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Rate theory for solids. IV. Classical Brownian-motion model*
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In order to gain insight into classical and quantum-rate theories for solids, a model for interstitial

diffusion is presented in which the impurity atom is regarded as a Brownian particle constrained to
move in a single direction and subject to a periodic potential. The classical behavior of this model is

studied in this paper by the use of computer-simulation techniques; the study of the behavior of this

model in the quantum regime is deferred to the following paper. Particular emphasis is placed here on

the effect of the magnitude of the Brownian friction coefficient upon the persistence of motion of the

impurity atom and how this persistence, in turn, affects the diffusion coefficient.

I. INTRODUCTION

The previous papers in this series' ' have dealt
with the general problefn of rate theory in solids
from both the classical and quantum viewpoints.
In the last of these' a rate theory was presented
which may be regarded as a generalization to the
quantum regime of the classical Vineyard theory, 4

in the sense that the derivation is in the same gen-
eral spirit and in that the quantum-rate formula
reduces' to the Vineyard rate formula in the limit
of high temperature and large particle mass.
This quantum theory makes use of minimum-un-
certainty wave packets and incorporates both
quantum -statistical and quantum-dynamical (tun-
neling) effects. Another approach to the quantum
theory of diffusion, together with a survey of other
treatments of this problem, may be found in the
paper by Sussmann. ' For a comprehensive treat-
ment of point defects and diffusion in solids the
reader is referred to the recent book by Flynn. '

The classical Vineyard theory" and its quantum
generalization' both utilize phase spaces of huge
dimensionality. For example, if we consider the
case of impurity-atom diffusion in a crystal, then
the coordinates of the impurity atom and those of
the host atoms, both those near and far from the
impurity, are accorded equal status in the phase-
space description. This procedure leads to a
treatment which, from a formal viewpoint, appears
clearcut with a minimum of assumptions. How-

ever, there remains the possibility that effects
associated with the huge dimensionality of the
phase space are not clearly revealed by this for-
malism and that, in fact, it may not be advantage-
ous for maximum insight into the process to treat
the coordinates of atoms far from the impurity,
which physically act only as a heat bath, on the
same footing as those of the impurity atom itself.
Also, when the many-dimensional viewpoint is
employed, it is difficult to examine the system's

history after it has left a. given equilibrium con-
figuration and moved on to an adjacent one. This
aspect of the process plays a significant role even
in the classical regime' and may, as has been re-
cently emphasized by Sussmann and Weissman, '
play an even more important role in the quantum
regime.

In this paper, and the one immediately following
it, "we attempt to gain insight into these questions
by moving to the other extreme and considering
an idealized model for interstitial diffusion in a
crystal lattice in which only a single degree of
freedom of the impurity atom is considered expli-
citly and all other degrees of freedom of the sys-
tem are treated as an interacting heat bath. Speci-
fically, the model, which we study from both the
classical and quantum" viewpoints, may be de-
scribed as follows: Ne consider that the impurity
atom has been restricted to move in only a single
direction, denoted by x [Fig. 1(a)]. Assume next
that the impurity atom is moved quasistatically
along x from one equilibrium position S to an ad-
jacent equilibrium position S' with the host atoms
allowed to assume their equilibrium positions
appropriate to the instantaneous position of the
impurity atom. During such motion the host atoms
will exert a force on the impurity atom which may
be regarded as derived from a potential V(x).
This potential will be periodic with stable equili-
brium positions S and S' separated by a distance
equal to the lattice parameter b, Fig. 1(b). In

the case of the thermally activated motion of the
impurity, the host atoms will not be at the equili-
brium positions appropriate to the instantaneous
position of the impurity atom, but will be in ther-
mal motion in the vicinity of these positions.
Therefore, in addition to the forces derived from
the potential V(x) (called here the deterministic
force) the impurity atom is subject to an addition-
al force (called here the thermal force}. A basic
assumption of the model here employed is that
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FIG. 1. (a) Schematic of crystal lattice containing an
impurity atom, shown in two possible adjacent equili-
brium sites S and 8'. (b) Potential function V(x) whose
derivative yields deterministic force exerted by host
atoms on impurity atom as it moves in x direction.

the dynamic effect of the thermal force may be
represented, as in the theory of Brownian motion,
in terms of two separate components: (a) a sys-
tematic part proportional to the impurity atom's
velocity; and (b) a random fluctuating part which

must be described by classical or quantum statis-
tics. In brief, then, this diffusion model repre-
sents the impurity atom as a classical or quantum
Brownian particle subject to a periodic potential
v(x}.

The use of the one-dimensional Langevin equa-
tion in the study of rate processes appears to have
been initiated by Kramers. " In his classical work
(in both senses of the word) he employed a double-
well potential and studied the effect of the strength
of coupling to the heat bath in both the overdamped
and underdamped regimes. For our present study
of diffusion it appears that only the underdamped
regime is relevant and we concentrate on suffi-
ciently weak coupling so that it has negligible ef-
fect on the jump rate from a given well but does,
nevertheless, have a substantial effect on the sys-
tem's later behavior. Although our primary motiv-
ation in the classical study arises from its quan-
tum counterpart, it does have some direct interest
as well in connection with the effect of the persis-
tence of impurity atom motion on the diffusion
coefficient, an effect first noted in the computer
simulation studies of Bennet and Alder" on vacancy
diffusion in a hard-sphere crystal.

A great deal of effort has been expended in re-
cent years to derive conditions under which the
Langevin equation (or a generalization of it} may
be used rigorously to describe the behavior of an

impurity atom in a crystal lattice. " These are,
however, concerned with the localized motion of

the impurity atom in the vicinity of an equilibrium
site and not with the large intersite excursions
involved in diffusion. Our use of the one-dimen-
sional Langevin equation with a periodic potential
is intended only as a mathematical model for the
interstitial diffusion process, not as a formulation
which is rigorously equivalent to it.

The plan of this paper which presents a classical
discussion of this model is as follows: In Sec. II
we present a numerical procedure for the com-
puter simulation of the classical Langevin equa-
tion which describes the model in the classical
regime. The results of two check examples for
which the analytical solution is known are pre-
sented in Sec. III in order to demonstrate that the
computer-simulation procedure is capable of ac-
curate results. It is applied in Sec. IV to the com-
puter simulation of the model of impurity-atom
diffusion in order to investigate the effect of the
strength of coupling between the single degree of
freedom of the impurity atom and the remainder
of the lattice. Concluding remarks are presented
in Sec. V.

II. COMPUTER SIMULATION OF THE LANGEVIN
EQUATION

As noted in Sec. I, in this one-dimensional mod-
el for interstitial diffusion, the impurity atom is
treated as a Brownian particle subject to a period-
ic potential V(~) and therefore, in the classical
regime, is described by Langevin's equation in
the form

m —= ———I3v +F(t),dv dV
dt dx

where m is the mass of the impurity atom, v= dh j
dt is its velocity, P is the friction constant, and

F(t) is the random fluctuating force. As mentioned,
the thermal force on the impurity (i.e. , the effect
of its interaction with the remainder of the crystal
acting as a heat bath) is composed of the dynamical
friction -Pv and a random fluctuating part F(t).
These two terms thus represent a contracted
description of the random aspect of the interac-
tion between the impurity atom and the crystal in
the sense that they are specified by only two pa-
rameters, the friction constant and temperature T.
In addition, these two terms are not independent
of each other as is seen in the following descrip-
tion of the statistical characteristics of F(t). IAl-
though more sophisticated descriptions of Brown-
ian motion in the terminology of the mathematical
theory of stochastic processes may be given, we
follow here the mode of description of the statis-
tical characteristics of F(t) as given by Chandrase-
khar, '4 because it provides more physical insight
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and leads most naturally to the numerical proce-
dure employed. ]

Let bt be a time interval sufficiently short such
that during it the position and velocity change very
little but F(t) suffers many fluctuations. Let

B(b t) F(r) dr (2.2)

be the impulse (assumed independent of t) imparted
to the impurity atom during this time interval by
the fluctuating force. Then the probability of occur-
rence of different values of B(b, t) is governed by
the distribution function

pa(B(ht)} =( v, exp—
2pqDt) 2qb t

(2.3)

where

q =2PkT/m'

and k is Boltzman's constant. This choice of
pa(B(tI t)) ensures that the distribution of impurity-
atom position and ve1.ocity will, after a sufficiently
long period, assume the characteristics of thermal
equilibrium at temperature T.

For computational convenience, the potential
V(x) is taken as piece-wise quadratic as follows:

where 8 is an odd or even integer with equal
probability. Then it follows from the central-limit
theorem that the probability distribution function
for B(S.t) will approach the required Gaussian
form of Eq. (2.3) as 5t/ht-0.

Because of the procedure used to simulate the
statistical characteristics of F(t), the numerical
finite-difference time step 5t employed will be
small compared to the time interval ~t in which
the change in x and v is small. A consequence of
this small size of 5t is that a simple Euler scheme
may be used for the numerical integration aspect
of the computer simulation. " The finite-difference
equations used to determine x(n+1) and v(n+1),
the impurity position and velocity at time t(n+1)
= t(n) +6t, in terms of the values of x(n), x(n —1)
and v(n), are then simply

x(n+ 1) = x(n) + v(n)bt,

v(n+1) = v(n}+m '[-V'(n) —Pv(n}

(2 8)

in the computation, 6t, be taken as a small frac-
tion of ht; F(t) is taken as constant in each suc-
cessive time interval 5t with the value

(2.5)

V(x) = —,'»„x',
I
x

I
& —,'k

V(x) = ,', » b' —+—» (-,'& —x) —.&- IxI- 2&

(2.4)

and is defined for all other values of x by the
requirement that V(x) is periodic with period
equal to the lattice parameter b. The barrier
height Eb is then seen to be

1 2~b 16 ~so~

Since it is difficult to solvdthe Langevin equa-
tion analytically for this potential, a computer
formulation is developed. In devising a procedure
for computer simulation of the model described
by Eqs. (2.1)-(2.4), it is clear that we are not

seeking a numerical procedure for computing an

approximation to the solution x(t) of Eq. (2.1),
which will converge to the true solution as the
numerical time step 5t-0, since the velocity v(t)
has the property of being everywhere nondifferenti-
able. " Rather, the time interval b.t, described
prior to Eq. (2.2), is regarded as the smallest of

physical interest and the computer simulation cal-
culates only statistical information about the be-
havior of impurity atom position and velocity for
time periods long with respect to b, t.

In order to produce a random fluctuating force
with the characteristics given by Eqs. (2.2) and

(2.3), the following procedure has been found con-
venient. Let the finite-difference time step used

p,(x;; t(r)}ax = n, (x, r)/r;

p„(v„t(r))6 v =n, (v, r)/r,
and, when x and v are independent random varia-
bles,

p„„(x„v,. ; t(r)) = p, (x, ; t(r)) p„(v, ;t(r)). .(2.8)

The lattice parameter b was used to nondimen-
sionalize distance and the frequency ~ =(» /m}
was used to nondimensionalize time, i.e. , units of
length and time were chosen in which b = co =1.
Temperature levels are expressed in terms of the
ratio kT/E, and the friction constant in terms of

where V'(n) =d V/dx evaluated at x(n) a.nd R(n) is
the nth randomly generated even or odd number.

In addition, the computer program contains sort-
ing routines to determine the phase-space distribu-
tion of the particle. For this purpose, prescribed
large ranges of x and v are subdivided into n equal
intervals of width hx and ~v, respectively, with
the ith coordinate interval, whose central value is
x;, denoted by b;x. Similarly, the ith velocity
interval, with central value v;, is denoted by ~;U.
Associated with each interval b. ,x(or 6;v), the
program contains a counter n, (x, r) [or n, (v, r)]
which records the total number of times that the
position (or velocity) falls in the interval a,.x (or
h,. v) in the period of computation up to t(r) =r5t.
Then
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the dimensionless group P/m~. Most of the com-
putations reported on used a numerical time step
5t =0.1; check computations performed with 6t
=0.05 showed that the former value was sufficient.

0.3—
(

0.2

T HEORETICAL, EQ. (3.2)
T I ON

III. CHECK COMPUTATIONS

V(x) = —,'x.x' . (3.1)

The aim of this calculation is to verify that the
computed phase-space distribution at time
t(r), p, „(x„v„t(r)), as given by Eq. (2.8), ap-
proaches for sufficiently large t(r) the theoreti-
cal distribution for thermal equilibrium,

In order to check the computer-simulation pro-
cedure described in Sec. II, two computations
were performed for which analytical solutions
are available. These check computations were
performed by appropriate specialization of the
general computer program for the periodic poten-
tial described in Sec. II. Therefore, the same
dimensionless groups as listed at the end of that
section were employed as well to describe the
conditions of the check calculation, although some
of the parameters such as b and F., become irrele-
vant for the check computations. These irrelevant
parameters could, of course, be eliminated from
the presentation of the numerical results of the
check computations, but they have been retained
here to simplify comparison with the results for
the periodic-potential case.

The first case is the Brownian motion of a parti-
cle trapped in a harmonic potential well, that is,
one for which the potential V(x) is

O. I

0.05

X

0
x

0.0 I

0,005—

O OO2
0 0.2 0.4 0.6 0.8 I.O l.2 14 l.6 I.B

E/Eb

FIG. 2. Computer-simulation test of Brownian motion
trapped in a harmonic potential well. p „(x,v)~M is
fraction of computed values of x(r) and v(r) found in
intervals of width ~,Dv, respectively, with central
values x, v; the results are plotted as a function of
E(x, v) =2(mv +K~x2}. Va1ues of ~x=0.05, 4v =0.05,
in units in which b=~ =1, were employed. This calcu-
1ation, as mell as all others reported in these figures,
utilized a numerica1 time step 6t =0.1.

PPl (d plv + K~x
p, „(x,v)= „exp— (3.2)

ft(t) =mP'[2kT(2Pt —3+4e ' —e '8')] '. (3.4)
The harmonic-oscillator computation is performed
for the case P/m&u =0.1 and kT/E, =0.5. The re-
sults are shown in Fig. 2 and the agreement be-
tween theory and numerical results is seen to be
quite satisfactory.

The second case is the Brownian motion of a
free particle, that is, one for which the potential
V(x}=0. The procedure used to determine the dif-
fusion coefficient from the computer-simulation
results is based on the following theory":
Consider an ensemble of free Brownian particles
which at time t =0 all start from x =x, with the
same velocity vo. Then the probability distribu-
tion of the particle displacement u =x(t) —x, at
time t, p„(u, t; v, ), is given by Chandrasekhar" as

p„(u, t) p„(v,)p„(u, t; v, }dv,

where

(2v(u'))v' (3.5}

We next consider an ensemble of such ensembles
of particles in which the initial velocity vo distribu-
tion corresponds to thermal equilibrium at tem-
perature T, that is, for which

p„(vo) =(m/2vkT)~' e

Then the over-all ensemble distribution function
for the particle displacement at time t, p„(u, t), is
given by

p„(u, t; v, }=
(

„,exp R(t) u—- (u')(t) =(2kT/mP')(Pt —1+e-"). (3.6)

where P =P/m and

(3.3} The form assumed by p„(u, t) for t» 1/P =m/t} is

p (u, t) =(P/4vkrt)~' e-'~'"". (3.7)
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If the latter distribution is regarded as a solution
to the one-dimensional diffusion equation, then it
is seen that the diffusion coefficient D~ for the
free particle is given by

log of the distribution p„(u, I) The uncertainty of
the computed diffusion coefficient is seen to be
greater for larger N5t because of the smaller
number of values of u{N, r) for large ¹

D~ =kT/P. (3.8)
IV. BROWNIAN MOTION IN PERIODIC POTENTIAL

It is convenient to define a time-dependent diffu-
sion coefficient De(t) in an analogous fashion based
on the mean-square deviation of the Gaussian dis-
tribution of Eq. (3.5), namely,

D~(t) =(k1'/mP't}(Pt —1+e 8') . (3.9)

It should be noted, however, that Eq. (3.5) does
not represent a solution to the diffusion equation
with diffusion coefficient DF (t).

The distribution p„(u, t) provides the basis for
the determination of the function D~(t) by the com-
puter simulation of the Langevin equation for the
free Brownian particle. By the numerical proce-
dure described in Sec. II, we determine the parti-
cle position x(r) at time t =r5). Let

u(N, r) = x(r) —x(r —N) (3.10)

be the displa, cement the particle has undergone in
the N time steps previous to time t =r6t. After an
induction period t;„»m/P, the particle velocity
distribution corresponds to thermal equilibrium.
Therefore, if we discard the data for 0& t & t;„, we
may expect that the distribution of u(N, r) with N
fixed will correspond to that given by Eqs. (3.5}
and (3.6) with t =N5f The comp. uter-simulation
distribution of these displaeements is determined
by a sorting routine based on u(N, r) similar to
that described for x and v in Sec. II. For each
value of N, a Gaussian is fitted to the numerically
determined distribution by a least-square proce-
dure. An example of the numerically determined
distribution of p„(u, I) for the case P/m&u =0.5 is
shown in Fig. 3. The increased scatter of the data
for larger values of Mt is due to the fewer values
of u(N, r) [Eq. (3.10)] which are obtained for larger
N. As the next step in the calculation, DF(N, t) is
determined from the mean-square deviation of the
fitted Gaussian. " Each computer simulation for a
given set of parameters and a particular P, con-
currently determines five values of DF(N, t) cor-
responding to five different fixed time intervals
N5t. A comparison between the computed and
theoretical values of De(Nt) [Eq. (3.9}]for P/me&
=0.5 and kT/E, =0.5 is shown in Fig. 4. The agree-
ment is seen to be good. It is observed that as
NB increased, the computer results asymptotical-
ly approach the value predicted by Eq. (3.8) in
the manner described by Eq. (3.9). The error
bars in this figure represent the measure of the
uncertainty in the slope of the straight line which
is fitted by a least-square procedure to the natural

Having verified by t;he check computations of
Sec. III that the computer-simulation procedure
is capable of accurate results, we turn in this
section to its use in the computer simulation of
our one-dimensional model of impurity-atom dif-
fusion in a crysta1 lattice, As described in Sec. I,
this model corresponds to the Brownian motion of
a particle in a periodic potential, V(x).

A. Jump rate

We are confining attention here, as noted pre-
viously, to sufficiently weak coupling so that it
has negligible effect on the jump rate from a, given
well. This will be the ease, as derived by
Kramers, " if the friction constant P «47[urn,
where u is the circular frequency of oscillation
in the harmonic region. Under these conditions
the average rate f of passage over a single barrier
is given by the usual Arrhenius expression as

f = ((u/2v)e eb~'r. {4.1)

This theoretical jump-rate expression provides a
check of the computer-simulation procedure as
applied to the periodic potential in which the com-
puter program keeps track of the number J of bar-
riers jumped in the total time t of the computer
simulation and yields a computed jump rate fc = J/t.

A comparison of the time-averaged jump rate
from the computer-simulation with the theoretical
average jump rate, Eq. (4.1), for several values
of friction constant P and temperature T is shown
in Fig. 5. The agreement between computer sim-
ulation and theory is seen to be good and, as pre-
dicted by the Kramers analysis, shows little de-
pendence on the friction constant P.

B. Diffusion coefficient

If it is assumed that successive particle jumps
are completely uncorrelated, then the diffusion
coefficient for the periodic potential may be de-
termined directly from the jump rate f [Eq. (4.1)]
by the relation for a one-dimensional random walk
with step size 5, namely,

(4.2)

where the subscripts indicate that the diffusion
coefficient corresponds to a particle in a periodic
potential computed on the basis of an uncorrelated
random-walk assumption. %'e turn next to a direct
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FIG. 5. Jump frequency f for particle in periodic.
potential as determined by computer simulation. The
error bars denote the root-mean-square deviation of
the computed jump frequency.

FIG. 4. Diffusion coefficient Dz(t) for free particle
as determined by computer simulation. Units in which
cu =b =1 are employed. The error bars denote the root-
mean-square deviation of the computed Dz(t).

considered a subset A of the set of all of the
computed displacements for fixed N, fu(N, r)j,
where a displacement

determination of the diffusion coefficient for a
Brownian particle ip a periodic potential using
the same computer-simulation procedure based
on the distribution function p„(u, I ) followed for
the free Brownian particle in the check computa-
tion of Sec. III. That is, although this function is,
of course, no longer given by the analytical ex-
pression of Eq. (3.5), it is still possible to de-
termine its form by computer simulation, by
numerically determining a sample path x(r) and
using the computer sorting routine to determine
p„(u, t). It is found that this distribution function
is Gaussian, as for the free Brownian particle;
typical plots of the numerical results are shown
in Fig. 6. From the mean-square deviation at
time t of these Gaussian distributions", may be
calculated an effective diffusion constant DI (f),
analogous to the effective diffusion constant D&(t)
for the free particle discussed after Eq. (3.9).
The limiting value, at large time of Dp(t), denoted
by D&, with the limit determined simply by graph-
ical means (Fig. 7), then corresponds to the
macroscopic diffusion constant for the periodic
potential. It is interesting to note that whereas
in the free-particle case Dr(f ) approaches its
limiting value from below (Fig. 4), in the case of a
periodic potential (Fig. 7), the limiting value D~
is approached from above.

It may seem surprising that the distribution
p„(u, f) for the periodic potential is Gaussian
(Fig. 6) with no perturbations due to the potential
wells. This is a consequence of the definition of
u(N, r), Eq. (3.10), in which only information
regarding the relative particle displacement is
retained. In order to fix the particle displace-
ment relative to the potential, the program also

is assigned to the subset A if x(r-N)/5 differs
from an integer by a prescribed tolerance n, that
is, if the displacement u(N, r) is one starting from
the bottom of a well (to within a prescribed toler-
ance). The result of sorting the displacements u

in the subset for a tolerance n =0.025 is shown in

Fig. 8 for several values of N5t and shows clearly
the effects of the potential wells.

C. Dependence of diffusion coefficient
on friction constant

By use of the computer-simulation procedure
described above, the diffusion coefficient DI, of a
Brownian particle in a periodic potential has been
determined for three different values of the fric-
tion constant P. The results are shown in Fig. 9.
It is seen that only for sufficiently large P(P/mu
~ 0.5) is the diffusion constant D~ as determined
by computer simulation equal to the value D»
[Eq. (4.2)] based on uncorrelated jumps. Since
it has been previously verified for this range of
P that the computer-simulated jump rate agrees
with the theoretical value of Eq. (4.1), it appears
that the uncorrelated jump assumption is invalid
for p/ma&0. 5.

To examine this question further we have
employed a measure for persistence of jump di-
rection for the diffusion process used by Bennet
and Alder" in their computer study of diffusion
in a crystal of hard spheres. It is defined as the
average ( p) of the cosine of the angle between
successive impurity jumps and given by

(4.3)

where J is the number of jumps and p. , is the co-
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u; the results are plotted as a function of u~. The value
&u =0.25 in units in which b =1 was employed. (a) N6t
=40. {b) NBt =120. (c) N6t =240.
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sine of the angle between the (i-l)st and ith jump.
For the one-dimensional case, the form of p, , is
simply
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where a, (i= 1, . . . , 4) has a value of +1 or -1 if
the ith jump was in the positive or negative x
direction, respectively. The value of (p. ) ap-
proaches its limit of +1 when there is complete
persistence of jump direction.

The value of ( p, ) was computed as part of the
same program used to compute D~, and the re-
sulting values of (y. ) are shown in Fig. 10. It is
seen that the dependence of ( i4. ) upon P is similar
to the corresponding dependence of D&. We may
therefore conclude that the larger values of the
diffusion coefficient DI, which are observed at
smaller values of the friction constant P are due
to the greater persistence of motion which occurs
then, so that the average value of the particle
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FIG. 9. Diffusion coefficient Dp for particle in
periodic potential, determined by computer simulation,
for several values of P/m~ as compared with the value
of Dpg [Eq. (4.2)f which is based on the assumption of
uncorrelated jumps.
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FIG. 7. Diffusion coefficient Dp(t) for particle in
periodic potential as determined by computer simula-
tion. The error bars denote the root-mean-square
deviation of the computer Dp(t). Units in which ~ = b =1
are employed.

jump for small p is greater than b, the distance
between adjacent wells.

V. CONCLUDING REMARKS

We have presented a computer-simulation study
of the classical behavior of a model for interstitial
atom diffusion in which the impurity atom is re-
garded as a Brownian particle constrained to
move in a single direction and subject to a periodic
potential ~ As noted in Sec. I, this type of model
is at the other extreme from the approach of
Vineyard' in which the coordinates of all of the
atoms, impurity and distant as well as near host
atoms, are put on equal footing.

Perhaps the most valuable type of insight to be
gained from this type of model is into the behavior
of the system after it has surmounted a single
energy barrier. In particular, we have seen that
if the coupling between the interstitial impurity
atom and the rest of the lattice is sufficiently
weak, then enhanced values of the diffusion co-
efficient will arise due to the persistence of
motion after one energy barrier has been sur-
passed.

On the other hand clearly much is lost by fo-
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FIG. 8. Distribution function p„(u, N5t) of particle dis-
placements in periodic potential as determined by com-
puter simulation with sorting restricted to those dis-
placements u {N, r) [Eq. (3.10)] which begin from a
potential minimum with a tolerance of 0.025; Au =0.05.
Units in which ~ = b =1 are employed.
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FIG. 10. Persistence of jump direction, as measured
by (p, ) [Eq. {4.3)].
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cusing on only a single degree of freedom. For
example, correlation effects due to the inter-
action of the motion of host atoms and the im-
purity atom are included in a very natural way in

the many-body formulation of Vineyard but are
completely absent in the present model with only
a single degree of freedom. These correlation
effects will be important only for those host atoms
in the immediate vicinity of the impurity. This
suggests the utility of an intermediate type of
model in which the coordinates and momenta of a
small number of atoms are treated explicitly in
a phase space of low dimensionality, with all the

other atoms regarded as an interacting heat bath.
I andauer and Swanson" have extended the work
of Kramers" and treated the case of a system of
several degrees of freedom interacting with a
heat bath and their analysis is therefore relevant
in this connection. They address themselves,
among other questions, to that of the number of
degrees of freedom which it is appropriate to
treat explicitly, but like Kramers they are con-
cerned primarily with the double-well potential
and the possibility of system return, rather than

to the persistence of motion possibility which

exists in a periodi0 potential,
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