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Noise of hot carriers in single-injection solid-state diodes with traps lying below the Fermi
level
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An exact and an approximate solution for the current-voltage characteristics of the hot-carrier
single-injection solid-state diodes with a single set of traps lying well below the thermal-equilibrium
Fermi level (operating in the insulator regime) have been calculated. In addition, the low frequency and
thermal noise are calculated at difFerent critical currents. The approximate solution is calculated with
the help of the regional approximation. An expression for the critical currents and voltages shows that
there is a large change in current occuring over a restricted change in voltage. It appears from the
study of the electrical-noise behavior that there is a noise-suppression efFect at higher currents.

I. INTRODUCTION

In this paper a st;udy has been made of the elec-
tron-conduction and electrical-noise behavior of a
hot-carrier single -injection solid-state diode with
a single set of traps lying below the Fermi level.
A similar approach to the various types of diodes
has been presented by Sharma. ' The expression
for the low-frequency and thermal noise in a low
electric field (mobility independent of field strength)
operating in an insulator regime has been calculated
by Sharma and Sharma and Srivastava, ' respec-
tively, based on the method given by van der Ziel. '

The method of regional approximation~'4 is used
to calculate the current-voltage characteristics.
This method was first used by I.ampert (I.ampert
and Schillings for insulator problems). Shockley
and Prim' discussed the space-charge limited-
current punch-through problem for semiconductors.
The corrections to the current-voltage characteris-
tic produced by inclusion of the diffusion current in
the problem has been studied by I,ampert and Edel-
man with the aid of a high-speed digital computer.
These corrections are of practical interest in that
they establish the magnitude of error in the deter-
mination of trap density.

van der Ziel~ and Sergiescu' have given an alter-
nate theory of noise in space-charge-limited solid-
state diodes, which gives a smaller value for the
noise than do %ebb a,nd %right. '7 The experimen-
tal results '9 are in agreement with Klaassen~ and
van der Ziel, s but not with van der Ziel's earlier
paper. ' Sergiescu and Friedman ' gave a computed
solution in a semiconductor based on the pattern
given by Van Vliet and Fassett. Noise in single-
injection solid-state diodes operating in the hot-
carrier regime is calculated by Qisolf and Zijlstra
and Sharma. ' In their paper, Qisolf and Zijlstra
have shown that the field-dependent mobility can
be applicable throughout the diode. The expression
for high-field mobility is

u(E) = Vo(E./E(x))'",

where p. o is the low electric-field mobility, E, is
the critical electric field defined in Ref. 9, and
E(x) is the electric field at distance x. We have
used Eq. (l) in all sections of our paper.

In Secs. II and III the exact and an approximate
solution are calculated. In Sec. IV we calculated
the low-frequency noise at different critical cur-
rents and noted that the mobility is fluctuating with
the fluctuation of the electric field. In See. V the
thermal noise at different critical currents is cal-
culated. In Sec. VI the validity of the approxima-
tion is discussed.

II. EXACT ANALYTIC SOLUTION

The equations defining the current density and
Poisson's law in the insulator with traps lying be-
low the Fermi level are

J= ego(E, ) ~n[E(x)] ~,

subject to the boundary condition,

E(0) = 0

and

dE
= (& &0)+(Pg, O-Pg)-

In Eq. (4), we have used the deep-trap relation
from Refs. 6 and 10. To calculate the current-
voltage characteristics the following dimensionless
variables are used:

No Roe pov E,(E(x))~+,
n(x)

e Popo(E, )'+ x
e~[E(x)]'

e'N OgoV(x)E,
eO'E(x)

Equation (4) and the dimensionless variable u gives
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—-Bu+ B —1, (6)

udw+ wdu = (2u du)/[1 —Bu + (8 —1)u],

giving the solution

(6)

where

8 = N zN/gN o
=p z, o /No ~

By using dimensionless variables (5) and Eq. (2),
Eq. (6) can be written

larly in low-field-mobility cases the space-charge
region can be separated into two regions, due to
the additional term (P, , -P, ) in Poisson's equation
(4}. Thus there will be a plane x„where nz(xz)
=n(xz) =p, 0. To the left of plane x, , n &p, 0 and

P, p is neglected; to the right of plane x„up to
plane x&, where P,, p

—P, &n-Np, n-Np as well as
P, can be neglected. The current density and
Poisson's equation in different regions follow.

Region f. (0~ x( x,),
J= eizon(x}(E,)zi [E(x)]'@,

2 (28 —1) ln(Bu+1) (8 —2) ln(u —1)
8 8(1+8) 8+ 1

(9)
which satisfys the usual boundary condition [Eq.
(3)] w= 0 at u=0. In the dimensionless notation the
voltage integral is

1
v = — u (udw+ wdu)

2 M u4du

Bu, uz -[(8—1}/B]u —1/8 (10}

The voltage integral (10) can be obtained from Eqs.
(2}, (5), and (6). Making partial fractions [Eq.
(10}]and integration gives

2 u (8 —1)u (8 —8+ 1)u
Bu 3 28 8

E&p dE
e dx

n(x, ) =p, 0.
Region II. (x, ~ x & xz),

J = eiz, n(x)(Z, )z&[E(x)]zzz,

E'6p dE
e dx

n(xz} =No.

Region III. (xz~ x(L),

6&p dE
e dx

(14)

(15)

(16)

(17)

(16)

(19)

(20)

+, ln +8 ln(u —1) . (11)
In addition to Eq. (3), the boundary conditions of

the problem are the electric-field continuity equa-
tions

In terms of dimensionless variables, the current
density J and the voltage V can. be written E(xz}= E(xz}, E(xz) = E(xz) . (21)

e Npppg J 1 eNpL v
(12)

In terms of dimensionless variables (5), the Poisson
equations in regions I, II, and III become

Region I:
In Eq. (12) the subscript tz corresponds to x=L in
Eq. (5). Equation (12) gives the current-voltage
characteristics for space-charge-limited hot-car-
rier injection into an insulator with traps lying
below the Fermi level.

III. REGIONAL APPROXIMATION

d(uw) = 2u'du,

Region II:

d(uw) = (2u/8) du,

Region III:

(22)

(23)

We obtain a solution to this problem with the help
of the method of regional approximation. The
method of calculation is the same as with low field-
mobility cases. To calculate an accurate approxi-
mation the insulator is divided into three regions.
In the insulator, the injected free-carrier concen-
tration n; is a decreasing function of x. At not-
too-high currents there will be a transition plane
x2(J') where the concentration of injected carriers
(n, ) is equal to the thermally generated free car-
rier (No). To the right of plane xz, where No &n,
we neglect n„ to the left of plane, where n, &Np we
neglect No. Thus the plane xa(Z) separates the in-
sulatox' in space-charge and Ohmic regions. Simi-

du—=0
d20

(24)

%=3 2P

satisfying the boundary condition u = 0 at n, = 0.
Equations (25) and (26) give

wz = 2/38

(26)

(2 i)

From Eqs. (5), (15), and (16), the transition planes
x,(u, ) and xz(wz) correspond to

uz = u(wz) = 1/8, uz = u(wz) = 1 .

Integrating Eq. (22) gives
Reg208 I:
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The integral of Eq. (23) is, using Eqs. (25) and

(27),
1 10 2 19

9' 5B' (39}

w = (1/8) u + 5/38

From Eqs. (25) and (28), we derive

w, = 1/8 + 5/38' .
The integral of Eq. (24) is

Region III:

(28)

(29)

For J& J„„the dimensionless current-voltage re-
lationship is

iP, , B(R BB 5B 18B)(iF)

(40)

u=u2=1,

which satisfys the boundary condition (21).
From Eqs. (5), (27), and (30) we obtain

26J g J"2

es+ 3~~ E ~ Be3+3~~E

(30)

(31)

J„,& J (trap-free square-law regime}.

The potentials in the separate regions- are
Region I:

Corresponding to the transition planes x2 and x„
there are critical currents of J, „J~3, respec-
tively, defined by xa(J„~)=I. and x~(J„z}=L. Then
from (31) we derive

Be +o4oE L J2 3B e XoP,oE,L
cr, g ~ & cr, 2 2&

(32)
There are three separate regions in the current-
voltage characteristics,

J&J„( (Ohm's law regime),

J„~&J&J„a (trap-filled limited regime),

When J& J„,, all regions (I, II, and III) are present
in the insulator. The contribution of region I is
negligibly small, since x,(J)/x2(J ) = 1/28« I [Eq.
(31)]. The left-hand boundary of region II becomes
se = 0, and with the current-voltage characteristics
at J& J„q,

v, /w', = 1/w, —(1/28) (1/w, )'. (41)

For a trap-filled limited regime the dimensionless
current-voltage relation is

(42)

In a trap-free square-law regime only region I is
present in the insulator.

The Ohm's-law regime terminates in a trap-
filled limited regime at J=J„,[from Eqs. (29) and

(39) v, ,„,= 1/28] and at J=J„z [from Eq. (34)
v„„2—2/58']. Using dimensionless variables (5)
for these values, the critical voltages correspond-
ing to critical currents are

BeXoL eP~, o L 9BeXoL

3 2 3v=5 u$0=5u

Using Eq. (25) we derive

v, = v(wi) = 2/583.

Region II:

1 Q to

v=vg+p u (udw+ wdu) .
gg

From Eqs. (28) and (35), we derive

1 "2u' 5u
v =vs+@ + p du

Sg

2 u 5u 19 1
5B"2B '9B' 18 B'u'

Equations (36) and (25) give

1 5 2 19
28 98 58 188

Region III:

1 10 2 19
b=v2+(w w2)=w 28 982 +583 1885

For full applied voltage, so= to„we derive

(33)

(34)

(35)

(37)

(38)

The ratios of critical voltages and currents are

J~,2/J, ~, 1=28~ V~~a/Vcr, &=s . (44)

J= q p, (E) E(x)n(x), (45)

where p, (E) is given in Eq. (1). According to re-
gional approximation, the Poisson equation in the
space-charge region of the diode is

dE q= ——n(x) .
dx

The small-signal equations can be obtained by let-
ting

E =Eo+~E, n =no+an, J=Jo+ «W = Wo+&W ~

Equation (44) shows that there is a large change in
current occurring over a restricted change in
voltage.

IV. LOW-FREQUENCY NOISE IN THE DIODE

The equation of current flow in a single-injection
diode with a single set of traps lying below the
Fermi level operating in the hot-carrier regime is
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Equations (45} and (47) give

4Z= q[nEE p(E) + p(E) (n«+Ezdn]] . (48)

In the above equation the mobility is also a fluctuat-
ing quantity. From Eq. (1), we derive

&u(E) =(-z)u(E)«/E. (49)

The study of noise is made by open circuiting the
output of the diode. The low-frequency noise in the
open-circuited diode is caused by carrier-density
fluctuations in the potential minimum and calculat-
ing the voltage fluctuation (hV) caused by a fluctua-
tion &np in the carrier density np. Assuming the
cathode to be an injecting contact with a relatively
small barrier and the anode as a blocking contact
with a relatively large barrier, the carrier density
at the anode is seen to be practically zero at all
times, i.e. , LJ=0.

Letting d Z= 0 and hn = 5nz, and using Eqs. (46)
(49), and (48) gives,

nz = IJq = AJ/q . (60)

Substituting the value obtained in (59) into (58),
we derive the value of the noise resistance (when
the current is less than the 4„,) as

Sv&, &(f) = 4kTR„= (3qxz/5e) S„(f), (58)

where R„ is the noise resistance of the space-
charge region and S„(f)is the spectral intensity of
the carrier-density fluctuations in the potential
minimum.

The value of the spectral intensity of the carrier
fluctuations can be given (from Ref. 23) as

S„(f)=2nz, (59)

where np follows a Poisson distribution. Equation
(59) is obtained by applying Carson's theorem
(Ref. 23). If, in a diode, each particle carries a
charge q then the Poisson average is given by

Ez5nz —— «(x) = 0.dE
2g dx

Integrating Eq. (50) gives

V(x}5n +(e/2q)E(x)«=n,
since

(50)
3qX2 2n 3&J

5e 4kT 5B q NzzyzEz 2, kT '

where the value of xz is obtained from Eq. (31) and

nz [from Eq. (60)] corresponds to I,=AJ.

A. Low-frequency noise at first critical current (J=Jct, 1 )

fEzdx= —V(x) .

In the above equation, n is an integration constant.
At the potential minimum E(x) = 0 and V(x) = 0, n = 0.
The value of the fluctuating electric field is

~E(x) = (-2q/e) [V(x)/E(x)]5n, . (52)

Using the boundary condition (3) and Eqs. (1), (45),
and (46) gives the differential equation

There is a trap-filled limited regime in the diode
at the first critical current condition. The value
of the first critical electric field is given [from
Eq. (54)] as

x=L, E„,= -[3Z /2eq (E )'&]zI' L'~' (62)

In Eq. (52), substituting the values of E„,and
V„, [from Eqs. (62) and (43), respectively], we
get the value of the fluctuating first critical field as

1@dE J
[ ( )1 d (E )1/2 (53)

BqzN, Lz 2e Pz(E,)
Crz 1 ~2 31J 6n crzi '

cr, 1
(63}

Following integration, we derive

E(x) [3Z/2eyz(E }ir ]zSz xziz (54)

Making a Fourier analysis of Eq. (63), the first
critical resistance (R,) is as follows:

V(x) = z [3Z/2e pz(E }'~] ' x' ' (55)

P«NzL 2e& (E }zr 'S' n

z

(64)

Substituting Eqs. (54) and (55) into Eq. (52) we de-
rive

where n„~ follows from Eq. (60) for nz = n„, and
J=Jr 1.

~E(x) = (6qx/5e) 5n, . (56)
B. Low-frequency noise at second critical current (J=J~ 2)

The fluctuation in voltage at distance x2 can be ob-
tained by integrating Eq. (56),

dV(xz) = z xdx= z 5nz,
6QQR 2 3/+2

5~ p 5E
(5V)

where x2 is the transition plane separating the
space-charge region and the Ohmic region.

The Fourier analysis of Eq. (57) gives the spec-
tral intensity of voltage fluctuations at distance x2

For J=J„2, only region I is present in the in-
sulator. The second critical electric field is

E.„.= -(~~ ../2e~. (E.)"]'"L'". (65)

The fluctuating electric field (E„,) is

IZE~ z-—(9Bq NzL /5e )[2epz(E, ) +/3LJ, „z] 5nz,
(66)

where the values of V„2 and E~ 2 are substituted
into Eq. (56) from Eqs. (43) and (65).
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8IR'q'X~~' 2sq, (Z,)'& '~' n„.,
25 ' 3L~ 2IT (67}

Following the integration of Eq. (68) (within the
limits of 0 to L} and making a Fourier analysis, we
get the noise resistance,

3 '3x' ' V(x )
nl M 2 (Z )1/R~& 5I 1/3

where V(xz) is the voltage corresponding to x=x, in
Eq. (55). The differential conductance (g) for this
region is

The ratio of the noise resistance of a trap-filled
limited regime and a trap-free square-law regime
ls

dI, 3I,
dV(x~} 2V(xa)

'

From Eq. (73} and (V4), we derive

(74)

R~ 81 J, f
4/ n„,f

cr, 2 Ncr, 2 +cr, 2 cr, 2
(68) R„=3/2g. (75)

where the first relation follows from Eq. (64) and

(67) and the second corresponds to Eq. (60) for
different critical currents. From Eqs. (44) and

(68), we derive

To calculate the noise resistance (R„)of region
III, the value of the thermally generated electron
(No) is substituted (instead of n) in Eq. (72) and
we derive

S1 J,,„'" 54 f'2

Rf 25 J,'r 2 258 I,3B (68)
bx 1

qi, X, ~[Z./Z(x)]'~ qi, (Z,)'&Z, X

V. THERMAL NOISE IN THE DIODE

If the diode is open circuited for ac signals, then
in the frequency interval k f the thermal noise can
be represented by a current generator (i }'~ in
parallel with the diode,

i =4kTR„,k, fg =+4kThRk fg (70)

where 4R is the resistance of secion 4x and a
summation is carried out over all sections b,x.

In the space-charge limited single-injection hot-
carrier current flow the electric-field strength is
given by Eq. (54}. The concentration of the hot
carriers in a space-charge region can be obtained
from Eqs. (46) and (54),

n = (2&/3q)[3f./2e q,(Z.)'&W]'" x-'~ . (Vl)

According to van der Ziel' the noise resistance
(b R} of a section hx is

3 x h, x

qp, nA[z, /z(x)]'~ 2po(z. )'~&& Ip

A. Thermal noise when current is less than the critical value

(J & Jm, l)

Since the current is less than the first critical
value, all regions are present in the insulator.
Integration of Eq. (V2) (within the limits 0 to xa)
gives the noise resistance (R„) in the space-charge
region of the diode as

The low-frequency noise is much reduced in a trap-
free square-law regime as compared with a trap-
filled limited regime.

The results here obtained are based upon fluctua-
tions in the carrier density at the potential mini-
mum. Though this noise mechanism is always
present, it is usually masked by the thermal noise
mechanism discussed in Sec. V.

X
1/3

X f/3ZX
2e (Z )' (76)

&' =4kTR„A,fg',
where

(78)

R„.=R„+R„n nf

Equation (V8) gives the estimate of thermal noise
in a hot-carrier single-injection diode with traps
lying below the Fermi level when current is less
than the critical value.

(78)

B. Thermal noise at first critical current tJ =J~ I )

For J = J~ „ the trap-filled limited regime is
present in the insulator. The noise resistance
(R,) is obtained by integrating Eq. (72) (within
the limits 0 to L),

2/3 3I 5/3 y
Cry f

(80)
where the value of V„ f corresponds to x =L and
I,=I„,in Eq. (55).

The critical differential conductance (g„,) of the
diode is

dI„ f 3I~ f
dV 2Vcr, f crs 1

From Eqs. (80) and (81), we derive

(81)

The noise resistance (Rz) of region III can be ob-
tained by the integration of Eq. (V6) (within the
limits xz to L)

3 3J f/3
L4/3 ~ 4/3

aqua (E)'+N, A(2ap ,(E,)~+

We represent the noise in a frequency interval k,f
by a, current generator ~i in parallel with the
diode,
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3
cx;1

gcr, 1
(82)

If the noise at the first critical current is repre-
sented by a current generator +i„, in parallel with
the diode, then

the dc resistance (V,/I, ) and the equivalent noise
resistance (R„) of the device equals to (V,/I, ), which
is the statement given in Ref. 25 for the low-field
mobility in the case of the space-charge-limited
diode. The ratio of conductances at different crit-
ical currents is

i„~=4kTR Pfgo, ~=6kTd fg„, . (83)
g...2/g. „i= ~o ( o R)' (9l)

In the above equation the value of & r 1 is obtained
from (82). Equations (32), (43), and (81) give

g, &=3Apo(eqNoE /BL ) ~ . (84)

C. Thermal noise at the second critical current (J=J~,2)

Only region I is in the insulator. This is a per-
fect trap-free insulator region. The noise resis-
tance (R,„z) is

2/3 315/3 Vcrt 2

2po ~Bc+~ I1~3 I
(85)

The second critical conductance (g„o) of the diode
is

The differential conductance of the diode is greater
at low currents and decreases very rapidly as the
trap-filled limited regime merges into the trap-
free insulated regime. This is due to the fact that
all the traps are filled at trap-filled limited voltage
followed by a very steep current rise.

VI. DISCUSSION

This paper shows that for a high-field-injection
regime the change in current in relation to voltage
[Eq. (44)J is not so large as in the low field-mobility
case. In the low field-injection case the ratios of
critical currents to voltages are

dIcr, 2 3Icra 2 (86)
j o/J„ i

——28 = 2P, o/No, V„o/V, i =+o. (92)

Equations (85) and (86) give

3
cra 2

gcr, 2
(87)

g„,= 5A po(&qIqo E,/6L') .' (89)

The value of g„2 is obtained by substituting the
values V„o and I„o from Eqs. (32) and (43), re-
spectively, into (86). The ratio of thermal-noise
resistances is

~cr 2 Vera 2 Icro1 9 2

cr, 1 Vcr, 1 cr, 2
(90)

Equations (73), (80), (85), and (90) show that the
open-circuited thermal noise emf corresponds to

The estimate of the thermal noise in a hot-carrier
injection diode under the second critical conditionis

c,~ z
—-4k TR„&d.fg,~ z

= 6kTb, fg~ z,

where

The rapid increase in current in relation to voltage
is due to the fact that at a higher voltage all the
traps are filled with electrons, the insulator be-
haves just like a trap-free regime, and all the in-
jected space charges contribute to the current; the
traps no longer affect the current flow. The rea-
sons for the approximation made in Sec. III are
similar to those of the low field-mobility case "'
and high-mobility injection case. ' The study of
space-charge-limited current behavior is made in
Refs. 26-29.

In Secs. IV and V there is a reduction in resis-
tances at higher voltages because the current is in-
versely proportional to the noise resistance and the
value of the current increases very steeply with
restricted increase in voltage. As voltage in-
creases the value of transit time decreases and re-
duces the fluctuation in current. %ith an increase
in current, the Ohm's-law regime (J& J ~) is
merged into trap-filled limited regime (J„,~ j
~ J z). Finally in a. trap-free regime (J&J„z) the
noise will decrease rapidly.
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