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The possible formation of a bound state of two phonons by repulsive anharmonic coupling has been

previously discussed in terms of a simple model Hamiltonian. These theoretical efforts yield a
reasonable estimate for the bound-state energy, and provide a physical interpretation for the observed

anomalous peak in the two-phonon Raman spectrum of diamond. In the present paper we consider the

Raman intensity attributed to scattering from two-phonon bound states. The present theory is based on

a two-phonon deformation-potential approach. The calculated intensity for diamond is in good

agreement with available experimental data and thus provides further evidence for the existence of
bound phonon pairs.

I. INTRODUCTION

Cohen and Ruvalds' have recently proposed that
anharmonic phonon-phonon interactions can give
rise to two-phonon bound states. The anomalous
sharp peak observed in the second-order Raman
spectrum of diamond by Kristman and more re-
cently by Solin and Ramd~~' was interpreted as
evidence for the existence of bound states. The
sharp peak resides at a frequency higher than
twice the maximum single-phonon frequency. This
feature is explained by the anharmonic interaction
theory in terms of the splitting of the bound pho-
non pair state off the two-phonon continuum as a
result of the repulsive phonon-phonon interaction.
From a comparison between experiment and theory
of the "binding" energy, its anharmonic coupling
strength in diamond has been deduced. The value
of its anharmonic strength was shown to be plau-
sible. ' Experimental data on its anomalous sharp
peak gives not only its "binding" energy, but also
its Raman scattering intensity and line shape. In
the initial theories'4 on two-phonon bound states,
the scattering-intensity aspect of the experimental
data has not been examined and tested against the
theoretical predictions.

One of the purposes of the present work is to
calculate the scattering intensity of the two-phonon
bound state and compare it with the experimental
Raman data, thus providing an independent check
on previous theories. '4 It is now possible to con-
sider this question because of the recent develop-
ments in the theory of electron-two-phonon defor-
mation-potential interactions. ' A precise knowl-
edge of these interaction matrix elements is re-
quired to provide quantitative analysis of the inten-
sity of second-order light scattering.

The bound-state intensity is derived in Sec. II.
In Sec. III we discuss the theory of second-order
Raman scattering for the special case of diamond,

and relate the bound-state intensity of Sec. II to
experiment.

II. TVfO-PHONON BOUND STATES

In the following we extend the Ruvalds and
Zawadowski4 treatment of interacting phonons to
calculate the spectral weight function in terms of
a simple model for the two-phonon density of
states. The spectral function will enable us to cal-
culate the Raman scattering intensity of the bound

state.
It should be mentioned that the present formal-

ism is applicable to calculations of the two-phonon
continuum in the presence of anharmonic interac-
tions, However, the structure within the continu-
um is complicated by Van Hove singularities aris-
ing from various critical points throughout the
Brillouin zone. Furthermore, the arAarmonic in-
teractions distort the singular structure in a prom-
inent way and may yield additional peaks in the

spectrum corresponding to two-phonon resonances.
We focus attention on the bound-state formation

since it gives rise to a very sharp peak outside the
two-phonon continuum. This feature enables us to
estimate the bound-state energy and line shape with
exceptional accuracy. To our knowledge diamond
is best for our purposes, since the experimental
evidence for a true bound state is compelling and

the single-phonon dispersion is well known from
neutron scattering studies. 8 The existence of a
bound state of two acoustic phonons in quartz has
also been invoked4 to explain the Raman data of
Scott, which exhibits an interesting level repul-
sion between a soft optic phonon and the state of
two acoustic phonons; this hybridization is analo-
gous to the Fermi resonance of vibrational levels
in molecular systems, but exhibits broadened
structure owing to the substantial dispersion of the
acoustic phonons and the finite lifetime of the soft
mode.
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We consider a model Hamiltonian of phonons described by

~aj( as as 3)+g3 m (~ajIhaj3~&(mes +H' c' )+g4 ~ ~(&3N& s ha +a s h&& Is ~&&3ys
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(2. I)

where (d,&
is the frequency of the single optic pho-

non with polarization j, 5„,& is the creation opera-
tor for this phonon, and gs and g4 are momentum
independent anharmonic-coupling parameters.
Since we are considering the optic modes of dia-
mond, the usual phonon branch index is suppressed,
and it is reasonable to approximate the microscop-
ic anharmonic coupling~0 by constant parameters
g3 and g~. The prime on the summations excludes
phonon combinations forbidden by symmetry.

The two-phonon Green's function G3(Q, (d) has
been obtained in Ref. 4. Here we denote by Q, the
sum k+k' of the momenta of taro phonons. For
second-order Raman scattering considerations, we
can take Q = 0 since the wave vectors of both inci-
dent and scattered photons are negligible. The
Green's function for a pair of noninteracting pho-
nons with polarizations j& and ja is given by

which reduces to

1 d g
(2&r)3 (d —(d,s, —(d~j + 3(l'as, + I"~ )j3

(2. 2b)
or, equivalently,

Here the two-LO-phonon coupling to the TO-pho-
non pair is allowed by symmetry and the factor of
2 takes into account the two polarizations of the
transverse optic phonons. The criterion for the
formation of a bound pair of two phonons is the
existence of a pole in the two-phonon propagator,
l, e ~ y

I g4[FI -((d)+ 2Fr((d)) = o, (2.4)

P 3,j»3((d) = gjIj3't}((d (dj&) & (2 5)

where the bound-state energy is determined by
solutions to E(l. (2.4).

In actual situations the bound-state peak may be
broadened somewhat by the single-phonon lifetime.
Nevertheless, the intensity of the peak is easy to
determine from E(ls. (2. 3a) and (2.3b), and is giv-
en by

with (d outside the hvo-phonon continuum. Thus
the observed bound states may include contribu-
tions from both LO and TO branches, although
their relative strengths will generally be different.

Providing that the anharmonic coupling g4 is suf-
ficiently strong, the two-phonon spectral function

p3 s»3 = —v ' ImGs34s3((d) will exhibit a bound-state
component split off from the jism phonon pair con-
tinuum which is of the form

P3, j»3((d ) d(d

fd-~ +2' (2. 2c)
8 e$

g4 '[FI,((d)+ 2Fr(&)l
- i(sa40gy

(2.6)

gLL Fz, ((d)
I -g4[Fj,((d)+2Fr((d))

(2.3a)

Here G&~ denotes the one-phonon Green's function,
and the single-phonon width I" is taken to be same
for all branches. Thus the effects of the phonon
dispersion are conveniently included in the joint
phonon density of state p3, s,s .

To calculate the bound-state formation, we cal-
culate the multiple scattering of two LQ phonons
as shown in Fig. 1. Considering our model Ham-
iltonian, the multiple scattering series is summed
trivially and yields the coupled bvo-phonon Green's
functions,

To this point the formalism is applicable to situa-
tions described by a completely general density of
states p3((d).

Detailed information on the single-phonon dis-
persion curves of diamond can be obtained from the
neutron scattering data of Warren et c~t. 8 Vfe shall
rely heavily on their data to justify several approx-
imations that wiQ be made here. Consider first
the LQ branch. Its dispersion is rather flat in a
large region of the BriQouin zone, and hence
p3(3I& j,((d) shouM be well approximated by a step
function extending over a bandwidth 2D, in other
words,

p3 I j,((d) =Ay for 2(d~ —2DI, & (d & 2(da&

Tr Fr(~)
I gal FI((d) + 2Fr((d—))

(2. 3b)

=0 elsewhere, (2 7)

where + is the maximal single-phonon frequency.
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The product 2DLAL must be equal to N„ the total
number of LO-phonon states in the entire BriQouin
zone and is a constant. Then it follows from Eqs.
(2. 2c), (2.4), and (2. 6) that

(f) —2(d~ . to)
FLI (+) AI ln

2 2D
+ V2~LL ~

(It) —2Q)~ + 2DJ
(2. 8)

~s =2~ +2D~ exp( —1/g(Ar, ), (2. 9)

where $ takes into account the TO-phonon contri-
bution and is given by

2Dg 1n(Ee/2Dr)
Dr ln(Es/2Dg) (2. 10)

Similarly, the bound-state strength defined in Eq.
(2. 6) follows from Eqs. (2. 6), (2. 8), and (2. 9) and
1s

JEAN, 2DL
4D, E, (2. 11)

For the TO phonons we make the similar approxi-
mations for the density of states as in Eg. (2.6),
but with smaller height A~ and corresponding larg-
er bandwidth 2Dr. From Eqs. (2. 4) and (2. 8) the
bound-state energy in the weak-coupling limit E~
= ur& —2~~«DL becomes

Green's function. The theory is applicable to both
the two-phonon continuum and bound states. This
enables us to calculate the ratio of the scattering
intensities from the two-phonon bound state to the
continuum.

In second-order Raman scattering an incident
photon in state u&f, ; (&u„-,; is the frequency, X the
wave vector, and a the polarization vector) is scat-
tered into the state co„-;;.with the emission of two
phonons with total momentum Q =0. From
Loudon's theory, "photon-phonon coupling occurs
indirectly through the intermediary of electron-
photon and electron-phonon interactions. The di-
rect interaction between photons and phonons is
negligible when ~x 6»(Joq j.

We shall restrict our considerations to the
group-IV homopolar insulators having the diamond
lattice structure. In the case of homopolar ma-
terials the only source of electron-lattice interac-
tion is the perturbation of the periodic potential
acting on electrons produced by the displacement
of the atoms of the lattice. For lattices with two
atoms per unit cell this deformation-potential in-
teraction between electrons and phonons can be
written, up to second order in atomic displace-
ments, (for Stoke's scattering only) as

Similarly the TO branches yield

Fr(us) $ —1
Zrr ZII F ( )

ZEj, (2. 12)

(1) (2)
H~p=H~p +H, p

where

(3.1)

There the total strength of the bound state includ-
ing both longitudinal and optical branches is

Ztotal ZLL + 2ZTT )ZI L ~ (2. 13)

In the case of diamond, the neutron data yield DL
= 150 cm ' and D~ = 300 cm"', and the Raman data'
give E~ = 1 cm '. Inserting these values in the
above formulas we estimate the bound-state
strength in diamond to be

Ztotal 0o 24 Ng p (2. 14)

In this section we shall present a theory of sec-
ond-order Raman scattering. The Raman scatter-
ing cross section is expressed in terms of the two-
phonon deformation potentials and the two-phonon

where 3N, devotes the total density of states in-
cluded in the continuum portion of p2L'L+ pz~'~.

The Raman spectrum of diamond3 indicates that
the observed bound-state peak has primarily I'&

symmetry and therefore may include contributions
from overtones of LO and TO phonons. However,
to make a comparison of the above results with the
observed spectrum in diamond, we need to consid-
er the theory of second-order Baman scattering.
This analysis for the special case of diamond is
discussed in the following section.

III. RAMAN SCATTERING FROM TWO-PHONON STATES

x(n'k'~e, 5"'(r)~nk&f@'„a„'par, &f „-„-

(3. 2)

gs, jy njnlp M+a (~gaJy'&I', e', j2)
4&'S2

x (n'k'~ e& ~ D' '
~ e&

~
nk) b~e.& b&e,

xa„&.a„f6(k' —k, j+q') . (3.3)

We neglect the effects of the anharmonic interac-
tions on the form of the electron coupling. Here
(d~;&, is the phonon frequency, M is the reduced
mass of the two atoms in the unit cell, N is the
number of unit cells, and a is the lattice constant.
The one- and two-optical-phonon deformation po-
tentials 5"' and DN' are given, respectively, by
D' '+aV' Uo and D =a V &~Uo~ where Uo is the
equilibrium lattice potential screened' by the
bound electrons and u=u, -u, the relative displace-
ment of the two sublattices. I nk) denotes Bloch
state for the electrons in band n with quasimomen-
tum k. The deformation potential is short ranged
and we will assume that the matrix elements of5"' and D' ' are independent of wave vectors. a'
(a) is the electron creation (annihilation) operator.
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FIG. 1. Diagrammatic representation of two-phonon
multiple scattering processes. The solid lines refer to
LO phonons (L) and TO phonons (T), respectively, and the
dot refers to the effective anharmonic coupling g4 which
is assumed to be independent of momentum. Note that
the propagator t"& for the LO phonons includes a spec-
tral contribution from the transverse optical-phonon
Green's function I'z to all orders in the coupling.

The electron-photon interaction is given by

x(Ax, r+Atx, c)a«t x (x«x5(k —k, X), (3 4)

where Vis the volume of the crystal and z the
high-frequency dielectric constant; e is the elec-
tronic charge, m* the effective mass of the elec-
trons, p the momentum operator of electrons and
A (A') the annihilation (creation) operators for
photons. %e will neglect the wave-vector depen-
dence of the matrix elements of the dipole-moment
operator.

Second-order Raman scattering can occur via
three types of processes as shomn in Fig. 2. In
processes of the type depicted in Fig. 2(a), the two
phonons are emitted simultaneously owing to the
second-order interaction H,'~' between electrons
(holes) and phonons. There are six possible time
orderings of the three interactions involved. In
processes of Fig. 2(b), the two phonons are emit-
ted separately owing to the first-order electron
(hole)-phonon interaction H,'~) acting twice through
intermediate states. There are 24 possible time
orderings for these processes. Processes of Fig.
2(c) involve higher-order electron-photon interac-
tion and can be neglected. The initial state I i) of
the system mill consist of n& incident photons, no
scattered photon, n;@, and n~~. &

phonons and elec-
trons in their ground state. The final state IP
will have n, - j. incident photons, one scattered
photon, n~~&~+1 and n~q. &2+1 phonons and electrons
in their ground state. In the electronic ground
state the valence bands are full and the conduction
bands are empty. The differential cross section

1
+int+ +inc E ~ +int

I 0
(3.6)

Here E( is the energy in the initial state I i), P„„
is the perturbation HeR+ +eP + +et y

and +0 th
peturbed Hamiltonian of the electrons, photons,
and phonons (including the fourth-order anharmonic
interactions). The anharmonic interactions be-
tween phonons, the g4 term in E(l. (2. l), is in-
cluded to all orders because of the bound state.

Second-order Raman scattering arfses from the
third and the fourth terms in E(l. (3.6). The ma-
trix elements of T will involve all intermediate
electron-hole states. However, we will consider
only the highest valence band and the lowest con-

+ 5 OTHER TERMS

+ 5 OTHER TERMS

+ 25 OTHFR TERMS

(b) I + 25 OTHER TERMS

+ 25 OTHER TERMS

+ 55 TERMS

(c) (

+ $5 TERMS

+ 55 TERMS

+ 55 TERMS

FIG. 2. Diagrams of the three types of processes
contributing to the two-phonon Raman scattering: The
photon line is wavy. The electron {bole) line is straight.
The phonon line is dotted.

for scattering from the initial state I i) to final
state if) is given by'b

~1/2
= "'„'" g ( &y ~

r
~
i)

~

' 5(~ n,-+ a,),
(3.5)

where 1' is the scattering matrix and c the velocity
of light in vacuum. The wave vectors and frequen-
cies of the incident and scattered photons are re-
spectively (y(, &u&) and ()(„cu,); &u =~( —&o, is the
frequency transfer to the phonon system. The en-
ergies of the initial and final phonon states are de-
noted, respectively, by SQ; and AQ&. The scatter-
ing T ma.trix may be written as
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duction band. The contributions from all other
higher bands will be small owing to the energy de-
nominators in Eq. (3.6). Furthermore, in this
paper we deal with nonresonant Raman scattering
where the energy of the incident photon is less than
the energy gap. Hence the intermediate electronic
states will be taken as free electron-hole pairs and
the excitonic and polariton effects" will be ne-
glected.

In systems with a center of inversion, the elec-
tronic states will have definite parity. Therefore
the intrgband matrix elements of the electron-mo-
mentum operators will be zero. Thus in the two-
band model used here, only two terms from Fig.
2(a) and four terms from Fig. 2(b) will survive.
These are the diagrams where the initial and the
final vertices represent electron-photon interac-

tions. Thus the relevant part of the T matrix is

(3. 7)

Interference between the matrix elements of H,'~'

and Hg, '[1/(Ez —Ho)] H,'s" is generally important
and an effective two-phonon-electron deformation
potential interaction may be defined' 7 as

ef f (2) (1) ~ (1)H2 = Hap + Hen Hen ~

I 0
(3.8)

From Eqs. (3.5) and (3.7) on substituting for H,'s'
and H +s' from Eqs. (3.2) and (3.4) and using the
integral representation for 6(~ —A&+ At), we have

1 1 (1) 1
T=He~ Hep +Hep Hep He~.

I 0 I 0 I 0

dc e'&o, g', & 5, „ I RPIe((og, (u, ) I

ad 4gZMZ~Z~y4g4~4 ~ ~(Xi Xm q+q )

C 4IA

where I i) and I f ) refer respectively to the initial and final phonon states. The two states differ in the oc-
cupation numbers qej~ and q'e'j2. In Eq. (3.9) the second-order Haman tensor is given by

(vl c ~ pl c)D(cl P ~ pl v) (vl f Pl c)D(cl Z'. pl v)

(ug(O, V I (Eg' —g(O,)(E'„-s" —Sup) (Ef»f'+ ku), )(E~"-'+)I(o,)
(3. 10)

Here E~'~' is the energy of electron-hole pair which under parabolic approximation can be written as E&'"'
=Es+ g~k /2p+ g Z /2(m, *+m„*), E, being the band gap and p the reduced electron-hole mass and c (v) re-
fers to conduction (valence) bands. D is the matrix element of the effective two-phonon deformation poten-
tial given by

D = &c( e,, D"' e,, ( c) - &v) e,, D"' e,, ~
v)

((c I ez, ~ D"'
I c) —(v I e~, ~ 15"'

I v))((c I e~a ~ D"'
I c) —(v I e,a

~ D"'
I v))

—S(d ) —S(d(cv)
)7+f4 k1 a

(S.11)

in Eqs. (3, 10) and (3.Ii) the energy denominators should contain the renormalised phonon frequencies.
Since the corrections to the frequencies are small and (Es —1(u) is much larger than the Phonon frequencies,
the error incurred by the use of unrenormalized frequencies is small. In this approximation the two-pho-
non deformation potential is the same for both bound and free phonon pairs.

In Eq. (S.9) we transform the operators b'(b) to Heisenberg representation

e ""'" "(fIb'g b'. .
g ~

s) =&f~8'"»'b~ 8 '"»'e'"»'b'- e '"»'~i) =&f
~

b' (t)b,'.~ (t)~i), (3. 12)

and using the relation gt I f)(f I
= 1 we get for the scattering cross section

4 3 ++soe &i&s Q 5 Rss' (~i~s)
dAd&o 4' M N m* ca ~" v u& 2v61 (d)y (dg y

4/2

dte'"'&(be (0)b@ y (0)b~g;~ (t)b'-~ (t))), (S. 13)

where (( )) denotes thermal average and Q=q+q'. Since y&
—y=0 we will assume that @=0. If the phonon

frequencies in the denominator of Eq. (3.13) are taken independent of q and replaced by some average val-
ues, then the sum q can be taken inside the integral. The integral is then related to the imaginary part of
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the Fourier transform of the two-phonon retarded Green's function" defined in Sec. I, i.e. ,

dt e' 'g «bz, (0)b &,,(0)b~(f) b&,(f))}=—(n, + 1) imGs '(Q = 0, ~) = (n„, + 1)'pm, »(Q =0, ~),
~00

(3.14)

where n„ is the single-phonon Hose factor (e ~/

bT 1)
' -and pm, »(Q =0, &o) is the two-phonon joint

density of states such that the total wave vector Q
= 0 and the two-phonon energy (u&) is equal to &o&

pa, &&
can be written as the sum of contribu-

tions from the continuum and bound states:

PR, Jg(&) = P2, Jj((d) + Q Z»b((d —(dye) ~ (3.15)

x & pz, && N A) . 3. 17
COg

In Eq. (3.17) we make the approximation that
Rqq. and (d, are slowly varying functions of fre-
quency and can be taken outside the integral. This
will be particularly true for optic phonon branches
with smaQ bandwidth. %e also neglect the kinetic
energy of the center-of-mass motion of the elec-
tron-hole pair in the expression for Rqq. , since
X =0 and X' =0. The assumption that the deforma-
tion potentialss for bound and continuum phonons
do not differ can be justified because the bound-
state formation involves anharmonic interactions
small compared with electronic energies. On re-
placing the g„" in Eq. (3.10) by an integral, we have
an explicit expression for R&z. as

2 3/2

&~l ~ ~ pl c»»&cl ~' pl ~}
4v(0~(de&de

(gJg —(d ~
— (d g

—(d g

+ ~+~~~~3 (d +

where &g, = E,/g and p.
' = ~,'+ ~„' ~

(3.18)

We then obtain for the scattering cross section for
the hvo-phonon bound state

(
gz„( „,+1)

ldQ b,mg 4k M N(mirac)
(3.16}

and for the continuum phonon states

(
do 8 ~&~,4 3

dA 48 M mac

From Eqs. (3.16) and (3.17) we get for the ratio
of the intensity of light scattered by bound and con-
tinuum phonons

r, ir, =Fz„ I J~,'0, ( )d~ (3.19}

ln obtaining Eq. (3.19) we have taken the factor
(n„+1) /&ua~ outside the integral in Eq. (3.17). It
fol ows from the definition of N, that

I, f p,",J;( )d =BA', . (3.20}

Substituting Eqs. (2. 14) and (3.20} into Eq. (3.19),
we obtain the theoretical estimate

total 0
Ic 3N, —Zt

(3.21)

This estimate should be compared with the experi-
mental data of Solin and Ramdas, 3 which give

Is/fc =0.05 (3.22)

obtained by taking the integrated intensities of the
Raman spectrum. The good agreement between
these values of lz/Ic indicates that the anomalous
peak at M66. 9 cm ' of diamond is adequately ex-
plained by the two-phonon bound-state model as
proposed by Cohen and Ruvalds. ' Both the size of
the splitting from the top of the continuum and the
Raman scattering intensity of the bound state are
in quantitative agreement with experiment.

IV. CONCLUSION

The present results provide further support for
the theoretical suggestion'4 which attributes the
sharp peak in the Raman spectrum observed in dia-
mond to the formation of two-phonon bound states.
Furthermore, our results take into account explic-
itly the relative contributions of LO and TO pho-
nons to the bound-state strength and indicate that
they are comparable in magnitude, even though TO
phonons are more dispersive.
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