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The phase diagram of a two-dimensional electron liquid immersed in a uniform background of charge
is analyzed. We present a qualitative argument based on energy considerations alone which yields the
shape of the liquid-solid boundary. To determine absolute values of the density and temperature we
utilize a microscopic theory based on the self-consistent harmonic approximation to the phonon
spectrum of a solid. This theory is a one-phase instability theory of the long-wavelength transverse

mode in the solid phase alone. It yields values of r

classical case.

I. INTRODUCTION

Recent experimental work'*2 has focused atten-
tion on the two-dimensional electron liquid. Elec-
trons on the surface of liquid helium' are a par-
ticularly ideal system. A finite concentration of
them (10° <2 <10 cm™2) are held onto the free
surface by the combination of an external field
and an image potential which traps the electrons
in their lowest quantum state for motion perpen-
dicular to the surface. Motion parallel to the
surface is essentially unrestricted so that the
arrangement is very accurately characterized by
a two-dimensional electron gas immersed in a
uniform positive background of charge.?

At the interface of a metal-oxide-semiconductor
sandwich excess electrons accumulate in their
lowest quantum state and a similar situation
arises.? The model system, in this case, is some-
what more complicated in that the law of force
becomes dipolar at distances characteristic of the
oxide layer thickness, which is usually of the order
of tens of angstroms, and anisotropic band struc-
ture effects are not unimportant. However, it too,
for some rather limited region of parameter space,
may be thought of as a two-dimensional electron
liquid immersed in a uniform neutralizing back-
ground of charge.

From a theoretical point of view one of the fea-
tures of these experimentally accessible systems
which makes them intriguing is the wide range of
densities (~ six orders of magnitude) which can be
produced by essentially turning a knob. This large
variation in density (and temperature) leads to a
correspondingly large variation (=~ four orders of
magnitude) in the ratio of mean potential to mean
kinetic energy of the electrons. Such large varia-
tions would suggest that a possible crystallization,
into a two-dimensional Coulomb solid* (TDCS)
might occur. In three dimensions there has been
a great deal of work and discussion of the transi-
tion from a gas (liquid) to a so-called Wigner

10

~ 5 in the quantum regime and I’y = 3 in the

solid.5~7 In this paper we consider the phase
diagram of such a TDCS and conclude that the
liquid-solid transition is a definite experimental
possibility.

II. SIMPLEST ESTIMATE

Physically we expect any liquid to crystallize
when the potential energy dominates the kinetic
energy. We can get a qualitative picture of the
shape and nature of the phase diagram by calcu-
lating both these quantities (potential { V) and
kinetic energies (K)) in the gas phase and setting
their ratio equal to some constant I, (greater
than 1), i.e.,

(V)AK)=T, . (1)

For the case under consideration here, a two-
dimensional electron gas with a density per unit
area n=(mr2)~' in the presence of a uniform posi-
tive background, the mean potential energy is
approximated by

=e"’/ro=e21r‘/2n‘/2 . (2)

On the other hand, the mean kinetic energy per
particle (for fermions of mass m) is given by an
integral over the Fermi function, i.e.,

2 ,
(K)=3 f(ZTl’)z eBl&%p-m) 1 - @

In Eq. (3) u is the chemical potential, 8 the inverse
temperature (kT=$""), and €, =p2/2m the kinetic
energy. The number density = is defined in the
usual way in terms of the chemical potential,

1
n= 2./‘(21r)2 PLIC R 4)

In the high-temperature classical regime where
(K)=«T, the melting curve [ given by (1)] is simply

n=(kT T,/n'/%e?), (5)
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At zero temperature the (K)=nn/2m and the
melting density », at 7=0 is simply
joAmet 4 1
¢ aI? mal TZ°

(6)

where a,=(me?)"! is the three-dimensional Bohr
radius. If, as is the custom in three dimensions,
the mean interparticle spacing is measured in
units of a, and is called »,, then Eq. (6) tells us
that r,=(11/4)1/ 2I, at melting.®

At arbitrary temperatures and densities the
integrals in Eqs. (3) and (4) may be evaluated
analytically. Substituting the results of these
integrations into Eq. (1), one arrives at the para-
metric equations (parametric in the chemical
potential z =e~P*) for the phase boundary, i.e.,

n=F1i(z)/F¥z) (7
and
T=F%z2)/F3z) . (8)

We have picked units in Egs. (7) and (8) such that
the density # in Eq. (7) is measured in units of
n, [see Eq. (6)] while the temperature T is to be
measured in units of T,, where

kT,=2e*m/TZ . (9)
The functions F, and F, are given by
F(z)=31n(1+1/2)

Fa(z)=%{%[ln<1+ %yr +f<11z>}’ (10)

where f(x) is the so-called di-logarithm or Spence
function®:

== lrlL17'—”@. 1)

It has been tabulated in Ref. 9. Equations (7) and
(8) are plotted in Fig. 1. The curve is labeled at
each point by the value of z, i.e., the degree of de-
generacy. To get an idea of the real temperature
and densities involved we note that n,=1.2x 10
ecm™2, T.=10° °K for a I,=20.%

III. MEAN-FIELD THEORY

While Fig. 1 no doubt gives a good qualitative
picture of the shape of the phase diagram it suffers
from the fact that the absolute magnitudes of the
temperature and density scale depend quadratically
on the parameter I',.

In 1968 Kugler®:” suggested that the so-called
_self-consistent harmonic approximation (SCHA)!! to
the phonon spectrum of a solid might be applied
to the stability of a Wigner lattice in three dimen-
sionsat0 K. In Ref. 7 (hereafter tobe called I) these

concepts were developed. The idea as presented
there focuses on an instability of the transverse
sound mode in the solid. Such a theory has been
shown to be analogous to and in some cases
(three-dimensional simple phonon spectrum)
identical with Lindemans empirical melting law'?
without an empirical parameter.

For a set of particles with position vectors T;
which are the sum of an equilibrium position R,
and a deviation 6%;, Lindemans law states that
when the root-mean-square deviation reaches some
fraction 0 of the lattice spacing b[{073) /b*=6?],
the solid will melt. In two-dimensions, at any
finite temperature the mean square displacement
at a fixed site, averaged over the phonon spectrum,
diverges logarithmically. Thus we cannot use
Lindemans criterion to simply determine a melting
curve. In fact, the divergence of the fluctuations
has been used as an argument to conclude that true
long-range order never really exists in two di-
mensions except perhaps at zero temperature.’*~!5
Several workers, notably Mermin,'¢ have pointed
out that other correlation functions, for example
ones involving the angular correlation between
two parallel vectors, remain finite in two as well
as three dimensions, implying that some types
of long-range order may in fact exist in two di-
mensions.

In the theory, as presented in I, we will most
naturally be concerned with the correlation function

[+ (6F, - 6F,)]® =D, R,). (12)

This correlation function is finite for any finite Ry,
and only diverges (in two dimensions) logarithmi-
cally at finite temperature as R;;~«~. Such a
divergence is in fact equivalent to the logarithmic
divergence present in Lindemans law. Within
the framework of the SCHA, it is quite easy to
show that this divergence is sufficient to forge
the Debye-Waller factor, i.e., the intensity in the
Bragg peak, to be identically zero at any finite
temperature. In this restricted sense no long-
range order exists. However, within the frame-
work of this same theory, we also find that such
a weak logarithmic divergence of D does not nec-
essarily destroy the existence of an infinitely-
long-wavelength transverse mode at any finite
temperature. The physical reason for this is
simply related to the fact that the transverse
restoring force (even for infinitely long wave-
lengths) is strongly dependent on the relative dis-
placements of near neighbors; i.e., the important
i,j differences in Eq. (12) are not those which go
to infinity. Since solids have transverse modes
and liquids do not, it is the existence of a long-
wavelength transverse mode which we use to
define the existence of a solid.
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Since melting is a first-order transition between
liquid and solid phases a true theory of melting
should of necessity consider both phases. The
Lindeman approach to melting, like the current
approach, is a one-phase theory. It only treats the
solid and says nothing about the liquid. Such theo-
ries evolve from an intuitive sense of what must
be occurring. Physically we know that liquids do
not support transverse modes so that it is rea-
sonable to assume that an instability of the trans-
verse modes signals the onset of melting. The
transverse-model instability may be considered
a superheating transition.

In the SCHA! the normal-mode frequencies (wg,)
of a group of particles of mass m interacting via
a two-particle potential V(¥;,) are

w%)\ = ;1 Z etoBersR)(1 - et iu)

i<y
X (vl aviav(;u» . (13)

The position ¥; is the sum of the equilibrium posi-
tion ﬁ. and a displacement which is to be averaged
over the phonon distribution at temperature T.
This type of mean-field theory quite accurately
describes the low-temperature phonon spectra of
a variety of anharmonic solids.™

The average over the oscillators is easily carried
out and, in terms of the fourier coefficients v g of
the potential, Eq. (13) may be written as

b T (GEIG@- T

q,R =0

x (% R_1)pge-2@. D) (14)
q

The effects of self-consistency are contained in

.= 1 -

D@, R) = 55— ;Z (e} (K")-q)*(1 - cosk"R)wi},
1' A’

X coth(Bwtry/2) . (15)

In I it was shown for a variety of simple models
in three dimensions that, at a fixed density, a
maximum temperature T, exists above which no
self-consistent solution of Eq. (14) for the trans-
verse mode exists. The simple picture which
emerged was that as the temperature increases the
fluctuations increase and the shear restoring
forces decrease leading to a subsequent decrease
in the transverse sound velocity and a further
increase in the fluctuations. At some temperature
the potential runs away from the sound velocity
and a first-ovder transition occurs. In this sec-
tion we will attempt to apply this kind of reasoning
to the two-dimensional Coulomb solid.

In order to evaluate D({, R’) we must know some-

thing about the properties of the phonon spectrum
of the two-dimensional Coulomb solid. In the
Appendix we give the results of a simple harmonic
calculation (no fluctuation effects) for a triangular
Coulomb lattice (lattice constant b). (The tri-
angular lattice, owing to its close-packed nature,
is expected to be the configuration of lowest
potential energy. '®) Recent calculations!” of this
spectrum for a square lattice give a phonon spec-
trum with somewhat more structure but roughly
similar to the results shown in Figs. 5-7. The
essential features of the phonon spectrum are the
existence of a more or less isotropic linear trans-
verse mode (w =ck) and a longitudinal plasmon
mode.!®

In evaluating D(, R) we parametrize the spec-
trum by assuming a linear transverse mode having
a velocity ¢ which is to be determined self-con-
sistently and a longitudinal plasmon mode of the
form

w2 =(2mne?/m)k

independent of fluctuations and or self-consistency
requirements. This is an approximation which we
expect to be reasonably accurate. In I it was
shown that the longitudinal mode is less effected
by fluctuations than the transverse mode, and that
an instability of the type discussed here for the
transverse mode is not expected to be present for
the longitudinal mode. Physically we expect this
to be true since the longitudinal mode (plasmon)
exists in both the liquid and solid phases. In addi-
tion we will see that the presence of longitudinal
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FIG. 1. Parametrized phase diagram of the two-
dimensional Coulombic system. [(n, = (4/ma}) (1/T?),
T, = (2¢*‘m /).
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fluctuations only effects the transition by about 20% in its entirety.
Using the above assumed form for the phonon spectrum the angular integrals in Eq. (14) are readily done

and we are left with an expression of the form

2
=@y D kp
D(g,R) 8nmmc J,

' xdx{coth(ckpx/2kT)/x [1 - J,(kpRx) - cos(268") Iy (kpRX)] +(ckp/yx V2)coth(yx/2/2T)

X [1 =J(kpRx) +cos(20")J,(kpRx)] }, (16)

where J, is the Bessel function and the wave
vector |Kp|=(4mn)!/? sets the scale for the circular
Brillouin zone used in these calculations, i.e.,

d* _ By, - s
'/‘|k|<kb (2m? =Tﬁ)_—n—(1n‘g) =(zV3 ).

aan

The angle ¢’ is the angle between q and R; and the
quantity y = (27me >/mkp)"/? is the plasmon fre-
quency at the zone boundary. Equation (16) cannot
be integrated further without numerical work. In
order to make progress it is worth looking at some
of the properties of D and of the self-consistent
equations in two limiting cases.

A. Classical regime (kT>>7)

In this regime the occupation-number factors
coth(Zw/2kT) are replaced by 2«kT/hw. The be-
havior of the integrals at large and small 2,R can
be extracted. Our conclusions are that the angular-
dependent pieces are unimportant. The angular-
independent part, arising from the transverse
mode, goes like T In(k,R) at large R and like
T(kpR)? at small R. A reasonably good approxi-
mation for all R is given by

12T 4
jo EEE = —Jo(kDRx)]EZ:—D 1[1 + (kpR)*/4] .

(18)

The longitudinal-mode contribution to D in Eq. (16)
starts out like (k,R)? and rapidly approaches a
constant. It is well approximated by

E-Tykz‘ﬁ fo dx{1 - J(kpRx)]

where v =e?/mb.
The net effect of these approximations is that

D@, R)=q%* . (20)

In Eq. (20),

12=06%2 {ln[l +3(kpR)?]

() ) ]

(21)

and
6%2=xT/8mc? . (22)
Substituting (20) into (14) and integrating over §

we obtain, for the transverse mode,

ée? . R 1
kg L @ Dy
g

#0
o 2
x[ dx x2e~* 4*/R) [Jo(x) +cos(207)d,(x)],
0

(23)

where 12 is given by (21) and J, (x) is the Bessel
function. By use of the equation

f dxe'az"z (%) = vu e_(Baz)-11u< 1 ),
(3

2a 8a?

where I,(x) =e=™/2J, (ix) and a is a real positive
number, we can rewrite Eq. (23) as

Wit =5€:-;‘ 3 (@R 1)-1-;7 (®,(2) +cos(20)® ,(2)],

k=0
(24)
where z =R?/81% and
@, =4V2r 23/ 2e7*[(1 - 22)1, +221,] , (25)
&, =4V2r 2%/ 2¢~* 21y +(1 - 22)I, +21,] . (26)

The quantity 6 is the angle between k and R. (Note
that in the absence of fluctuations, i.e., [ =0,
z=o, & =-1 and &,=3.)

Equation (24) is valid for any k. We could in
principle use it to discuss the behavior of the
entire anistropic spectrum. However, we have
already assumed in calculating D that the phonon
spectrum even in the presence of fluctuations is
rougly isotropic. In order to be consistent we will
work with the average of both sides or Eq. (22),
over the direction of &, i.e.,
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2 _ 1 zm 2 —é° 1
(wFt>=m)—fo dewit‘zm FE

ﬁ# o
X {®,(2)[1 =J(kR)] +®,(2),(kR)}.  (27)

Expanding the Bessel Functions appearing in
Eq. (27) and setting { wZ,) = c®k? at long wavelengths
we arrive at the final self-consistent equation for

c?

c?=c2-Ac?. (28)

The velocity c2 is the average transverse velocity
in the absence of fluctuation effects. It has a
value (see Figs. 5-7) equal to 0.269v2=0.269(e?/
mb). The quantity

, V2 b
Ac =T§- —E[¢2+2¢,-—l] . (29)

To obtain the melting temperature in this classi-
cal regime, we have numerically solved Egs.

(28) and (29) by a simple iteration procedure.
Since Ac? is a function of both y and c¢? we fixed
¥, and performed the sum in Eq. (29) over a tri-
angular lattice for several values of ¢ until we
found (by trial and error) that value of ¢® which
satisfied Eq. (28) self-consistently. The results
obtained are shown in Fig. 2. The velocity ¢? is
plotted as a function of temperature.

The point labeled T,,/8muZ =0.085 is the highest
temperature for which a self-consistent solution
of the equations exist. At higher temperatures
the lack of a solution (in this picture) implies that
we are in the liquid regime. For varying densities
the equation of state is simply given by

T Tbh
W =87 =0.085 . (30)
Using the relation between » and I'; given in Eq.
(5) we find a T';=2.8.

In three dimensions this same (SCHA) instability
theory yields a I, of 20, almost an order of magni-
tude larger than the value found here and about an
order of magnitude smaller than the numerical
results in three dimensions.'> The smaller T,
in two dimensions implies a greater stability for
the solid. Without getting into a discussion of the
correctness of the absolute magnitude of I'y we
can safely conclude that this trend, from three
to two dimensions, is real and that the behavior
of the velocity (see Fig. 2) is indicative of this
effect. As the temperature increases in two
dimensions we see (Fig. 2) that the transverse
sound velocity increases for a while. This
increased rigidity due to fluctuations is at first
sight unusual and in fact is not characteristic of
three dimensions, where the velocity decreases
monotonically with temperature. An examination

of the effective potential v(¥) in the two cases is
consistent with this picture.
For three dimension,

2
41:;3 e_,z,z
q

1 -. -
s
2 ©
- 2e f dx
7 Jy

=%2 ert‘(—;l—)E % fslr/1),

sinx _,2;2/,2
exl/r

where erf(x) =2/V7 [*dte™**. For two dimen-
sions,

1 =+ 27e® 2.2
- - dz iq-r -q“1
D,(7) ——(2")2 f qe p e

et [~
= 7 f deo(x)e-lez/rz
[}

=< foy,

where
Fo(x) =271 VT xe==/°[ (x?/8) .

The quantities f,(z) and f,(z) are shown in Fig. 3.
Note that f,(z)<1 for all z, which implies that the
fluctuations reduce the mutual potential. On the
other hand, f,(z)>1 for z>1.42, and f,(z) has a
maximum f,(z)=1.18 at z=2.6. This means that
in two dimensions the fluctuations (if they are
small enough, i.e., b/l>1.42) actually strengthen
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FIG. 2. Transverse sound velocity as a function of
temperature. (vi=e?/mb).



the mutual interactions between every pair of
electrons. This increased potential in turn leads
to an increased restoring force (see Fig. 4). As
the fluctuations increase further the nearest-
neighbor forces finally do become weakened (see
Fig. 2), giving rise to a softening of the mode
frequency. Note that the velocity of the transverse
mode is larger at the melting than that of the
harmonic phonons, even though a rapid softening
is occurring in the vicinity of melting.

B. Quantum regime

At zero temperature it is possible to determine
the melting density », without any numerical work.
Since the occupation-number factors (cothZiw/
2kT) in Eq. (16) are equal to 1 we are not plagued

by the logarithmic divergences present at higher
temperatures. This implies that it is quite a good
approximation to neglect the R dependence of

D@, R), i.e.,

2
s = q°k 2 ck )
D, R) - gLEe <1+3—Ay . (31)

Since D(, R) is roughly independent of R the sum
over R [in Eq. (23)] yields

W= Y[R, & B (0rg,~T,),  (32)

v#Q

where
br= qu-o(a) E(Zﬂez/q)e‘p(‘) . (33)

Near melting (as we shall see) D is in fact larger
than 1 for ¢=|K,|=27/b (the smallest reciprocal-
lattice vector) so that the sum in Eq. (31) is very
accurately approximated by the sum over the six

fa (2)

f5(z)

0.5+

FIG. 3. Plot of the functions which describe the effect
of fluctuations on the effective potential.
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nearest-neighbor reciprocal-lattice vectors K,
=(n/b)[+xxV3 3], K,=+(21/b)x.

Expanding the difference in potentials appearing
in Eq. (32) about £ =0 and averaging over the direc-
tion of k as discussed in Eq. (27) we arrive at a
self-consistent equation for the sound velocity c,

c?=0.226(1/7,)e ®(-1-4R +4R?) , (34)
with
_ 2712 1.81
R_D(Kl)-__’)’sc +;?'§ . (35)

In Eq. (35) we have used atomic units (e*=x=m=1);
in these units r =7, b=1.97,, and k,=2/7,.

The maximum value of », for which there is a
self-consistent solution of Eq. (35) is easily found
to be ,=4.5.'° As in the classical case the number
found here for two dimensions implies a more
stable solid. What is more this number is roughly
consistent with the simple estimate (see Fig. 1):

(V) AK)=Ty=3.

1V. CONCLUSIONS

Estimating transition temperatures for real
many-body systems is often a difficult and tricky
task. However, it seems to be clear from this
work that the solidification line of the two-dimen-
sional Coulomb solid may be experimentally within

1/b =030

2,515
(e2/b) vgtn

2y
dr?

(e2/p3" 4

FIG. 4. Effective potential and restoring force in the
presence of fluctuations in two and three dimensions.
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reach. While peculiar behavior of the dc resis-
tivity? of the metal-oxide-semiconductor devices
has been observed in the neighborhood of »,=3,
the experimental situation is sufficiently cloudy
that we do not wish to claim this is evidence for
the existence of the transition and/or the theo-
retical predictions. For electrons on the surface
of He I')’s of 10 are easily within reach and a Iy’s
of a few hundred are not out of the question. Since
this system is so clean and so unambiguously a
real physical idealization of a two-dimensional
electron gas it offers exciting possibilities for
future experimental and theoretical investigations.
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APPENDIX: PHONON SPECTRUM OF A TRIANGULAR
LATTICE IN THE HARMONIC APPROXIMATION

We consider a triangular lattice with lattice
spacing b. The frequency w,, of a phonon with
wave vector k and polarization A is given by

w%)ﬁ% Z

T (B)E (01 - e'F Ry B2u(R,)

i=fi 0,8 RlcxaR(B
(A1)
1.4
12 6=0°
1.0
0.8t
i
~
§
O.Gr
04k kgs 1r/2b ,
wgq=8e/mb
0.2}
0 1 I 1 1 1
o 0.2 04 0.6 0.8 1.0 1.2

k/ko

FIG. 5. Phonon spectrum in the two-dimensional
Coulomb lattice where the momentum vector k makes an
angle 6=0° with respect to the Brillouin zone shown in
the inset.

Here m is the electron mass and v(R) =e%/R. « and
B refer to the components of vectors and €,(k) is
the polarization vector of the mode. By use of

22u(Ry) _ (3 Ri)aBids _Oap )
9 R;,OR;g R, R,

(A1) can be written as

wk)‘__ E ((R €>\(k))

= 3)(l—cosﬁ-f{’) .

(A2)

It is easy to perform the summations over lattice
sites [ﬁ (,V3 s)band R=(r+3,V3 s +3 V6 )b]
in (A2). The quantities » and s are integers and
X, ¥ in R= (x, y) are components of the vecotrs R
in a Cartesian coordinate system. The Brillouin
zone for such a triangular lattice is the hexagon
shown in the insert in Fig. 5. The lattice spacing
in the reciprocal lattice is K,=2n/b. The results
of numerical summations of Eq. (A2) for three
different directions of £ are shown in Figs. 5-7.
Both modes are roughly isotropic, particularly
at long wavelengths. The velocity ¢ =wp,/k of the
transverse mode is very nearly (=5%) constant
and equal to 0.5(e2/mb)/2.

Although (A2) is convenient for numerical cal-
culations it is not a convenient form for discussing
several interesting analytical properties of the
spectrum. To facilitate such a discussion we
rewrite the right-hand side of (A1) in terms of
the Fourier transform of v(R), v, =2ne?/k, i.e.,

8=10°

wy /W

04

0.2

0 1 1 1 1 L
0 0.2 0.4 0.6 0.8 1.0 1.2

k/ko

FIG. 6. Phonon spectrum in the two-dimensional
Coulomb lattice with 6 =10°.
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FIG. 7. Phonon spectrum in the two-dimensional
Coulomb lattice with 6 =20°.

-vg, K, -ex®)]?}, (A3)

where 7 and K, are the number of lattice sites in

a unit area and the reciprocal-lattice vector,
respectively. For long wavelengths, i.e., B/K,<<1,
the frequency of the longitudinal phonon is given

by the first term of (A3):

-0

ma?, "2 2mmek . (A4)

This result is independent of the lattice structure.
Unlike three dimensions this longitudinal mode
approaches zero as k- 0. This feature of the spec-
trum arises from the fact that the attractive force
between two parallel strips, which are oppositely

charged and have a fixed change density per unit
area, is proportional to the inverse of the distance
between the strips. This is in contrast to the
three-dimensional system, where two oppositely
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charged plates have a constant attractive force
independent of the distance between the plates. In
the latter case we have the familiar result:

mw?, 20 4mne? . (A5)

The frequency of the transverse phonon, on the
other hand, is linear in & in this region and depen-
dent weakly on the lattice structure. It is possible
to write an explicit formula for the transverse
anisotropic velocity, i.e.,

mwi =n Z [ﬁ,,-?,(ﬁ)]z(vbiu—vr( )

v #0

Re0 B .z 2 -
= ne? Z KUK€3 (%) [3(E.Ku)2 Klﬁ _kz}
vV =0

=mc?k? . (A6)

We would like to make one additional point re-
garding the validity of the well-known sum rule
for wyy:

Z w?y=4me*/m. (A7)
N

This relation holds only for three-dimensional
Coulombic systems. In the present case where a
two-dimensional array of electrons interacts via
three-dimensional Coulomb forces no such simple
sum rule exists. If on the other hand, we had a
group of electrons interacting via really two-
dimensional Coulomb forces such that Au(#) =0 or,
equivalently, v(k)=2ne®/r,k?, analogous sum rule,
ie.,

Z wzﬁ x=2mne? /mr, . (A8)
x

The apparent divergence of the sum over I-E,, in
(A6) comes from the fact that we have added and
subtracted the term with R,,=0 to the summation
in (A1) in order to obtain (A2). This is not really
legitimate if v(R) is rigorously taken as ¢?/R,
since its second derivative is highly singular at
R=0. To avoid this unphysical complexity we can
assume (k) =(27e?/k)e~ ™° everywhere in the
calculations and then let A =0 at the end. This type
of procedure leads to the correct physical results.
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