) we have neglected
Va compared with V&. Furthermore, we assumed
that V&+ -'V& is independent of the gate voltage,
which is a quite reasonable assumption for the
low surface-state density of our devices and the

high gate voltages used, as the threshold voltage
was about 0. 3 V and the gate voltages used are in
the range of 25-100 V.

The value of the terms proportional to dp/d Vs

have been evaluated from measurements at low

fields, where the right-hand side of Eq. (49) is
essentially zero.

The tacit assumption of E&i. (49) is that P does
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not change with the gate voltage. Measurements
at more than two different gate voltages show that
P decreases approximately proportional to the mo-
bility decrease as the gate voltage increases. This
is plausible also from the theory since P is pro-
portional to 6 which is proportional to the mobility.
This effect gives an additional correction (about
20% at our experimental conditions) to P. To ob-
tain the correct value of P' at the gate voltage V~
one has to replace the right-hand side of Eq. (49)
by

5'(V~/I)'[V'o+ —(&&t/& o) l'G*l. (50)

Figure 3 shows 1 —Q/R measured at two different
gate voltages vs the drain voltage. The channel
orientation was (100). The measuring points have
been obtained from four different devices. With-
out the various corrections the two curves should
be equal.

The measured values of the left-hand side of
Eq. (49) show a quadratic behavior up to about
E=2500 V/cm.

We obtained

there are four identical valleys (valleys with
parallel main axes) at the lowest energy. The
lines of equal energy are ellipses with masses
along the main axes given in Table I. The sub-
band next higher in energy contains two ellipsoidal
valleys with the main axes perpendicular to the
main axes of the lower ellipses. At 77 K this
subband contains about 5/&) of the total carrier con-
centration in thermal equilibrium. A calculation
of the repopulation of the different subbands due
to the warm-electron effect seems to be extreme-
ly difficult because of the foUowing reasons:

(i) The energy distance of the subbands depends
on the distribut;ion function of the carriers.

(ii) The distribution function is most probably
a very complicated function of energy as shown
before.

One can, however, extract the repopulation ef-
fect out of the experiments making some plausible
assumptions. Since the dominant scattering pro-
cesses (acoustic phonons and surface roughness)
do not depend on energy we can write for the con-
ductivity

—p&, 00& =(5&&10~+ 209&&) cm /V' &&'=e(&&&n&+ &&2n2) ~ (51)

-P««&=(»&10 +30%) cm'/V'

from measurements on four different devices for
each orientation at a temperature of 77 'K. At
300 K the devices showed no deviations due to hot
electrons up to E= 2500 V/cm within the accuracy
of our measurements.

To compare the experimental results with the
theory of Secs. II, III, and IV, we have to esti-
mate the effect of the repopulation of higher valleys.
The structure of subbands was given by Stern and
Howard. For our (110) inverted silicon surface

V(=236 V

{}4-
vG= 474 v

I0
0 4 8 I 2 }6 20

v, (v)

FIG. 3. Deviations from Ohm's law vs Vz for two dif-
ferent gate voltages. The measurements for each gate
voltage have been performed with samples No. TE10-4a,
TE10-4b, TE10-7, TE10-9 {Ref. 16).

n1 is the number of carriers and p. , the mobility
of these carriers in the lowest valleys. n2, p,,
are the corresponding quantities for the higher
valleys. Let hn1 be the change of the carrier con-
centration due to the electric fieM E, and n1 z,
p. 1,2 the carrier concentration and mobility for
E=O. As mentioned before na«n, . Thus we
can drop the field dependence of p, 2 as a higher-
order effect. Doing this we obtain from (51)

o =a&&[1+P'E +(An, /n, ) (p, ,j». , —1)]. (52)

P' is the warm-electron coefficient for the lower
valleys alone.

0 has been measured for two different orienta-
tions. Inserting these measured values in Eq.
(52) we obtain two equations for the four unknowns

~ &100) I &110) ~n1 &100) ~n1 &110)'
ratio of P &»0&/P &&00& is given by 0. 3435 from Eq.
(35). This is the ratio of the mean energy devi-
ation due to the field in the different direction. For
the case of a Maxwellian distribution function with
T„~n, must also be proportional to this mean
energy deviation. We can therefore also insert
for An&&»0&jnn&&&00& =0.3435 with some justification.
Doing this we obtain

An«&00& = 11000 [E(V/cm)]

This is a very small number and one can neglect
the deviations from Ohm"s law due to Eq. (52).
Though this estimate is rather crude, the repopu-
lation effect must be a minor effect in any case.
Else the measured deviations from Ohm's law
wouM have different, sign in the different directions
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since the main axes of the ellipses of the higher and
lower valleys are perpendicular which was not ob-
served.

As outlined earlier one has to km&w the electron-
intervalley optical-phonon coupling constants Z&
for a comparison with the theory. There has been
a great deal of uncertainty in the literature con-
cerning these coupling constants. ~ ' It appears
to be resolved now from symmetry considera-
tions, ' that there are two types of invervalley
optical phonons in Si which are important for elec-
tron transport. %e assume that both of them are
f type (scattering between valleys on different
axes) although there are some doubts of this fact.
The Debye temperatures are 8, =670 K and 8,
=190 K. According to Ref. 21 the coupling to the
lower-energy phonons should be very small. Vfe
calculated P for the non-Maxwellian distribution
of Fig. 1 with the data set 1 of Table I using one
type of optical phonons only. P' has also been
evaluated for both types of optical phonons includ-
ing impurity scattering but using a Maxwellian
distribution function. Best fit was obtained in this
case for data set 2 of Table I. The value for p, ,/
p,& was obtained from measurements of the conduc-
tivity mobility vs the temperature as given in Ref.
2.

A. summary of the results is given in Table II.
Note that the two-dimensional P values are three
orders of magnitude lower Ulan the three-dimen-
sional bulk value. This is due to the low mobility
of the surface channel and to the fact that the two-
dimensional momentum relaxation 7'~„does not
depend on energy. This is a further verification
of the importance of the "two-dimensional model
of scattering" at the surface.

As outlined, the values of the electron-interval-
ley optical-pbonon coupling constants deduced, have
to be regarded as qualitative only. Especially

Z~,o (= Z, ) enters only weakly in the calculation be-
cause 8, is so high. However, Z6'fQ was already
deduced from mobility measurements. In addition,
a large coupling constant ZgvQ is essential for the
explanation of experiments in the hot-electron re-
gion.

Fang and Fowler and Sato et al. performed
experiments in the hot-electron region using MQS
transistors with extremely short channels. In their
papers they gave results for a (100) inverted sur-
face at room temperature. The lowest valleys for
this orientation are two identical spheres with a
density of states mass of 0. 19m. The next higher
valleys are four equivalent ellipses with m,
=0. 19m and ml =0.91m. As a consequence of the
higher density of states mass of 0.416m and the
larger number of valleys, they are preferably
populated, especially as the carrier energy is
higher in the high fieM. Therefore, we took into
account only these valleys for a comparison of the
experiments with the theory.

The electron concentration b' their experiments
was about 6&&IO /cm . We can expect therefore
that electron-electron scattering is effective and
that a Maxwellian distribution at T, will give semi-
quantitative results.

Figure 4 shows the result of calculations using
Eqs. (43)-(47) and data set 1. The two full curves
are calculated for a (100) surface and (110) and
(010) channel directions. The dashed line is ex-
perimental. The choice of a high electron-inter-
valley optical phonon coupliag constant Zl is es-
sential, whereas Z», (= Z, ) enters the calculation
now very weakly since 8& is small and this type
of optical scattering becomes essentially inde-
pendent of energy at higher electron temperatures.

Again, of course, the calculations are only semi-
quantitative. Deviation of theory from experiment
at the highest field strength, as the electron tem-

TABLE II. Values of p for a (110) surface and (110}channel directions.

Maxwellian
data set 1

Maxw ellian
Theory data set 2

Non-Maxwellian
data set 1

&&&.oo& -P&&io& P&too&

(cm /V-)

3.2x 10~

5.7x 10+

1.8x 10 7

8110)

1.1x 10

2, 0x 10

6, 2x 10

«s.&zoo&

(cm 2)

Experiment

Bulk~

(5.0~ 1) x 10~ (2.0+ 0.6) x 10

—P&ggg&=1 x 10 cm /V

—11000[E{V/cm) j'
fsee Eq. (53)]

aEzperimental bulk value in n-Si at 77 K for a small amount of impurity scattering with E in the (111)direction. See
Ref. 20.
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l.0
numericaQy in the three™dimensional ease. The
similarity and differences between solutions for
the two- and three-dimensional case are given in
the Appendix.

g 0.6-
b

ft-chaftrtel

(loo)
surface

~ I i i ~ ~ I l

I04

E (V/cm)

I IG. 4. Conductivity for electrons on a (100) surface
and (010) and (110) direction of the current vs electric
field: theoretical; - —experimental, j parallel
(110).

perature goes uy to 2000 K, is expected and is
caused by transitions between the bvo-dimensional
subbands which restore the distribution to the

three-dimensional case.
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APPENDIX

Neglecting t;he absorption term, the three-di-
mensional form of Eq. (25) is"
d d „„ad/—(xe ) =—8 "x
dx dx dx

We presented experiments showing that the value

of the warm electron coefficient p for n-inverted
silicon surface layers is of the order 10~ cm~/V'

whereas for the bulk case it is 10 cm /V'. We

have been able to explain this large discrepancy,
as well as the hot-carrier effects measured by

Fang and Fowler, by a bvo-dimensional theory.
The electron-phonon coupling constants used lie
weQ in the range of coupling constants given in the

literature for bulk n-silicon and close to a set of
constants given recently. '

Electron scattering by intervalley optical phonons

and ionized impurities are the only mechanisms
which depend on energy for a two-dimensional car-
rier gas. The deviations from Qhm's law are
therefore governed by optical scattering alone if
impurity scattering is unimportant, in contrast
to the three-dimensional case, where scattering
by acoustic phonons plays an important role. One

can therefore expect that the coupling constants
obtained in this paper are more significant than

coupling constants obtained from a similar experi-
ment for bulk n-Si using a Maxwellian distribution
function. However, we would rather like to stress
here the qualitative nature of the Mamrellian ap-
proach, than enriching the literature with an ad-
d tonal etof Z, .

For the two-dimensional ease, we were able to
give explicit formulas for non-Maxyrellian dis-
tribution functions, while it could be obtained only

+(S,/S„)x"'e-*(X,+1)(x- x,)'"
x [t(x- x,) —t(x)].

For 0~ x&xa Eq. (Al) reduces to

—(xe )=—e xd d ~ ad)
dx dx dx

The solution is

$(x) = lnx+ b~,

'For xa~x&2xa Eq. (Al) reads

d „ad(—(xe ")=—e *x
dx dx dx

(A 1)

(A2)

+ (Sa/S~) x ' e "(&a+1) (x —xa)

x [&(x—xa) —$(x)] . (A2)

(AQ) cannot be solved as easily as the correspond-
ing Eq. (22) because of the cumbersome square

For a high Sa/S„ratio, however, one can
rewrite (A3) as

](x—xa) —((x) =0 (A4)

$(x) = ln(x —xa)+ 5, (A5)

neglecting the other terms. One can find by in-
spection that this approximation is good for some
W such that x& H. For Sa/S„= 300 we obtained
x~ = 1.1xR. Thus the distribution function becomes
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for x*»x» 2'.
As we can see from Eqs. (A2) and (A5), the

distribution function must have a distinct step at
x= x„so that the number of electrons above x~ is
considerably lower than that in a Maxwellian ap-
proximation. Furthermore, it can easily be seen
that a polynomial approximation, as used in the
variational method of Adawi, ' will converge slow-

ly. Adawi expanded $(x) as

g(x) = Q c„[x"—(-')(-') ~ ~ ~ (2r+ 1)/2] .

%e calculated the variation polynomial coefficients
c„up to x=14 for S~~S&=300 and x~ =5. The term
proportional to c» still gave large contributions to
$(x) for x&xR.
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