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An expression for calculating the state energies of a Wannier exciton, interacting with a crystalline

polarization field, is derived. The derived expression is applicable for arbitrary values of the
electron-hole binding. This expression is applied to calculate the binding energy of a %annier exciton in

the ionic polarization field for a number of polar semiconductors. The results obtained are discussed in

relation to experimental results and some comments on the previous calculations of other authors and

the present authors are drawn.

I. INTRODUCTION

The problem of an electron and a hole interact-
ing with each other through a Coulomb law as a
Wannier exciton, and with a crystalline polariza-
tion field (ionic or electronic polarization field),
has been of considerable interest. In order to see
the effect of the interaction between the electron-
hole pair and the crystalline polarization field on
the binding energies of excitons, theoretical stud-
ies have been carried out for quite some time.
However, most of the work has been done in two
limiting cases, namely, the strong-binding case '

and the weak-binding case. 7 Recently Mahanti
and Varma used a many-body approach to solve
the problem in both the weak- and strong-binding
limits within the effective mass theory; they then
introduced an interpolation scheme to calculate the
binding energy of a Wannier exciton of aribtrary
binding. However, from the discrepancy between
the Mahanti-Varma result and that of Sak derived
later in the weak-binding limit, the accuracy of
this interpolation scheme is now in question. More
recently, Vooght and Bajaj extended the method
used in Ref. 10 to the calculation of the ground
state of a Wannier exciton in a polar crystal. As
can be seen clearly in the work of Wang, Woo
and Matsuura' (referred to as WWM hereafter),
such a method is applicable only to the case where
the unperturbed energy of the hydrogenic Hamil-
tonian is not greater than the virtual-particle en-
ergy. This is due to the omission of one term
(which is important for large binding) in their
evaluation of second-order perturbation correction
of the energy.

In this paper we use a second-order perturbation
theory in which the interaction between a source
particle and virtual particle can be reduced to a
small perturbation even for the strong coupling,
as in the work of WWM, to derive directly a rea-
sonable expression for computing the binding en-
ergy of a Wannier exciton in a polarizable field for
arbitrary binding. The derivation is given in Sec.

Q. Then the derived result is applied to calculate
the binding energies of excitons for a number of
polar semiconductors in Sec. III. The results ob-
tained are discussed in relation to experimental
values and Mahanti-Varma's results in Sec. IV.
Further, we comment on the calculation of Vooght
and Bajaj.

II. CALCULATION

A. Formulation

The total Hamiltonian of a Wannier exciton con-
sisting of an electron and a hole in a crystalline
polarization field may be written'

P P A——+~EQ 0
2M 2p,

+ +[V;a„-e"'"(e '"&"-e'"2")+c.c.], (l)

using the coordinates of the center of mass in
which the position vector of the center of mass of
the electron at r, and the hole at rz is R = (m, r,
+ mara)M ', where M is the total mass of the elec-
tron-band mass m, and the hole-band mass ma.
Here P =- iK(8/SR) is the momentum operator of
the center of mass. p and r are, respectively, the
relative momentum operator and coordinate of the
electron and hole. p, is the reduced mass given by
mf m2 M and pj = p/mj for j = 1, 2. A equals e
for electronic polarization and e /e„ for ionic po-
larization, &„being the usual high-frequency di-
electric constant. c is the energy of a virtual par-
ticle (a phonon energy for ionic polarization and a
longitudinal exciton energy for electronic polariza-
tion) and is considered as wave-vector independent
as in the polaron problem. The meanings of the
remaining symbols are the same as in Ref. 5. The
last term in Eq. (1) is the interaction between a
Wannier exciton (described by the Hamiltonian con-
sisting of the first three terms) and the crystalline
polarization field (described by the fourth term)
under consideration in the center-of-mass repre-
sentation.
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In order to eliminate R from Eq. (1), we intro-
duce a unitary transformation similar to that in
Ref. 12, i.e. ,

where 4 is an eigenfunction of H in Eq. (1) and U

takes the form

g
U=exp —AQ-~wka-a. ~ R

k k

a; = af+ Vf e~/Eg (9)

where the quantity crt is completely arbitrary un-
k

der the condition that nk should act as an annihila-
tion operator for bosons. Really, such a trans-
formation amounts to nothing but the change of the
reference system of virtual particles. %ith the
use of Eq. (9) and its complex conjugate, Eq. (8)
can be rewritten

Here hQ is the sum of P and the exc'iton recoil mo-
mentum operator, i.e. ,

Ig = P+QKkala-,
k

(4)

with X given by

and is a constant of the motion due to its commuta-
tion with the total Hamiltonian H. Application of
this transforation to the eigenequation of H, i.e. ,
H4 =E@', yields

K= H, + Ek ak ay+ HI+ H~ .

Here H, is given by

H. =f'/2( + V.«(r),
with V,«(r) having the form

V.ii(&& = -——Z

&& [ot(e-"&"- e»,f r) + c.c. ]

~ I Vkl loki

k

(10)

K= U HU= Q —Q ka~a-
2m

P' A
+———+~Ca a +Hg q2~

in which HI takes the form

(8)

which is an effective interaction between the elec-
tron and the hole resulting from the above canon-
ical transformation. H,

' in Eq. (10) is of the form

H,
' = Q [Vf af X(r) + c.c.],

where

H, = Q[Vfa;(e '"&"-e "2"'"')+c.c. ] . X(P (e istk'r eivni r) (14)

In this work we are essentially interested in cal-
culating the binding energies for states in which
the center of mass of the electron-hole pair is at
rest and hence we set @=0. For this case, with
the use of the commutation relation [a;, a-„.]
= 5f,g. , the first term in Eq. (6) can be written

83k
- a-a-+H,

where

Hence K can be written

X=——++8-a-a +H +H
p2 A

I u (8)

where E- = e + g ~}t~/2M.

%e shall use a perturbation method, in which the
perturbation involved can be reduced to one weaker
than the original interaction Hz given in Eq. ('I), to
treat the problem considered in this work. There-
fore, we now introduce a simple canonical trans-
formation in which the annihilation operator for
phonons a-„ transforms to

Z~r lm) l~) ="lI".&. (18)

Here } m) is an eigenfunction of H, in Eq. (11) and
is the corresponding eigenenergy given by

p~ A

2p,

This HI is the interaction between the exciton and
the polarizational field in the n„- representation. It
amounts to an interaction like the above HI minus
the interaction gf (Vfo.Ioi, + c.c. ) resulting from the
above canonical transformation. Here crk is arbi-
trary and can be chosen to make H,

' a small per-
turbation even in the strong-coupling case. H„' in
Eq. (10) is the uf representation of H', i. e. , H'

written in terms of the boson operators nk and &-„.

Now, we take the last two terms in Eq. (10) as
perturbations and the sum of the remaining two
terms as an unperturbed Hamiltonian. From the
eigenequation of this unperturbed Hamiltonian we
obtain

H. ~m&=..'~
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I V-I+Q E" [lo;l —(o- pf, +c.c.)j, (I'?)

g1 ~ I Vfl l(nlX(r) lm) l~

~n- &m-Er (19)

Thus, in second-order perturbation theory the
total energy for the state under consideration is
the energy given by Eq. (17) for m =n plus «„"'
given by Eq. (19}. After substituting X(r) given in
Eq. (14) into Eq. (19) this total energy, E„, can
also be written

E„=(nl 0'/2l -A/r} ln&+ «„,
with 4E„given by

(20)

I V"I'I( I( 1n'1 n — in, f 9 I )Im
0 0

msk E„-a~ —Ei
(21)

This exyression has the same form as that obtained
in the usual second-order perturbation theory,
which treats Hz as a perturbation on the Hamiltoni-
an consisting of the first three terms in Eq. (&).~'

However, it should be noted that I m) and eo in Eq.
(19) are the eigenfunctions and eigenenergies of the
unperturbed Hamiltonian H, in Eq. (11},not those
of p /2I1 -A/r as in the usual second-order per-
turbation theory.

As is shown in Appendix A the last term in Eq.
(20) gives the correct results for the energy of the
electron-hole pair due to its interaction with the
polarization field in the strong- and weak-binding
cases regardless of the omission of the other per-
turbation H . Thus the energy correction due to
H, which for spherical symmetric 0-„ is given in
second-order perturbation theory by

—g (zn) ri i'P
I

v„-I'I nl'I v„-.I'I, I'

I'u' 12&
E-E~i 2c+ +

with p"„, defined by

(ml (&
ln1n n '&1n2n r) lm)

Inf &
—= In;» n;2, . . .) denotes an eigenstate of the

second term of X in Eq. (10}and e„ is the corre-
sponding eigenvalues. Thus the eigenenergy of an
unperturbed state I m) lni) is e'+g;Egnf, where
n„» is the number of virtual particles of wave vec-
tor K. Then, for the initial state In) IO) in which
I m) is In) and no virtual particles are present,
the energy correction due to Hi is given in second-
order perturbation theory by

H=p'/2I +W„,(r), (23)

where W,«(r) is an arbitrary effective interaction
between the electron and the hole. The ground-
state energy given by Eq. (22) has the same form
as Eq. (20) for the ground state. Further, the ei-
genfunctions and eigenenergies of the Hamiltonian
given by Eq. (23), appearing in Eq. (22), are es-
sentially the same as those of the Hamiltonian giv-
en in Eq. (11), though it is treated as an unper-
turbed Hamiltonian in the present work. This is
because, like W,«(r) is Eq. (23}, the effective in-
teraction V,«(r) in Eq. (11) is arbitrary as a re-
sult of the arbitrariness of an in V„,(r) [cf. Eq.
(12)]. Accordingly, the result of Haken, En given
by Eq. (22), amounts to the second-order result
of the perturbation theory as described in the pres-
ent work. Then, we may apply Eq. (22) to con-
clude that the ground-state energy calculated by the
presently proposed second-order perturbation ap-
proach should be above the true ground-state en-
ergy of the total Hamiltonian used.

C. Evaluation of ~„
The sum over m and 0 in Eq. (21) for «„is too

complex to evaluate exactly in general. We shall
adopt an approximate method suggested by WWM
for this evaluation and write this ~„in the form

2
p~t2tp~ )2«n Z 3nl+~n12+~n21

i~1
(24a)

der consideration. Note that this omission does
not amount to dropping the first term in Eq. (&). If
this term was completely omitted as in the work of
Vooght and Bajaj, then the corresponding &E„does
not give the correct result in the weak-binding lim-
it (cf. Appendix A}.

B. Comparison with Haken's result

Haken'3 has obtained an expression for the upper
bound of the true exciton ground-state energy ET
using the path-integral method. For the state in
which the center of mass of the electron-hole pair
is at rest as considered in this work, it is given by

p2 AE, E,=(ll ———ll&

I V,"I'I(1 I (e '"1"-e'"'"') Im) I'
+j

m E
(22)

Here e and I m) are, respectively, the mth eigen-
energy and eigenfunction of the Hamiltonian

is negligible as compared with ~„given by Eq.
(21). Hereafter we omit the energy correction due
to H and take Eq. (20) as the energy expression
for a Wannier exciton in the polarization field un-

g I Vnl l(nIX1(~) lm) I

nj ~0 ~0
m, j n

~ I Vil (nlX, (r) I m) (m I X'(r) In)
~~2 Ew0 0

ms& n m

(24b)

7

(24c)
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and S~ is given by Eq. (Mc) with X, replaced by
X, and X)by Xg. Here X, =e '"& ' —pf ~ and

Xa=e'"2 '-Pa, ~, where Pf,~ =&nIe '"& '
ln) and

pa, „a =&n le'"a ' In). pf„„ in Eq. (24a} is equal to
Pi, ni —A".m.

To calculate S„&, for example, we introduce an
operator I',. satisfying the equation

{[F„If,] -E-„F,)ln& =x', ln) . (as)

In terms of E, thus defined, the matrix element
&m I X*,In) in Eq. (24b} is equal to (e'„- eo —E~)
x&m IE, In) so that (24b) can be reduced to

S„,= pl V;l'&n[X, F, ln&, (26}

making use of the completeness of the eigenfunc-
tions of H,. Expanding ln) in terms of the com-
plete set of the plane waves as

ln) = g&q" ln) lq"),

and inserting g;I q ) &q I and g;. I q') &q'I in Eq. (26)
as in Ref. 9, we have

S„,= V-„nq qX q'
Q 4

x&q'le, lq" &«" ln& . (aa}

Substituting the matrix element &q I E, I q ') obtained
from Eq. (25) and then taking the summations over
q' and q", we obtain

S«Snji+Sn@+Snks+Sn«y

with

am, ~ I V"„I 1&nlq) I

2q ~ (t-k' —y,
'

keq

(29a)

am, g I V-„I pf a, (nIq) &q+ p,kIn),
aq ~ k+u, k'- )(,

(29c)

ap, g g I ;V' IRz, i aa&q'ln) &nIq)
q~- Iq- p,kI'- x';

and S„« is given by Eq. (29d} with (nIq ) replaced
by -p-', „,{nIq- p, ,k). Here y., =(am, e/5'}'~',
}(f= (apE@g },u, is equal to (ma —m, }M ' for
i=i, and (mg —ma) M for i=2, and Rig(iI a' is-"
given by

=-&q —p«l[Fi V«(r}llq & ~ (3O)

S„,a and S~, in Eq. (Ma} can also be evaluated in
a way similar to the above calculation for S„&. S~2
thus evaluated is given by

Sni2 Sni2a+ Sni2b+ Sni2c+ Sn124 a

where

am~ ~ I V;lz&nlq&&q+kln)
aq K+k'-X,

k q

amz ~ I V, I' Pg. ~&nI q&&q+ PakI n&

2q ~ K+ uik —
II~

&sq

ap p g I Vf1 R"„~q~.-;&q'In)&nlq&

q —Iq+ p, ,k I' —P

(sib}

(sic)

&En — Sfl]i+S«2 + Sni2a+Sn

~|~it tN, 1

+ Sn21a + Sn2lb
k

(32)

LRE„ thus evaluated can be shown to give the cor-
rect results in the weak- and strong-binding lim-
its (see the Appendix A for results in these lim-
its). Because of this and because small error
from the omission of S„,3 and S«~ will be canceled
to some extent by another small error from the
omission of Sffi2c and Sn12fl~ AE„as given by Eq.
(32) is probably valid to a good approximation for
arbitrary binding.

III. SINING ENERGY OF AN EXCITON IN A
POLAR SEMICONDUCTOR

The binding energy of an exciton in the ground
state is given as the difference in energy between
the ground state and the state corresponding to

For the limit of n=~ in which In) is com-
pletely diffused, the unperturbed energy and the
terms in the energy correction given by Eq. (32}
all vanish except S„,i which is the self-energy of
the electron or hole in this limit. Therefore, the

(sld}
and S„~aa is given by Eq. (3ld) with &n I q) replaced
by —pf, ~ &nlq+ p,k). S„a~ is given by Eq. (sla) with
an interchange of 1 and 2.

Now, let us discuss the relation between the
terms S„z and S„« in Eq. (29a). These terms van-
ish separately in the weak-binding limit where the
effective potential V„,(r) is effectively zero, be-
cause in such a limit RQ.f.p,%' becomes zero. In
going from the weak-binding limit to the strong-
binding limit, the factor &nlq) —pa, „& &ni q —p,k&,
which characterizes the difference between S„z and

S„«, tends to zero (&nIq) and &n I q- p, ,k) approach
each other and pal „,tends to unity because I n) is a
localized function) and these two terms cancel ex-
actly in the strong-binding limit. Consequently, a
good cancellation between S„,3 and S„«will occur
even in the intermediate region of binding just as
in the case of bound polarons. i The same is true
for the cancellation between the corresponding
terms in S~2 or S„». Therefore, to a good approx-
imation, S„&3 and S„;~ in S„;and the corresponding
terms in S~2 and S~i can be omitted in computing
bE„given by Eq. (Ma). Hence
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total energy of the electron-hole pair for the state
with n = ~, 8„ is just the sum of the self-energies
of the electron and the hole. Consequently, we
need only a detailed calculation for the ground
state in calculating the binding energy of interest.

A. Ground states

In the calculation of ground states we consider
two cases, i.e. , o„equal to aEge, where a is an
arbitrary real constant and o-„equal to py, ~.

I. v&= aE&/e

In the case of o- equal to aEg/e, the effective in-
teraction defined by Eq. (12) can be reduced to

V„,(r) = —y/~ (33)

after replacing the summation over k by the k in-
tegration as in the usual procedure. y in this
equation is given by y=A —(ae /a~ p) (m2 —I,) and
is essentially arbitrary due to the arbitrariness of
the constant a. Note that a constant potential
g-„ I V„-I a Ef/s was omitted in Eq. (33}.

Consequently, the electronic part of the unper-
turbed Hamiltonian, H, given by Eq. (11), becomes
hydrogenic and its eigensolutions appearing in Eq.
(19) are exactly hydrogen like. Hence the lowest
state of H„wihch appears in Eq. (20) with &E„
given by Eq. (32) for the calculation of the ground
state, is of the form

~
I) (y8/v)1l2+ kr (34)

For V„,(r) givenby Eq. (33), X in Eq. (34) is giv-
en by & = p, y/32.

We now come to the choice of y in the unper-
turbed Hamiltonian. Theoretically, y is arbitrary.
However, for the calculation of the ground state,
since the true ground-state energy is always below
that calculated by the present second-order per-
turbation theory for arbitrary y (cf. Sec. IIB), y
may be determined such that the ground-state en-
ergy obtained finally is the lowest one within the
present case.

0'f =~f, i

If o„- is chosen as pI, , =(I l(e '"~"'-e'"& ')
l 1),

then the effective interaction defined by Eq. (12)
becomes

A ~ I VqI
V,gf(r) = -——Z

r
~I &0

X [
0

(
-kg&k'r isn't'r) .C. ]t

g I V-„I')p;.pl'
(35)

~t

The corresponding unperturbed Hamiltonian II, giv-
en by Eq. (11) is thus not hydrogenic.

(1~
A

~1) g I il'ip~g '
2P, t - Eq

(36)

which is obtained from Eq. (17) for the effective
interaction given in Eq. (35). We note that the en-
ergy expression as given by Eq. (36) has the form
of that obtained by the adiabatic approach (or Har-
tree approach} in the strong-coupling theory of po-
larons. Therefore, in the present case, the zero-
order perturbation results in the presently used
perturbation theory are adiabatic-type results and
the corresponding corrections from Eq. (19) are
the corrections to the adiabatic-type results. We
also note that it may appear from first sight that
Haken's inequality given by Eq. (22) cannot be di-
rectly applied in general when the variation method
with a rather simple trial function is used to de-
termine the unperturbed solutions. However, as
can be seen later from calculated ground-state en-
ergies, the use of the simple trial function in the
present case does not affect the applicability of the
Haken's inequality.

Having determined the lowest state of H„ t 1),
the corresponding hE~ can be calculated from Eq.
(32) straightforwardly after replacing the summa-
tions over wave vectors k and' q by the correspond-
ing integrations as in the usual procedure.

B. Numerical results

We apply the calculation as presented above to
the binding energy of an exciton for polar semi-
conductors. In this case the interaction is one be-
tween the electron-hole pair and the ionic polariza-
tion. Therefore, for this calculation, A and Vg in
the energy expression derived above are, respec-
tively, e /e„and —i(2ve e/k Ve*) Here e(.=bur)
is the energy of a longitudinal optical phonon, V is
the volume of the crystal Under consideration, and

= e„—z, , &, being the static dielectric con-
stant. The values adopted for dielectric constants,
&, and the electron-phonon coupling constant
o, [=e (mg2e)' /&~K, where m, is the free-elec-
tron mass] are given in Table I. Among the crys-

Consequently, in this case the lowest state of H„
!1) which appears in pg, and also in Eq. (20) with

EE„given by Eq. (32}for the calculation of the
ground state, should be written as a linear com-
bination of a complete set of hydrogenic eigenfunc-
tions (or other type eigenfunctions) in a, rigorous
scheme. Nevertheless, in a numerical calcula-
tion we may take the hydrogen like ls function as
a trial function of [1), because the mixing between
the 1s state and higher hydrogenic states due to the
interaction given by the second term in Eq. (35) is
not large in general. This trial function, which has
the same form as Eq. (34), and the corresponding
energy E& can be determined by the usual variation-
al procedure from the equation
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TABLE I. Electron mass m&, hole mass m2, high-
frequency dielectric constant &„, static dielectric con-
stant &~, longitudinal optical-phonon energy &, and the
electron-phonon coupling constant n. Masses are in the
free-electron mass and energies in meV.

T1BI'

Tie)
Q)
H)CdTe

8)
8)
8)

Z IIS

g)
GRAS

0.204

O. 1S'
0. 30K

o. 37'
0 1054
0. 11c
0. 1784
0 18c
0 2484
0 190
o. o664

O. O9'

o.4o'
o. as'
o. 5o'
0. 36
o. 36'
0 35
O. 383'
0 57
0. 894"
0 94
0, 3894
o. 52'

5.41b 35.1b 14.3' 4. 82

5. 10 37.6 21.5 4. 26

7. 05 10.0 21.3 l. 06

5. 1O'

5. 2O'

8.87 38.0 l. 58

8 77f 43 7f 1 38

10.9g 12.9g 36.2g 0.28

~H. Overhof and J. Treusch, Solid State Commun. 9,
53 (1971).

Reference 14.
Masses used in the work of Mahanti and Varma.
See text for details.

'Reference 15.
Reference 16.

IReference 17.

tal parameters the band masses, especially the
hole band masses, are rather uncertain. Thus we
use two sets of mass parameters for each material
as seen in Table I. Note that one of the two sets
is essentially that used by Mahanti and Varma as
indicated in Table I. Also note that the values of
masses with the superscript d in Table I are cal-
culated from mf =m;/(1-+~a;), where mf' is the
polaron mass [for CdTe, m& =O. llm and mf
=0.40m from Ref. 15, where m is the free-elec-
tron mass; for CdS, m~ =0.20m from Ref. 16 and
m f = 0.458m from p* = m f m ) /(m f + mf ) = 0. 139m
which is obtained from Ss and 4s levels in Ref. 18
by assuming the simple hydrogenic formula with

g, =8.87;for ZnS, m&~=0. 28m and m&~=1. 571mfrom
Ref. 19, assuming mf = —', (2/mz, +I/m~~„); for GaAs,
m& =0.0665m from Ref. 20 and m& =0.40m is the
average value of the light-hole mass 0. 12m and
heavy-hole mass 0.88m in Ref. 21]. The numeri-
cal results thus calculated for the ground-state en-
ergy E,(=E~) for o-„=aEg/e an—d that for of = pI, „and
the corresponding binding energies EB are sum-
marized in Table II. In this table E~~" and E~" '

are, respectively, the lowest value of E~ which we
can get for a & 0 and E~ for a = 0, which is nothing
but that of the usual second-order perturbation the-
ory. E~~' in the same table denotes the calculated
E~ for 0&

= pi, a For a comparison, the binding en-
ergy obtained by Mahanti and Varma and that ob-
tained from an effective Hamiltonian as given in
Ref. 6, ' denoted, respectively, by E~ and E~",
are also given in Table II. In order to see how the
ionic polarization affects the exciton binding ener-

gy, in Table II the binding energy calculated by
dropping all the ionic polarization effects, E~
is also given. Also, the value of the correction
obtained from Eq. (19) for the case of a-„=p~, ,
denoted by AF. ,' ', is given in Table II, showing
the order of a correction to the adiabatic or
Hartree-type calculation.

IV. DISCUSSION

As shown in Table II, the ground-state energy
Ee calculated for o„=0, corresponding to the usual
second-order perturbation theory, is about the
same as those calculated for the cases of cr„-4 0 for
materials considered. The same is true even in the
the case where the transformed interaction Hl is
significantly reduced such as in ZnS. This is ob-
viously due to a large cancellation between the di-
rect interaction energy like S„; and the exchange
interaction energy like S~z. Note that such a can-
cellation becomes worse as the difference between
the electron mass and the hole mass increases. At
any rate, as far as the total ground-state energy is
concerned the usual second-order perturbation the-
ory works well for materials like those listed in
Table Q. Thus, the extreme approach such as the
adiabatic or Hartree-type approach is inappropri-
ate, as indicated by the correction of such an ap-
proach in Table Q.

From the binding-energy results in Table II we
see immediately that for the materials with the
coupling constant @&2 such as CdTe, CdS, ZnS,
and GaAs, the results of the present calculation
are about the same as the other two and all are in
fairly good agreement with experimental values.
However, for TlC1 and Tlsr for which o.'=4-5 the
results of the present calculation are quite differ-
ent from the other two and also from experimental
results as shown in Table Q. In fact, our calcu-
lated ground-state energy, which can be concluded
to be above the true ground-state energy of the ex-
citon Hamiltonian given by Eg. (1) in Sec. II if the
evaluation of 4E„ is accurate, is very much below'

the really true ground-state energy for T1C1 and
Tlsr, as indicated by the difference between the
presently calculated binding energy and experimen-
tally observed binding energy in Table II. This big
discrepancy cannot be entirely attributed to the
method to evaluate ~E„, since, according to Ref.
11, this method overestimates the magnitude of the
energy correction only by a small percentage (less
than 10%%u& in any case). Then a large portion of the
above discrepancy may have to be attributed to the
values of masses used for the electron and hole in
TlCl and TlBr, 7 or to the omission of a (central-
cell) correction to the exciton Hamiltonian used in
this work, ' or to both.

The masses used for the electron and hole in
TlCl and T1Br in Mahanti-Varuna's work are the
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TABLE II. 1s exciton, binding energy without ionic polarization E& =pe4/2&+, the sum of the energy shifts of the
bottom of conduction band and top of the valence band E„=-(0.&+o|2)K(d, the present theoretical ground-state energies
E E ~' E~2, and the corresponding ls exciton binding energies E ~ ~= lE~ )-E„), E&&&&= [E~«&
=

( E -E [, the correction to the Hartree-type calculation 4E&, the theoretical results by Mahanti and Varma E~z,
and theoretical results by Matsuura and Wang E&, and the experimental binding energy Ez~ . All energies are in mev.

(A) 62. 0
g) 56. 8

—74. 5
—71.8

E(10)

—94.9
—88.2

E(io) E(fa) E(fa) E t2)8 C 8 C

20. 4 -94.9 20. 4 -94.9
16.4 —88.2 16.4 -88.3

EQ) gE(2)

20. 4 —30.9
16.5 —29. 2 8.0

EM%

3.4
2. 8

Eoxglt o8

9.8a

TlCl g) 98. 1
(8) 95.4

—115.0
—110.8

-150.4
—148.2

35.4 —150.4
37.4 —148.3

35.4 —150.4
37. 5 —148.3

35.4 —50. 7
37. 5 —52. 8 9.0

4. 4
4. 3

11.7'

CdS

ZnS

(A) 22. 3
(S) 22. 9

g) 63.6
g) 71.6.

(A. ) 97.7
(8) 79. 5

—20. 8
—20. 8

—62. 4
—70. 7

—87. 1
—84. 8

—32'. 9
—33.4
—92.4

—103.1

—135.3
—118.6

12.1 —33.3 12.5
12.6 -33.8 13.0

30. 0 -92.8 30.4
32.4 —103.8 33.1

48. 2 —135.9 48. 8
33.8 —120.4 35.6

—32.9
—33.5

—92. 5
—103.3
—135.5
—119.1

12.1 —8. 5
12.7 —8, 6

30. 1 -26. 3
32. 6 —25. 4

48. 4 —28. 8
34. 3 -26. 1

12.0

28. 0

41.0

11.2
12.5

25. 6
29. 2

42. 9
33.8

26

(A. ) 6.4
GaAs

—8. 8
—10.2

—13.4
—16.5

4, 6 —13.5 4. 7
6.3 —16.6 6.4

—13.3
—16.4

4. 5 —5. 2 ''' 4. 7
6.2 -5.7 6. 0 6.4

aReference 22. Reference 23. 'Reference 16. Reference 24.

same 'as the set labeled B in Table II. Also, the
exciton Hamiltonian used is the same in their work
and the present work. Nevertheless, their calcu-
lated binding energy for an exciton in T1C1 or Tlar
is in fairly good agreement with the experimental
value. However, the reason for such good agree-
ment is not at all clear to us.

Our results also prompt us to discuss the calcu-
lation of Vooght and Bajaj. ~ In their calculation,
with the neglect of the quantities like R~„,g,; giv-
en in Eq. (SO}, terms like S„„given in Eq. (29d)
are omitted (which should be present in their cal-
culation}. S„,s is zero when the unperturbed ener-
gy vanishes as mentioned previously and becomes
more and more important as the unperturbed en-
ergy increases. Thus, the omission of the 8„&3
itself may cause a large error in the calculation of
4E due to the direct interaction of the electron or
hole with the polarization field for all materials
listed in Table II except GaAs. However, in their
calculation of the ground-state energy this error
(from the omission of S„,3) plus an error from
the omission of the first term in Eq. (6) will be
canceled to some extent by similar errors in their
calculation of AE due to the exchange in-
teraction between the electron and hole. Accord-
ingly, the net error involved in their ground-state
calculation may not be serious for materials such
as those listed in Table II.

In summary, we would conclude from above that
the present and other previous calculations all are
reasonable for materials with 0. & 2 and not clear
for materials with large a. For the latter mate-
rials, a central-cell-type correction is probably
needed if the presently available band masses are

believed to be reasonable for both electron and
hole.

~ ~ ~~~'tm. .t'
n

i
(AS)

The wave function In) in p; „is a solution deter-
mined from Eq. (15) for m =n, i.e. , a solution in
the adiabatic or Hartree-type approximation.
Hence, 4E„give bny Eq. (Al) is a result for the
energy of the electron-hole pair due to its inter-
action with the polarization field in the strong-
binding case. ~

On the other hand, in case (b) 4E„can be cal-
culated by the method used in Ref. 5. The result
thus calculated is

4E„= Ez& +Ez,
jag

with E» given by

(A2)

x(n~ ~n) + ~ ~ ~,
hk ~ p

P7g )

and E~ given by

(Aa)

APPENDIX A: ~„ IN ~0 EXTREME CASES

Here we consider &E„given by Eq. (21) for the
two extreme cases (a) I e'„I » e and (b) I e„l «e. In
case (a) the terms in Eq. (21) all vanish except the
term with m =n, because the energy denominator
becomes very large for the terms with m en.
Therefore, for t &„)»~,
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x (n ~e ~'~ I&+ ~ ~

F» has the same form as the energy of a bound
electron due to its direct interaction with the po-
larimation field in the weak-binding case. There-
fore it is the energy of the jth source particle
(electron or hole) due to its interaction with its
own polarization field in the weak-binding case.

E~ is the energy due to the interaction between the
electron and hole via the polarization field (see Ref.
5 for details} and is an exchange energy in the
weak-binding case. Note that the effective Ham-
iltonian appearing in the first term in E~ is just
the basic expression of the well-known Haken-
Schottky potential~ in the weak-binding case.

Accordingly, we may conclude that the energy
correction &E„given by Eq. (21}gives the correct
results for the energy of the electron-hole pair due
to its interaction with the polarization field in the
strong- and weak-binding cases.

*Work supported in part by the National Research Coun-
cil of Canada.
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