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Direct excitons in cubic semiconductors in a magnetic field
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The influence of the degeneracy and anisotropy of the valence band of a cubic semiconductor on the
exciton 1s and 2s states in a weak magnetic field is investigated. Using the reduced Coulomb Green’s
function, purely analytical expressions for the wave functions in the first order and energies up to

second order of the perturbation theory are obtained.

I. INTRODUCTION

A description of shallow exciton states in semi-
conductors with degenerate bands requires an in-
vestigation of a system of differential equations.
An exact solution is not known for this system.
McLean and Loudon, 1 using a variational technique,
computed an approximate wave function for the
ground state of the direct and indirect excitons in
Ge and Si. Abe, 2 by a variational method, com-
puted the wave function of the direct excitons in
Ge and GaAs.

Baldereschi and Lipari** and Czaja® proposed a
new method to investigate shallow excitons in semi-
conductors with degenerate bands. This method
is based on the remark that the warping of the va-
lence band in most semiconductors is relatively
small. Thus the perturbation theory can give a
general and accurate description of the lowest dis-
crete exciton states in semiconductors. Altarelli
and Lipari® used this method to compute the split-
ting of the exciton levels in a weak magnetic field.

The purpose of the present paper is to give a
general investigation of the direct exciton states 1s

1

1
—H;.(l?) R [(71 + %‘Yz)% ¥ _-),z(kai + k3J§ + kiJE)
0

and 2s of diamond and zinc-blende -type semicon-
ductors at low magnetic field, taking into account
both the Coulomb interaction and the actual de-
generacy and warping of the two upper valence sub-
bands. Using the reduced Coulomb Green’s func-
tion given by Hostler” and by Swierkowski and Suff-
czyfski, ® purely analytical expressions are ob-
tained for the wave functions in the first order and
for energies up to second order of the perturbation
theory.

II. PERTURBATION THEORY

The Hamiltonian for the relative electron-hole
motion in a magnetic field is

- . - 2
H=H(B+(/)R) ~Hy(-B+(e/R) -5, (1)

where p is the relative electron-hole momentum, €
is the static dielectric constant, T is the electron-
hole radius vector, and

kz+p*5-§, (2)

= 2y o({k oy HI I} +{R R HI I, } +{R.R HIT, D)
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Here the constants y,, v,, ¥3, K, ¢, and the spin-3
matrices J,, J,, J, have been defined by Luttinger?;
mY¥ is the electron effective mass, u* is the effec-
tive magnetic moment of the conduction electron,
{ab}=13(ab +ba). In Egs. (1)-(3) we have neglected
the effects of the splitoff valence band, * of the elec-
tron-hole exchange interaction, *=!% and of the
terms linear in p which arise from the lack of in-
version symmetry in zinc-blende semiconductors.*
We now assume that the constant magnetic field B
is along the [001] direction of the crystal and we
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[
choose the gauge A in the form

A=3BxT)=1B(-y, x, 0).
Altarelli and Lipari® write Eq. (1) as
H=H,+H,+H,+H,, (4)

where H, represents the Coulomb interaction be -
tween the electron and the isotropic part of the
hole, H, represents the anisotropic hole contribu-
tion®*;
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H,; and H, are, respectively, the linear and qua-
dratic terms in B:
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The masses g, [, Lp are related to the Luttinger®

parameters vy, v, Y3 by
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Hg is the Hamiltonian of a hydrogen atom with
reduced mass L, and dielectric constant €. The
eigenfunctions of H, can be classified with the
quantum numbers %z, I, m, p and o, where the first
three are the usual hydrogen-atom quantum num-
bers, and where p and o are, respectively, hole
and electron spin projections on the z direction.
The wave functions, i.e., exciton envelopes, canbe
written

|nimpoy= |nim)|p) o), (92)

where |nlm) are the usual hydrogen-atom wave
functions and

Jelw=plp, p=+3, +3 (9b)

30.|oy=0l0), o=23. (9¢)

SWIERKOWSKI 10

The corresponding eigenvalues are

4
_ ket 1
En==ont& (10)

for the continuum, the energies are still given by
(10) with the replacement n=—i/k.

It was previously shown~® that H, can be treated
as a small perturbation with respect to H,. There-
fore, at low magnetic fields, the states of the
Hamiltonian (4) can be investigated by using pertur-
bation theory with the perturbation V=H,+H,+H,.
Perturbed discrete exciton levels and exciton wave
functions can be computed using the reduced Cou-
lomb Green’s function,’

The Green’s-function operator G" is defined by
expression
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The symbol S means summation over discrete
states and integration over continuum states. The
reduced Coulomb Green’s function was given by
Hostler” and by Swierkowski and Suffczyfski. ®
Operating with G" on the wave function ¥ can be
expressed by

(CW)F)= [ dr,6"(E, FIUED - (12)
Now, for any 7
(n00uo |H,|n0O0p 0’ Y=0. (13)

In the Coulomb potential the states 2s have the
states 2p degenerate with it. Valence-band warp-
ing removes this degeneracy. In the semiconduc-
tors of diamond-type symmetry the perturbation by
the magnetic field B=(0, 0, B) has vanishing matrix
elements between the 2s and 2p states and the re-
sulting secular determinant for 2s states is diago-
nal, Thus the nondegenerate perturbation theory
for energies is still valid. Moreover, from Wig-
ner-Eckart theorem one can see that

(21mpo |VG"V|200u'0’)Y=0, m=0, £1. (14)

Further considerations will relate to 1s and 2s
states only. The round bracket | ) will be adopted
for the perturbed wave function. The wave func-
tions in the first-order perturbation theory up to
terms linear in B can be written, using (14), in the
form

|n00OR0) = |nOOLO)
+2—£_L-2°~G"(H,,+H,)|n00uc), n=1,2. (15)

The corresponding energies in first- and second-
order perturbation theory are
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E ,o(ns) =E, +{n00uoc |V |n00uc)
+2—,‘£‘,& (n00uo |VG™V |n00uo), n=1, 2, (16)

Retaining only linear and quadratic terms in B we
have, using (13):

E ,(ns)=E, +(n00uo | -2-;;‘,& HG"H,|n0Opo)

2

+(n0OOuo |H, + 2—;} (HG"H , + H,G"H )| n00uo )
+(n00uc |H, + —#}(H,G"H, +H,G"H,)| n00p0)
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The term in Eq. (17) containing H,G"H,+H,G"H,
was not considered in Ref. 6.

III. EXCITON 1s AND 2s STATES

From now on, we will use effective Rydberg and
effective Bohr radius as units of energy and length,
respectively:

Ry=poet/2n%e?, ay=eh?/pye®. (18a)
The ratio of half cyclotron to Rydberg energy is

v=ehB/2cuyR,. (18b)

2p n
+<"00“°| _ii-’igl H,G"H, Inoouo) ’ Equation (15), after integration prescribed by (12),
n=1, 2. (17)  yields
1
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T
x ot _ E =L 3
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o v o2y 2
is the Euler-Mascheroni constant. i gzwy, (23a)
In Egs. (19b) and (19c) the first terms are the where, from Refs. 4 and 17,
hydrogen-atom wave functions. The second terms
represent the effect of the valence-band structure S,=m - £+ - 9=0.70293769... , (23b)

in the absence of magnetic field. The form of these
terms is similar to Schechter’s!*!® or McLean and
Loudon’s! trial functions, but it is important to
point out that for n=1, 2 the radial function f,,(7)
for - 0 behave as 7, not as 2. The last terms in
(19b) and (19¢), proportional to ¥, describe the ef-
fect of the magnetic field.

From (11)-(13), we get after analytical integra-
tions with the reduced Coulomb Green’s function,
the energies

E, (ls)=-1 —%¢st +(& u+&u° +80o)

+(gy+q5u®0?, (222)
where, from Refs. 4, 16, and 1%,
Sy=1+i+5+f-37°=0.22463278... , (22b)

and the constants g;, g,, ¢,, g for 1s states are

13V3 po u 7w )2
=_orto 19V9 Koo _{ (Ko
& Kmo+ 10 pp 1y 2O(I-lz ’
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and the constants g,, g£,, 4y, g, for 2s states are
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Here ¢ =8(po/k1f +(Mo/p2)?, w*=u*/pp is the ef-
fective magnetic moment expressed in Bohr magne -
tons pupy=ef/2mc, and g,=2u*u,/m,. In Egs.

(22a) and (23a) the second term, with ¢, represents
the contributions from H,. The third term, linear
in B, gives the Zeeman splitting of the octuplet of
exciton states, symmetric with respect to the zero-
field level. The term (uo/p,)(po/K,), Stemming
from H,G"H, +H,G"H, term of Eq. (17), is absent

in Eq. (8) of Ref. 6. The last term in Eqs. (22a)
and (23a) gives the diamagnetic shift. The last two
terms were written in the form corresponding to
that which Bhattacharjee and Rodriquez!® obtained
in their group-theoretical analysis of the Zeeman
effect of acceptors.
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IV. CONCLUSIONS

It is worth to recall that the perturbative treat-
ment is valid only for values of the energy shifts

AE ,(18)<$Ry and AE ,(2s)<(i-$R,.

In the present paper the errors detected in Eq. (8)
of Ref. 6 are corrected. It is important to stress
that in the present paper and in the paper of Alta-
relli and Lipari® the energy corrections were cal-
culated to second order of the perturbation theory
while the terms of the same order of magnitude,

i.e., proportional to y,Y3¥ and to yaya'yz, appear
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also in the third-order perturbation theory.

The wave functions presented here can be used,
inter alia, to compute effects of stress on the ex-
citon levels. Further, they may be used to com-
pute the absolute intensities of the magnetically
split components of the exciton lines, which could
be observed with good spectral resolution, !%20
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