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First, the equations for calculating the concentration dependence -of the free energy of mixing G, the
activity a ,, and the concentration fluctuations S c(0) (in the zero-wave-number limit) are derived by
assuming (i) the 4 and B atoms of a binary mixture may form chemical complexes of the type 4 ,B,
(u,v small integers) and (ii) the components 4, B, and 4 ,B, interact only weakly with one another
(the strong bonding interaction between A and B atoms having been taken care of via the formation
of the chemical complexes). The ternary mixture is then treated (a) in the conformal solution
approximation, which assumes that the differences in volumes between A, B, and A4 B, are small and
(b) in Flory’s approximation for mixtures of monomers and polymers. Next, using the above equations,
explicit expressions for S c-(0) are obtained for dilute mixtures and, for mixture of any concentration in
the two limiting cases where the tendency to form chemical complexes is very strong and very weak.
Finally, numerical calculations for the concentration dependence of G, a,, and S c(0) are compared

with experiment for the systems TIl-Te, Mg-Bi, Ag-Al, and Cu-Sn, the interaction parameters in the
theory being determined from the observed data on G, for each case.

I. INTRODUCTION

This paper is an extension of our previous work!
(hereafter referred to as I) in which some general
characteristics of the concentration fluctuations
Scc(0) in the compound -forming binary molten sys-
tems were discussed on the basis of the so-called
chemical approach (for references see I). This
assumes that if the mixture of 4 and B atoms
forms, in the solid state, a compound at a single
chemical composition® specified by A, B, (1,v small
integers), then in the liquid state there exist, at a
given temperature and pressure, certain numbers
of A and B atoms and chemical complexes A, B, in
chemical equilibrium with one another. The equi-
librium numbers of these and hence the macro-
scopic thermodynamic properties of the binary
mixture depend on (a) the (free) energy of formation
of the chemical complexes or the reaction constant
and (b) on the form of the chemical potentials as-
sumed for A, B, and A,B,, that is, whether the
ternary mixture can be regarded to behave like an
ideal, athermal, conformal solution, etc.

The behavior of S¢q(0) for different values of u
and y was discussed in I by making the simplest,
namely, the ideal solution assumption referred to
in (b) above. However, this assumption is too
crude to give, in general, quantitative agreement
with experiment. In this paper we discuss two
higher approximations and calculate on their basis
the concentration dependence of the free energy of
mixing, the activity and Scc(0) for four binary sys-
tems®: T1-Te, Mg-Bi, Cu-Sn, and Ag-Al. Each
of these higher approximations contains four in-
teraction parameters, and although these have
physical interpretation they have to be at present
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determined from the thermodynamic data them -
selves.

The two approximations are described in Sec. II
and the various relevant formulas are derived on
their basis in Sec. III. In Sec. IV the behavior of
Scc(0) is discussed for two limiting cases for which
the equilibrium equation can be solved analytically.
The results of numerical calculations and compari-
son with experiment are presented in Sec. V. This
is followed by a brief discussion of the results and
some concluding remarks.

II. BASIC FORMULAS AND APPROXIMATIONS

Let the binary solution contain in all N, = N¢ and
Ng=N(1 -¢) g moles of A and B atoms, respective-
ly, c¢ being the atomic fraction of A atoms. We as-
sume that only one type of chemical complexes
A,B, (u,v small integers) are formed. Then if
there are in the solution n; g moles of A atoms, #;
of B atoms and »n; g moles of 4,B,, we have from
conservation of atoms

n =Nc - ung, nz'-'N(l’C)'Vﬂa, (1)
and

n=my+ng+ng=N—(u+v —)ns.

The free energy of mixing for the binary alloy can
be written (see I and Appendix)

Gy=G-NcG® -N(1 -¢)GV=-n3g+G’,  (2)
with

2=pG®+,60 -GL (3)

G'=G - (G + 1G5 + nsG) , (4)

where G, i=1,2,3, is the chemical potential for
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the pure species 7 in the solution. The equilibrium
value of n; at a given pressure and temperature is
given by

Eﬂ) -0. (5)
(8713 T,PN,c

In Eq. (2), the first term ( —#x3g) represents the
lowering of the (free) energy due to the formation
of the chemical complexes. The second term is
the free energy of mixing of a ternary mixture of
fixed n;, ny, n3, whose constituents 4, B, and
A,B, will be assumed to interact relatively weakly
with one another —the strong bonding interaction
between A and B atoms having been already taken
care of via the formation of chemical complexes.
We may thus borrow expressions of varying com-
plexity for G’ from the various theories of weakly
interacting mixtures.

The simplest expression for G’ comes from as-
suming that the ternary mixture forms an ideal
solution whence

G'=RTZs:n, ln<-;i;>, (6)

i=1

which is just ( - T) times the entropy for random
mixing. The discussion of concentration fluctua-
tions on the basis of Eqs. (6) and (2) was given in
I. Equation (6) is valid when (a) the effects of dif-
ferences in sizes of the various constituents in the
mixture can be ignored and (b) the differences Wiy
(defined below) in the interactions between the dif -
ferent species are zero. If we retain the assump-
tion (a) and treat the interactions Wy to be small,
then we have conditions under which the theory of
regular solutions in the zeroth approxima.tion4 or
the conformal solution approximation® is valid. G’
is then given by*® (,j=1,2, 3)

G'=RTZ 7 1n<%t‘->+zz 11_’(11!_; Wiy s (7)

<4

where w;; (=0 for i=j) are the interaction energies
defined in the usual way, for example, 2wjp=wy,
+wpp—2w,p, etc. We shall refer to Eq. (7) as the
conformal solution approximation or simply ap-
proximation (a).

The effects of differences in sizes between A, B,
and A, B, are more difficult to take into account.
A simple approximate expression for G’, in simi-
lar vein to Eq. (7), is that due to Flory, %'’ well
known in polymer physics, namely,

G'=RTY n;Ing;+3. 3 nidb; X}y, (8)
i<f

where ¢, is the concentration by volume of the ith
species in the mixture and x {; (=0 if {=j) are in-
teraction energies [similar to w;, in Eq. (7)] be-

tween the different species, and are RT times the
Xy, defined in Ref. 7. The first term in (8) is the
expression, in Flory’s approximation7 (see also
Refs. 8 and 9), for ( - T) times the entropy of mix-
ing three species whose molecules differ apprecia-
bly in volume from one another; if these volumes
are all equal, then ¢,;=n,/n and (8) becomes iden-
tical with Eq. (7). We make here a further sim-
plication of Eq. (8) by assuming that the volume
per atom of A and B atoms is nearly the same, say
v, and the volume of A, B, is (i +v)v. (This as-
sumption is essentially similar to that often made
in quasilattice models of monomer-polymer solu-
tions and is of course only approximately true*:®;
see below.) Then

¢1=m/N, ¢2=na/N, ¢s=(p+ving/N.  (9)
With Eq. (9), expression (8) becomes

e ) i)
+ZE n—}%" Vg s (10)
14

where we have set vy, =x{, vi3={(u +v)xis,
ves= (1 +v)xss. We shall refer to Eq. (10), for
brevity, as Flory’s approximation or approximation
(b). We note, as is well known, that the combina-
tional term (the term proportional to RT) in Eq.
(10) follows also from the quasilattice models of
monomer-polymer solutions if the coordination
number z is taken to be infinite.®

In the following we shall use the approximations
(a) and (b) above, in conjunction with Eq. (2), to
calculate the thermodynamic properties of some
compound forming systems. Each of these approx-
imations contains four parameters, g and w;; (or
v,,). There exist, of course, higher approxima-
tions to G’ than Eqgs. (7), (8), or (10) in the litera-
ture, **® but these are involved and contain, in gen-
eral, additional parameters [coordination number,
surface to volume ratio for polymer molecules
(chemical complexes), etc.] and will not be pursued

here.

It may at first sight seem surprising that we
should consider the approximation (a) at all, since
even if the sizes of A and B atoms are equal, the
size of A,B, will not be that of A or B. However,
we should recall firstly, that the conformal (or
regular) solution theories are generally considered
to be reasonable!® for volumes of the different
species differing by up to 100%. Secondly, the bond
length between A and A, B and B, or A and B may
be different (less!) when both atoms of the pair are
in the chemical complex than when one or both of
the atoms do not belong to the chemical complex.
Hence, since approximation (b) is also only an ap-
proximation to a truly complex situation, and p and
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v are small integers in our problem, it was thought
desirable to make calculations on both the approxi-
mations (a) and (b) above. We comment later on
the extent to which the two approximations agree
with experiment.

III. EXPRESSIONS FOR VARIOUS THERMODYNAMIC
QUANTITIES

A. Approximation (a)

Combining Eq. (7) with (2), the free energy of
mixing G, for the compound forming binary alloy is

3
Gy=-nsg+RTY, n,ln&‘)
i=1
+Z§;(ﬁ;ﬂ)w“ . (11)

i<J

The equilibrium number of chemical complexes is

given by the condition (5). This gives, on using (1)
and after some rearrangement of terms, the equa-
tion

ninh=(nsn* ¥ ') Ke? , (12)
where
K= ¢/RT (13)

and

Y=l‘;—¥T1[(u +v - 1)%?—‘ - u(%)—veb]
gl -0 2 ) ()]
o3 Q) Q) - oo

On eliminating n;, 73, and » in Eqs. (12) and (14)
from (1), Eq. (12) is seen to be an equation in the
single unknown »n;. When the solution of (12) for
n3, and the corresponding values of n;,nz, and »
are substituted into Eq. (11) one obtains the equi-
librium free energy of mixing G, for comparison
with experiment.
some notation, we shall continue to denote the equi-
librium values of ng, n, np, etc., by the same
symbols. We note that the differentiation of G,
with respect to a variable say T, at equilibrium
can be written

aT)P,c,N (69”3)1' PN ( ) PN
€0,> (ac,‘\)
+ = (15)
8T P,c,n3,N T P,con3,N

by virtue of the equilibrium condition (5). Similar
results apply for differentiations with respect to
corP.

Using Egs. (11) and (15), the expression for the

In the following, to avoid cumber-
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heat of mixing H) is

Hy=Gy - T(‘;GT) (16a)
o1t
x[w,, - T(TT*L)] (16b)

and the entropy of mixing S, = (H, — Gy)/T.

Using the notation of Ref. 11, for the concentra-
tion fluctuations S¢c(0) at zero-wave-number (long-
wavelength) limit, one has

o

SCC(O)=NRT/ <—£})T'” . (17)

Differentiating Eq. (11) twice with respect to ¢ and
using Egs. (1) and (12), one may obtain after some
algebra

Sccl0)=—388— | (18)
Here

1+ Dsge
_ 3 1)2 -1
SCC—N Z ’ (19)
i=1

NLEZ on (5 (2 (20

n

where a prime denotes differentiation with respect
to ¢. The expression for »; is obtained by straight-
forward differentiation of Eq. (12) using (1) and
noting that »{ =N - unj, etc. In Eq. (20),
(ny/n)' = n —n'n,)/n2.
Experimentally S.c(0) is determined from the

measured activities.'? If q, denotes the activity of
the component A in the mixture

Scc0)=(1 -=cla,/dly - (21)

In terms of Gy, a, is given by

8 ot
RTlna, (9NA T.pNg N Gu+(1-c) 8¢ /r,pnd-

(22)
With G, given by Eq. (11), Eq. (22) gives, on using
Egs. (1) and (5),

Ina, = 1n< )+ RlT [(p'?‘) w12+(l’:) W13
2R .

i<

Using Eq. (23), the expressions (21) and (18) for
Scc(0) may be verified to be equivalent to one
another. The expression (18) has certain advan-
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tages in deducing the limiting behaviors of S¢c(0),
considered in Sec. 1V, from theory.

B. Approximation (b)
In this approximation G’ is given by Eq. (10).
Hence using Eq. (2), we obtain'®

n
Gy = —n3g+RT(n1 lnﬁk +nzln;—:%

ZE (V)

i<q

+ng ln v (g +v)ny ) (24)

Using Eq. (5) in (24), the equilibrium value of ng
is given by the equation

g =g N** ) K'e” (25)
where
K'=K(p+v)e "™, (26)
Z=(NRT) ™ [(ny — png)vis + (nz —vng)ves
—(pnz +vmvia] (27)

and K is given by Eq. (13). Next remembering that
the heat of mixing and activity are related to G, by
Egs. (16a) and (22), one obtains for this case

ool ()

R LA D
i<q P
Ina,= In;+1+ lnN N *NRT == (ngv13+n2v12)
(29)

1
_NZRT ZZ niNngVyij «
i<y

Finally, using Eq. (17) in (24), one finds that
Scc(0) may again be formally written in the form
(18), but with scc and D in it now given by

-1
§=1 i

D= TRTZ}? ninj vy -

(30)

IV. EXPRESSIONS FOR S¢¢(0) FOR TWO LIMITING CASES

Of the thermodynamic functions Gy, a,, and
Scc(0), the concentration dependence of Scc(0) ex-
hibits the most interesting and varied features (see
Figs. 1-3). To have a qualitative understanding of
these features it is instructive to consider two lim-
iting cases for which analytic expressions for Scc(0)
may be obtained.

The first limiting case refers to situations where
there is a very strong tendency to form chemical
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complexes, that is, g/RT>1 or K< 1. We there-
fore consider the limit K- 0. Considering first the
approximation (a), we see that in the equilibrium
equation (12), K- 0 implies also X ¢¥ -0, since
wy,/RT are by assumption small finite numbers.
Then, if n3#0, Eq. (11) implies that either 5, -0
or n;—0. One then has, using Eq. (1),

ns~ Ne/p for O<e=p/(p+v), (31)
ng—~N(1 —¢)/v for p/(p+v)=c<1. (32)

In the limit (31), »;~0, and one may show'* also
that n{ -0 and (#{)?/n; - 0. Using this result and
Eq. (31) and Eq. (1) in the expressions (19) and
(20) for sqc and D, one obtains straightforwardly
for 0<c=p/(u+v),

Sé“c) e/wp -clp+))[p - (p+v -1)c],

)= - 2(wae/ K2RT)(N/n),
n=N[1-clp+v - 1)/#] .

The index g signifies that these expressions are
for the conformal solution approximation. Scc(0)
then is of course

(a)(o) s(a)(l +D(a)séaé)-1 .

(33)

(34)

Similarly from Eq. (32), for the concentration
range pu/(u+v)=c<l1,

S&=v1-c)v - (1 =c)p+v)]
X[p -1 -e)p+v -1)],

D@ = - 2wV’ RT)N/n)’,

n=N[1-(1 -c)p+v-1)/v].

The solutions (31) and (32) and hence the corre-
sponding expressions for s¢c and D are not valid in
the limits ¢ -0 and ¢ - 1, respectively. For these
cases nj itself tends to zero and the equilibrium
equation (12) requires more careful analysis. By
following steps similar to those given in I for the
case w;,;=0, one may show that for ¢ «1, the equi-
librium equation (12) has the solution

(85)

n3= Nec a+ 0(c?) for p=1, (36a)

ny=Nc*/K,+0(c**') for p=2, (36b)
where

K,= Kexp[(wzs - pwiz)/RT], a=(1+ K)™*'. (37)

The exponent in (37) is just the value of Y [Eq. (14)]
at ¢c=0. The solution (36b) is valid only when both
(see 1),

c<1 and ¢<(K,/p)/ %V, (38)

As may be verified, the solutions (36) are sufficient
to determine S&2(0) to order ¢* and one obtains after
some algebra



3190 A. B. BHATIA AND

2
S&(0)=¢ —cz<1 +2 T
x [wz@(l — @) — w3 @ — wy,(1 - a)]) +0(c%

(39)
for p=1, and

S8(0)=c - c*(1 - 2/K, - 2wy5/RT) + 0(c®)
for =2, (40a)

T T T T T T T T 04
(o)
L {03
AB f’NA
- Ho2
- 4o
TI-Te
0 0
-0} :
Gpm i 1
NRT
.20 r— >
L _
-30} .
B
- A -
“o 1 1 il 1 A 1 1 1 1
02 04 06 08 10
Cyy
T T T T T T T T T
- (b) B Jo2
n
A 3
- 1w
- Jou
Mg-Bi
0 0
-0k 4
Su | ]
NRT
-20f 4
-0k 8 .
A
_40 1 1 1 1 1 1 1 1 1
02 04 06 08 10
CMg
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=¢ -c3(1 - 2wy/RT) + 0(c®)
for n=3. (40b)

The expansions (40) are valid when both the inequal-
ities in Eq. (38) are satisfied. To obtain similar
expansions near c=1, replace in Eqs. (36)-(40),
¢ by 1 —¢ and make the interchange p=v and w;;
2 wy3. Equations (39) and (40) demonstrate that for
sufficiently small ¢, Scc=c in all cases. The ex-
pansions are carried to order ¢? here, since as
discussed in Bhatia et aZ.'® and I, the value at ¢=0
of one of the partial structure factors commonly
used to describe scattering depends on [d%S¢c(0)/
dcz]c,o. Similar remarks with appropriate changes
apply to the region ¢ ~1.

We note that in the special case where all w;,=0,
so that G’ is given by Eq. (6), the various expres-

T T T T T T T T 0.2
(o) { N3
N
- A -
8 0.1
Ag-Al
0 0
04 |- E
Gm | _
NRT
-08 4
- A .
12 8 .
I S T S 1
0 02 04 0.6 08 10
Cag
T T T T T T T T T
(d) <010,
B n
I N | %
- 4005
B Cu-5n
0 0
-04} 4
Gm
NRT [
-08 | AB e
12k g
1 1 1 1 1 e A 1 1
0 02 04 0.6 0.8 1.0
CCv

FIG. 1. Gy/NRT and ng/N as functions of concentration: (a) TI1-Te, (b) Mg-Bi, (c) Ag-Al, (d) Cu-Sn. Curves A:

conformal solution approximation; curves B: Flory’s approximation (see text).

Solid circle, experimental

data for Gy (taken from Ref. 18 for T1-Te, Ref. 19 for Mg-Bi, Ref. 20 for Ag-Al, Ref. 21 for Cu-Sn).
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T T T T T T T T T

ot (c)

'"°Ag

Inac,

FIG. 2. Logarithm of the activity a vs concentration. (a) lnapy, (b) lnayg, (c) Inap,, (d) Inac,. Theoretical curves
and B as explained in Fig. 1. Solid circle, experimental data from references quoted in Fig. 1.

sions [(33)-(35), (39), (40)] for S&(0) reduce to those
given in I, as they should.

In Flory’s approximation [approximation (b)], for
K~0, ng are again given by Eqs. (31) and (32).
For sec, D, etc., one then obtains, using Eq. (30),

®) _ pelp - +v)e] o __2u+v)
T u+(prv)p+y ~1)’ uIRT Y2

41
for O<c=u/(n+v), and 41)

v(l =)y = (u+v)(1 -c)]
v+(p+v)p+v-1)1-¢)’

®)_
Scc =

2(§;+v)
() = -
L VIRT U1

(42)
for p/(p +v)=c<1. Finally, the low-c expansions
for this case are

5220)=c - (1 +v B + (2/RT)
X[ =032l = B)(1 +vB)+ (1 = B)Buys
- (1+vB)Bugsl}t+ 0(c®) for p=1 (43)

=c - c?*[1 - (3/K,) = 2v15/RT]+ O(c®) for p=2
(44)
=¢ = *(1 - 2012/RT) + O(c®) for p=3, (45)

where
Kb =K' exp[(vzg - }J-Ulz)/RT] N B= (1 + Kb)-1 . (46)

The expressions (44) and (45) are valid only when
both ¢ «< 1 and ¢ < (K,/p)“-". The expansions
near ¢ =1 are obtained from (43-46) by interchang-
ingca (1 -¢), p=v, and vyze vy3.

The second limiting case refers to situations
where there is only a very weak or no tendency to
form chemical complexes, that is, g/RT <0 or
K>1. As K- =, an inspection of the equilibrium
equation (12) or (25) shows that in both the approx-
imations (a) and (b), nzx K~'. Hence as K-, ng,
ny, and (n})?/n; all tend to zero. Then since n,
= Nc, ny- N(1 -¢), and n=- N, we have for approx-
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FIG. 3. Concentration fluctuations Scc(0) vs concentration. (a) T1-Te,.(b) Mg-Bi, (c) Ag-Al, (d) Cu-Sn.
Long-dashed curve, experimental using data from references quoted in Fig. 1.

curves A and B as explained in Fig. 1.
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Short-dashed curve, Scc(0) [=c(1=c)] for an ideal binary solution.

imation (a), from Eqs. (18)-(20),

c(l-¢)
1-2(w/RT)c( -¢)’

The approximation (b) gives the same result with
wy, replaced by v;;,. The expression (47) for Scc(0)
is the same!! as for a binary regular solution in the
zeroth approximation, as is to be expected.

From the various expressions given above we in-
fer the following regarding the concentration depen-
dence of S¢c(0): (i) In every case Sqc(0) starts
from zero at ¢ =0 with the slope unity and ends at
zero with the slope -1 at c=1. (ii) If K«<1, then
in the K- 0 limit S¢c(0) is again zero at the chemi-
cal composition c,=u(u +v)—see Eqs. (33)-(35),
(41), and (42). Thus, Scc(0) has two maxima, one
in the concentration range 0 <c <c, and the other in
the range c,<c <1. The height and position of these
maxima depend, apart from the values of K(<«<1),
u, and v, on the magnitudes and signs of w,s and
w5 (or w3 and vy3), respectively.!® (iii) In the op-
posite limit K- %, Scc(0) has just one maximum

Scc(o) = K-, (47)

which occurs at c=3, its height being determined
by the sign and magnitude of w;, (or v,,). We note
that an infinite S¢c(0), which can happen for positive
wy, (or v,;,) implies phase separation and the treat-
ment of this paper applies in such cases only at
temperatures above the critical temperature for
phase separation or far away from the critical com-
position.

The results of the detailed calculations show that
the K- 0 limit expressions for ng and Scc(0) form
a good first approximation if g2 3(u +v)RT. Re-
membering Egs. (31) and (32) this implies that,
with G, negative, | Gy(c.)/NI 23RT. Two of the
systems (Mg-Bi and T1-Te) examined below belong
to this class at the temperatures under consider-
ation. For the other two systems |Gy(c,)/NRT| is
not so large and the behavior of Scc(0) is interme-
diate between that expected from the K- 0 and
K- limits. As the temperature increases
K(=¢/?T) may be expected to increase, so that,
for a given system, with increasing temperatures,
Scc(0) will tend towards the behavior given by Eq.



priate to an ideal solution. !’
V. NUMERICAL RESULTS

In order to apply the various equations of Sec.

III to a specific system, we have to solve numeri-
cally the equilibrium equation (12) and at the same
time determine the parameters g (or K) and w,,
from the observed data on the free energy of mixing
Gy, using Eq. (11). [We explicitly confine our re-
marks to approximation (a)—the procedure followed
for approximation (b) was similar. ]

For two of the molten systems considered, name-
ly Mg-Bi and T1-Te which in the solid state form
highly stable compounds Mg;Bi, (1 =3, v=2) and
T1,Te (n=2, v=1),lGylc,)/NRT| >3 at the temper-
atures of observation. For these cases, therefore,
we took as a starting approximation that n; is given
by Egs. (31) and (32) which is appropriate for
K<« 1. Then at the chemical composition c,=p/

(L +v), Gy= -ngg, which gives a starting value

for g or K. With g, still given by Egs. (31) and
(32) and g as determined above, the expression for
Gy, for c<c,, contains the single unknown param-
eter w,; (since n; ~0). A value of w,; was thus
determined from the observed data on G, at an in-
termediate concentration between 0.1 and c,. Sim-
ilarly, w;3 was determined from the observed value
of Gy at a concentration intermediate between c,
and 0.9. It may be seen, using expressions (31),
(32), and (36) for ng, that for systems with K« 1,
wy, affects G, significantly only for p =2 and c <1
as determined by the second inequality in Eq. (38)
(and similarly for v =2 in the region 1 -¢c «1).
Since this implies ¢ to be less than 0.001 for
Mg-Bi and T1-Te systems, w;; could not be deter-
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TABLE I. Interaction parameters for the systems T1-Te, Mg-Bi, Ag-Al, and

Cu-Sn in the approximations (a) and (b).
Approximation (a)
Temp. K
System (°K) [Eq. (13)] g/RT wy/RT? wy3/RT wys/RT
T1-Te 873 2x10- 10. 82 0 1.95 -4.0
Mg-Bi 973 1.25x107 15.9 0 -4,8 ~3.0
Ag-Al 1173 0.04 3.2 -0.95 -0.3 -2.7
Cu~-Sn 1593 0.08 2.5 -0.9 0 -2.0
Approximation (b)
Temp. K’
System (°K) [Eq. (26)] g/RT vys/RT? v13/RT vo3/RT
T1-Te 873 8x10-% 10.84 0 3.6 -4.0
Mg-Bi 973 5x10"° 16.7 0 -1.0 0.8
Ag-Al 1173 0.004 3.9 -0.8 2.5 -1.5
Cu-Sn 1593 0.01 2.2 -0.8 2.0 -2.0
3See discussion in the text regarding the choice of w;, and vy, for T1-Te and Mg-
Bi.
(47) and eventually towards Scc(0)=c(1 —c¢) appro- mined from the experimental data on G,. Finding

that any reasonable choice of w;, (~ RT) affects the
values of other parameters only slightly we set in
our calculations w;3=0. With the above starting
choice of g, and w,,, the equilibrium equation (12)
was solved for ns and the parameters were adjusted
in the light of these values of n3; to obtain a good fit
for G,. The final choice of the parameters is given
in Table I (part a).

For the other two systems considered, namely,
Ag-Al and Cu-Sn, which were assumed to form
chemical complexes Ag;Al (=3, v=1) and Cu,Sn
(=4, v=1), respectively, |G,/NRT| ~1.2 and
0.9 at the respective chemical composition. This
implies smaller values of g/RT (larger K or weaker
tendency to form chemical complexes) than for
Mg-Bi and T1-Te. As a starting approximation we
took g to be (i +v)Gy(c,)/N. Unlike the case of
Mg-Bi and T1-Te, the calculations had to be made
for several different choices of parameters before
a good fit for Gy could be obtained. We did not at-
tempt any mean square deviation tests to decide
on the best fit so that the parameters given in Table
I are to be regarded as reasonable choices rather
than necessarily the best possible ones.

The parameters similarly found for approxima-
tion (b) for the four systems are given in Table 1
(part b).

The results of calculation of Gy together with the
experimental data for the four systems are plotted
in Fig. 1. The variation of n; with concentration
is also shown here for each case. Figure 2 com-
pares the activities and Fig. 3 the concentration
fluctuations Scc(0). For T1-Te the height of the
second peak in the theoretical curves is very sen-
sitive to small increases (~1%) in w;3/RT (or v,3/
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FIG. 4. Heat and entropy of mixing versus concentra-
tion for T1-Te system. Theoretical curves A and B as
explained in Fig. 1. Solid circle, experimental data
from Ref. 18.

RT), beyond the values listed in the tables, in-
dicating the tendency for phase separation. For
the values of w,3 (and v»,3), given in the table, the
height of the second peak (not shown in the diagram)
is about unity.

It is well known in the theory of binary regular
solutions (in the zeroth approximation®) or of con-
formal solutions® that the concentration dependen-
ces of Gy, and of the heat (H,) and entropy (S,) of
mixing can in general be simultaneously fitted with
the experimental data only if the interaction param-
eter is assumed to be temperature dependent. In
the same spirit in our work we have to assume that
g and wy; (or vy,) are temperature dependent as we
have done in deriving expressions (16) and (28) for
Hy. If the temperature dependence of g and wy;
(or vy,) is ignored then Hy and Sy are readily cal-
culated using the values of n; [and consequently of
ny and n, from Eq. (1)] given in Fig. 1 and the
values of g, etc., from Table I. One finds that
for T1-Te, the values of H, so calculated agree
with experiment to within 5% over the whole con-
centration range, while the deviations for Sy are
considerably larger. In particular at the chemical
composition ¢ =%, the calculated S, ~0, while the
observed S, is negative. In contrast, for Cu-Sn
system both H, and Sy so calculated are consider-
ably in error with experiment. The relative im-
portance of the terms involving the temperature
derivatives of g and wy, (or v,,) in the expressions
for Hy and Sy would of course vary from system
to system, and the above comments are made here
only to illustrate that the parameters g, etc.,
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should be determined from the observed values of
Gy rather than of Hy.

As an illustration of the extent to which agree-
ment can be obtained for Hy and Sy, we give plots
of H, and Sy for T1-Te, in which theoretical curves
were calculated by taking dg/dT= -0.44R, and

d_.ﬁ_;’% =-1.2R for approximation (a)

and (48)

%%%3— =0.7R, %%3- =-R for approximation (b).
The temperature dependence of the parameters not
listed was taken to be zero. The fact that Hy, is
concave for ¢ <c, and convex for ¢ >c, is connected
with the fact that w,g (v53) and wy; (vy5) are of op-
posite signs for this system. Note also the signs
of their temperature derivatives given in Eq. (48).

VI. DISCUSSION AND CONCLUDING REMARKS

We observe from Fig. 1, that both the approx-
imations (a) and (b) reproduce the observed con-
centration dependence of the free energy of mixing
Gy remarkably well for the systems examined.
The activities and Sc¢(0) which depend respectively
on the first and second derivatives of G, with re-
spect to concentration provide more sensitive tests
for the model. As seen from Figs. 2 and 3, the
agreement with experiment for these quantities also
is not unsatisfactory. For the T1-Te and Mg-Bi
systems for which w;, and v;, were set equal to
zero, the theoretical values of the activities aq,
and ay, can be somewhat adjusted in the concen-
tration range 0 <c <c, by taking a nonzero w;, and
v12 [see Egs. (23) and (29)], but this does not seem
to improve the over-all fit with experiment.

As regards the values of the interaction param-
eters required to fit the experimental data it is
gratifying to see that for each of the systems ex-
amined, the two approximations yield for the (free)
energy g of formation of chemical complexes values
which are within 20% of each other. Also, in each
case wy, ~v;;,. However, the values of wy3 and wy,
differ in some cases substantially from the corre-
sponding v,3 and v,3. This is probably related to
the differences in the definitions of w,; and v,
which are likely to be significant when the chemical
complex is involved, i.e., for (ij)=2,3 and 1, 3.
The tracing of relations between w and v, however,
must await their interpretation in terms of the
basic interatomic interactions between the A and
B atoms. We should also recall that the use of the
expressions (7) and (10) for G’ entails the assump-
tion that the interactions w;; and v,;; are small
quantities —for binary regular solutions one usually
considers the expression corresponding to (7) to be
approximately valid for | w3l <2RT. In Table I,
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some of |wyl, etc., are as large as 4RT. It is
possible that these large values of wy; (or v;,)
needed to fit the data are partly reflecting the in-
adequacy of the approximations in which the com-
binatorial terms in (7) and (10) are treated.® In
this connection it is interesting to note that for the
Mg-Bi system v,3 and v,3 are considerably smaller
than w3 and w,3, so that for this system the ap-
proximation (b) is to be preferred over the approx-
imation (a). This is not surprising in view of the
discussion of the two approximations given in Secs.
II and IV—in Mg-Bi there is a strong tendency to
form chemical complexes and p +v (=5) is relative-
ly large.

In conclusion, it has been shown in this paper,
by four examples, that for some® compound forming
binary molten systems the concentration dependence
of the various thermodynamic quantities may be in-
terpreted by assuming the formation of appropriate
chemical complexes. The model then provides in-
formation on the free energy of formation of the
chemical complexes A, B, and on the interaction
energies between the three species A, B, and A,B,
in the solution. It will be realized that the model
is a phenomenological one in which the concentra-
tion »ng of the chemical complexes occurs as an
order parameter. It is not possible to explicitly
demonstrate the existence of these chemical com-
plexes from the thermodynamic data or from the
zero wave number (g - 0) limit of the structure fac-
tors S¢clg), etc. However, if the chemical com-
plexes are actually formed, then their equilibrium
number and the geometric arrangements of the
atoms in them should, in principle, be determinable
from the knowledge of the structure factors at
higher ¢ values, just as the S(g) at higher ¢ values
reflects the molecular nature of a polyatomic
fluid. %23

Finally it is worth noting that the assumption of
the formation of chemical complexes underlies,
also, some of the recent discussions®=28 of the
concentration dependence of the electron transport
properties of Mg-Bi and T1-Te systems. In such
discussions, of course, one has to make additional
assumptions regarding the behavior of the valence
electrons on formation of the chemical complexes.
In as much as the present work describes the con-
centration dependence of the thermodynamic prop-
erties quantitatively and, additionally, allows one
to infer the number of chemical complexes at any
given temperature and pressure from the thermo-
dynamic data, it may be helpful towards a more
quantitative interpretation of the transport prop-
erties of these systems.

APPENDIX

The formulation of Ref. 1 does not work with G’
but rather with the derived quantities y; which are
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related to G’ by

’
RT1n7i=(—g—nQ‘—)T . -R:rln(’—:li) .
1 o0

Iny; are zero if the ternary solution of A, B, and
A,B, is ideal. In Eq. (Al), the suffix »’ means
that in differentiating with respect to »n;, all other
n; are kept constant. Because of the extensive
property of G’, (8G’/#n,) and hence Iny, satisfy
Gibbs-Duhem type of relations

(A1)

¥ ni(”—“‘—ﬁ) =0. (A2)
; on; /1,
Since
3G
G'= n (—:>
Ei i LY ’

one has, from Eq. (2),

Gy= —n3g+RTZ niln(”—‘) +RTE n;lny, ,

i n i (A3)

and the equilibrium condition (5) gives

(nyy1/n)* (naya/n) = (ngys/n) e*'RT (A4)
(A3) and (A4) are the same as given in Ref. 1. The

advantage of using v, is that like (A4), some of the
formulas can be derived with a minimum of algebra
and expressed compactly.!® For example, the
activity a, is simply y,n,;/n. However, since in
theoretical work it is the G’ which is first calcu-
lated and y, are the derived quantities, we have not
used here the formulation of Ref. 1. The two
treatments are, of course, equivalent.

For the approximation (a) for G’, expression (7),
y,’s are given by'” (w,;,=0 for i=7)

3

RTln-y,=Z wi,( )w,, ZZ& w,,. (A5)

r=1
For approximation (b),

+
N (navxs nav 12)

'_EZZ ninVi5 »

i<j

Iny, = l+In—=-=}+
RTIny, = RT(+n N)

RTlny,= RT(]. + lnﬁ— —ﬁ)

——ZZZ RiNgVij 5

iy

— +
N (mvxz nsvas)

(A6)

nlp+v)  nlp +V)>
N

RTlnY3=RT(1+ 1n N

1 L+v
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iy
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