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We study the theory of x-ray Raman scattering involving the virtual excitation of a deep-core-state
hole in a metal. In the intermediate state the conduction electrons experience a transient potential due
to the temporary appearance of the core hole; the resulting "final state" interactions determine the
singular behavior of the scattering rate near threshold just as they do in x-ray absorption or emission.
This is described using a time representation of perturbation theory in the Kjeldysh formalism which

permits an exact determination of the power law of the threshold singularities. We discuss the role of
lifetime effects and the distinction between scattering and fluorescence. We discuss at length the role of
interference between different intermediate localized core hole sites. If we neglect interference effects we

can give an expression for the scattering rate which is suitable for computing. We are unable to solve

the coupled Dyson equations when interference is included; in that case we give only qualitative results

and discuss the interplay of interference and lifetime effects, especially in the fluorescence case where
the final-state interactions tend to destroy interference in the long-lifetime limit.

I. INTRODUCTION

A. Specification of the problem

%e consider a typical electronic Raman x-ray
scattering process in a metal, in which an incom-
ing x-ray of frequency and wave vector (+, q) is
scattered into the state (&o', q'). The extra energy
and momentum is transferred to some electronic
excitation of the conduction electrons. Let
W„(&u, &u') be the corresponding transition probabil-
ity. The coupling of the electrons to the photons
is described by the usual semiclassical Hamilto-
Dlan

the j ~ A term acting twice [Fig. 1(b)j. In the
former case, the matrix element is simply A,
= e A /2m c, while for the latter case it is

(c 3 A/c)a. (e j ~ &/c).k2=
(d —6&+ &,

Qualitatively, we may relate the matrix elements
of j to the oscillator strength f, between the core
state and the conduction band

ia.i.a =f.(~a —~.)/~ .
Then,

where X is the vector potential of the x-ray field,
and p and j are the number and current densities
of the conduction electrons.

The Raman-scattering matrix element arises
either from the A' term of Eq. (1) treated in ftrst
order or from the j ~ X term treated to second or-
der. For free electrons, the former process is
usually dominant and the linear term is ignored. '
If, however, v lies close to an absorption thresh-
old then the (I ~ X) process will display a reso-
nance and it may eventually dominate the usual pA~

matrix element.
To estimate the relative order of magnitude of

the two contributions, consider a nearly elastic
process in a free-electron gas in which an electron
in state k below the Fermi surface is scattered to
the state k' =k+ q —q' outside. This may occur
either directly through the pA term [Fig. I(a)] or
via a more or less localized deep-core state c with

If & is near the absorption threshold, then (d —z,
+ a, is small and A& is dominant-the usual reso-
nant Raman scattering. For free electrons, A&

dominates, since the level c would then be in the
conduction band, in which case u» c„-a, and A&

may be neglected.
In this paper we shaQ only be concerned with

~MPilii~~+

c}

FIG. 1. Haman-scattering processes in metals.

309S



PHILIPPE NOZIERES AND ELIHU ABRAHAMS

resonant scattering in which both & axtd &g' lie
close to an absorption threshoM. The core state
only enters as an intermediate step; the final state
involves excitation of conduction electrons only.
The transition probability is then controlled by the

l ~ A coupling [as in Fig. 1(b)]. These processes
should not be confused with Remen scattering of an
electron from a core state into the conduction band
[Fig. 1(c)]. Such processes, discussed by Doni-
ach, Platzman and Yue' arise mostly from the pA2

coupling in E(l. (1). They are of a completely dif-
ferent nature than the ones me are considering.

B. Scattering and fluorescence: Lifetime effects

We nom focus our attention on a metal at I,ero
temperature. To the extent that me may ignore
lifetime broadening, the absorption and emission
spectra possess sharp threshoMs

o=a~-~c y

where a~ is the Fermi energy. The threshoM may
be shifted by final-state interactions; we shall re-
turn to this point later. If u'&~&(do, the inter-
mediate state in Fig. 1(b) is necessarily virtual
(the first absorption process cannot conserve en-
ergy), the effective matrix element E(l. (2) is then
finite and there is no ambiguity in calculating the
transition probability W((d, id'). The same con-
clusion holds if (do«d' «d {the second emission
process cammt conserve energy). On the other
hand, if &'&~o&+, difficulties occur. It is then
possible to have two successive reuE transitions,
absorption followed by emission. If we do not in-
troduce a finite lifetime for the intermediate
state, we should find that W((d, (d') is infinite. As
usual, the difficulty can be cured by using a
%'eisskopf-Wigner version of perturbation theory
in which a finite lifetime r of the intermediate
state is explicitly taken into account. This life-
time may arise from the radiative emission pro-
cess itself but in our problem it will always be
controlled by nonradiative Auger decay of the deep
core state. In any case, the finite lifetime intro-
duces an imaginary part i/27' = il" into the energy
denominators, thus curing divergences. Another
consequence of the lifetime is to blure the transi-
tion probability over a range I'; the sharp thresh-
oMs at «are broadened. If we are far from
threshold, i.e. ,

o& coo

then me may argue that the intermediate state
builds up for a time r at a rate W„((d), the ab-
sorption transition probability. It then reradiates
at the emission rate Wx((d') and we find

W((d, (d') = r Wz((d) W|(((d') .

Rather than a genuine Raman scattering, we then
have a fluorescence process, with two real transi-
tions, the interplay of which is controlled by the
lifetime v.

The influence of the finite lifetime of the deep
core hole has been studied by several authors.
Yue and Doniach mere interested in x-ray produc-
tion by electron bombardment (as in usual anti-
cathodes). They showed that because the energy
need not be conserved exactly in the intermediate
state, the emission spectrum extends beyond the
threshold. They mere mostly concerned with the
transition region (d' —&o- I' and mith a discussion
of the spectrum shape. McMullen and Bergersen'
studied the influence of I' in detail by a method
similar to the one we use here; they too mere
mostly interested in the shape of the transition
region (they discuss for instance the validity of
the Weisskopf-%'igner procedure of convoluting the
imperturbed spectrum with a Lorentzian of width
I ).

C. Summary of the paper

In this paper, we shall not consider the blurring
effect of the core-hole lifetime. We stay out of the
transition region and always assume the conditions
E(ls. (5). We want to calculate the genuine Raman
scattering rate W((d, (d') when (d(d' )0. As a by-
product me shall check that in the case co' &(do & co

it takes the form in E(l. (6). We shall then dis-
cuss various features of the results both for Raman
scattering and fluorescence. We shall not attempt
to find the exact shape in the transition region.

Let so„be the matrix element for x-ray absorp-
tion with excitation of an electron from the core to
the conduction-band state k. If me entirely neglect
Coulomb interactions and lifetime effects, then the
transition probability is

W((d& (d ) = 211g 'syr (1 —tE~)

2+'aa' IX 5((d —(d —ey+ cgi) ~

(d -f&+6~

Note that if (d' & «&v the energy denominator pas-
ses through 0 and 8'becomes infinite. In this pa-
per me mish to study the effect of "final-state" in-
teractions between the conduction electrons and
the deep hole on W((d, (d'). Although these actually
occur in the iM'e~medkrte state in the presence of
the core hole, me shall use the nomenclature "fi-
nal-state" interactions. In the case of x-ray ab-
sorption or emission, it is known that such effects
give rise to the so-called "infrared singularities"
in the vicinity of threshold. ' Similar effects should
occur in the scattering: We shall see that when

I (d —(dpi and/or I (d' —(dol are small, W behaves
as
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/

%&&& )= nf
l (d —(dp l Go —(dp

where n is a "critical exponent" and f a universal
function that can be fuQy explicated in some cases.
This problem has already been studied by Ting,
airman, arjd Abrahams in the weak-coupling limit
using the machinery of perturbation theory and

parquet diagrams. Here we wish to use the more
powerful method of Nozibres and. deDomenicise
based on a time (rather than energy) representation
of perturbation theory. The exponent n can thus
be obtained exactly and the physical interpretation
is far more obvious.

The plan of the payer is as foQows: In this In-
troduction, we have defined the problem in a very
qualitative way and exposed the importance of Me-
time effects and the relationship between Raman
scattering and fluorescence. In Sec. II we intro-
duce the formalism we shall use and me develop it
to elucidate the role of interference effects involv-
ing core holes created at different sites.

In Sec. ID, an exact calculation of the transition
rate, valid near threshoM but outside the transi-
tion region, is carried out neglecting interference
effects. The problem is then much simplified
since the system retains fuQ rotational symmetry
around the core hole in the intermediate state; the
different angular-momentum channels may be de-
coupled. Infrared singularities are explicitly dis-
played, boih for Baman scattering and fluores-
cence. This section is a generalimation of the pre-
vious work of Ref. 5.

In Sec. IV, the interference effects are consid-
ered in detail. The coupled transient Dyson equa-
tions which describe the final-state interactions
are easily found but unexpectedly cannot be solved.
%e are restricted to a study of the contribution of
the simplest excitations; this aQows a qualitative
physical discussion of the nature of interference
effects in both Raman scattering and fluorescence.

%e emphasime that the theory of Raman scatter-
ing and fluorescence is mell established. One pur-
pose of this paper is to look at it in a rather unusu-
al way in order to display physical effects which
are often hidden in elementary formulations.

H. FORMALISM

A. Kjekdysh-Schwinger perturbation theory

'We now develop the machinery to carry out the
calculation of Raman scattering in metals using the

time representation of perturbation theory. The
effects of interference between intermediate states
having core holes at different sites wiQ then be
easily identified. The calculation is most easily
carried out using the Kjeldysh-Schwinger~ form of

perturbation theory; it is particularly convenient
for obtaining transition probabilities. Also, such

a nonequilibrium formulation is well suited for the
introduction of lifetime effects. A similar formal-
ism has been used in Refs. 2 and 3.

Vfe write the Hamilionian of the electron system
as'

H= fycycy+ Eg d+~ Vyy c& c&i ddt ~ g t
»' (8)

Here c~, d' are creation operators for a conduction
electron and a core electron, E, is the core state
energy. V». is the final state scattering potential,
present only when the core state is empty. We set
the origin of energy at the Fermi leve1. The ab-
sorption/emission threshold is then &o, = —&, in the
absence of the interaction V». . The coupling to
the x-ray field is described by4

Hg =~ (dye&&&d+ c ~ c,

At time f = —~ we start from the state &x~1 0),
where IO) is the electron ground state (core state
filled) and a, is the incoming photon creation oper-
ator. To second order in H„, the wave function at
time tp is

P,.' =(l.(4) I o, o, I 4,(4) ) . (10)

The transition probability is then simply dP« /dfo.

We calculate P«. (fo) in the Kjeldysh-Schwinger
formalism in which chronological products are
ordered from t=-~ to t=+~ and back. %e then
have a forward (upper) time branch on which all
the interactions in the ket I &I&,(to)) in Eq. (10) take
place. The interactions in the bra ($,(fo) I are on
the backward (lower) time branch. The diagram
for P„.(fo) as defined in Eqs. (9) and (10) is shown

in Fig. 2, where the wavy lines are photons, and

full and dotted lines are respectively conduction
and core electrons. The bubble contains vertices
on the upper and 1ower time branches all intercon-
nected by conduction electron lines. Each full line
that joins an upper vertex to a lower one corre-
sponds to a real excitation created in the Raman-
scattering process. The half of the the diagram
containing the upper vertices may be viewed as the

scattering amPlitude for a given final state de-
scribed by the lines joining the upper and lower
halves. (Upward lines represent excited conduc-

tion holes, downward lines represent excited elec-

x U(f„s) H, U(s, f) H„U(f, — ) o,' i 0),
(0)

where U(t, f') is the time evolution operator when
H„=O. The probability of finding a photon q' at
time tp for an arbitrary conduction electron state
ls
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FIG. 2. Structure of diagrams for the transition prob-
ability in the Kjeldysh formalism. %'avy Ones, photons;
fuji lines, conduction electrons; dotted lines depict the
deep hole.

trons). The whole diagram describes the transition
probebility with due account of interference effects.
A complete exposition of the formalism may be
found in K)eldysh's paper. ~

8. Tranetion probability

Let us first disregard the space variables; we
consider only the time variables in Egs. (9) and
(10). In the calculation of a, i g,(to) ) on the upper
branch of Fig. 2, the photons contribute a factor
e'" ~"' apart from a constant phase. Likewise,
the deep hole is a sharp state and has the propa-
gator e"~' "on the upper branch. Therefore, in
the calculation of i g, (fo) ) [Eg. (9)], we may re-
place Uby the evolution operator for the conduction
electrons only in the presence of the transient
scattering potential of the deep hole established be-
tween t and cc. Let us measure the photon frequen-
cies ay, v' from the threshoM &0 = —z, so that when
we combine the phase factors from photon and
deep-hole propagators for both time branches we
get, for the probability,

P„.= du dm' dt dt'

P) eIcu&t'&& eRar'(s' s&

where 8(f, I, u', f) is the contribution of all the con-
duction electron lines and electron-hole ver.ces
in Fig. 2.

The transition rate is ob&~awned by deriving P«.
with respect to t~. This is equivalent to fixing one
time, say s = 0 and integrating the others without
restriction. Thus

The calculation ctf W is thereby reduced to a purely
electronic problem.

sap (iP (k —IT', ) ~ (0, -1t,)) .

The transition rate is obtained by summing (i,j)
taking account of the phases of the photon lines:

W ~ ((g ~&} Q W (~~~) el'tlat') ~ (%$-%y)

fg
(14)

Equations (18) and (14) guarantee overall momen-
tum conservation —a conclusion which actually re-
lies on the interference process.

In order to ascertain the range of the interfer-
ence, we note that each line between the top and
bottom branches of Fig. 2 provides a factor of
order I R~& l

' (the electron propagator in configura-
tion space). Then two cases are possib&e. If in
the final state more than one electron and one hole
is excited (at least: two upward and two downward
lines in Fig. 2), the summation over %,z in Eg.
(14) converges naturally and has an atomic range.
The photon momenta if and g' are usually small
compared to the Fermi momentum and the photon
phase factor in Eq. (14}may be ignored. For this
case, the space coordinate representation is more
convenient than the momentum representation. In-
deed, the single term f =j (no interference) pro-
vides an estimate of 8'which is not ridiculous. On
the other hand, if only one electron (and one hole)
is excited, the situation is completely different.
W&& then varies as I Q& i and the range of inter-
ference is controlled by the photon momentum
tr~~sfer l g i/1 = dq; it-is of order I/hq, much

larger than atomic size. In this case, the inter-
ference is a dominant feature and the usual mo-
mentum representation is more convenient than
the use of site coordinates i,j.

The one-particle-one-hole excitation fin' state
is special in another way. Since the momentum
transfer is to a single electron, the maximum en-

C. Interference effects

%e return to the space variaMes previously
omitted. During the scattering process, the inter-
mediate core hole is created at some atomic site
i. In the sum over intermediate states interference
terms will occur between x-rays scattered from
N5'erent sites. This will be reflected in Fig. 2 by
the core holes Of the upper and lower time branches
being created, at different sites. Note that such an
interference stiQ exists even in the case of fluo-
rescence, a somewhat puzzling conclusion to which
we return Later. The electronic kernel $ of Eq.
(12) depends on two space variables (i, j) essential-
ly through the electron lines that cross from top
to bottom. (The upper vertices scatter at Q, the
lower at R,. ) Suppose downward lines have mo-
menta k and upward lines k'. Then Sq& contains
a factor
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ergy transfer b,~ =&o —&u' is v„dq (in the multiple
excitation case, neo is not limited). For soft x-
rays, hq is small and the single particle excitation
scattering will be lost in the transition region of
width I' near thxeshoM. Moreover, the corre-
sponding integrated intensity, which at first sight
might seem to be «mnced by «ac» 1/aq be-
cause of more ex!33sive interference, is actually
reduced because both the electron and the hole
must be close to the Fermi surface. For inter-
mediate couphng, the single excitation process is
actually Eess inhmse than the multiparticle excita-
tion terms by a factor of order nq. For all these
reasons, we believe that the single-particle exci-
tations cannot be resolved in the scattering spec-
trum of soft x rays, unless of course some other
agent relmms momentum conservation. In that
case, the range of interference in Eq. (14) would

again be of atomic size.

III. INF14N. ED SINGUI.ARITIES IN THE ABSENCE OF
INTERFERENCE

A. Analysis of kernel for transition rate

%e are interested in the same mechanism~~
that is responsible for the threshold singularities
in x-ray absorption or emission, namely the inter-
action between the conduction electrons with the
transient core hole. The conduction electron Ham-
iltonian is given by Eg. (8). We ignore the Cou-
lomb interaction between electrons. It is under-
stood that it has hyen included in a renorxaQiza-
tion of z~ and V~.. Typical diagrams contributing
to S, the kernel of Eg. (11)„aredepicted in Fig.
3. They involve two open lines beginning in t, u'

and ending in t', I—hence the two possibilities
shown in Figs. $(a) and 3(b}. A bubble on a full
electron line signifies any number of scatterings
of the electron on either of the dotted core hole
lines; the full lire goes back and forth between the

uyper and lower time branches. In addition, the
diagram may exhibit any number of closed loops
which may be either constrained to one branch as
in Fig. 3(a) or sitting across both branches as in
Fig. 3(b). We recall that each line between
branches corresponds to excitation of another par-
ticle (or hole) in the final state.

In this section we carry out the calculation of the
transition rate S' in the absence of interference,
i.e. , for i =j in for em~pie Eq. (14}. Then W is
given by Eq, (12) once we know the kernel S.

As for absorption, 'I the core hole has no inter-
nal structure and there is no memory between suc-
cessive collisions with conduction electrons: The
hole is either present or absent. Consequently,
the linked-cluster theorem remains valid even
though the scattering potential is transient and
shared between the two time branches. Let I. be

FIG. S„Typical graphs contributing to the function

Sf&, N, tc', t').

the contribution of an open line and C the sum of
aQ single closed loops. The kernel 8 may be writ-
ten as

S(t, u, I', t') = [L(t, t'}L(u', u) —L(t, u) L(u', t')] ec .
(15)

The calculation of S ultimately reduces to that of
the transient propagator P(v, v') for a single par-
ticle in the transient scattering potential. Note
that (t} has four components since each of its ex-
tremities v, v' may be on either of the two
branches.

B. Electron propagators, Dyson equations

For free electrons, the system has rotational
symmetry around the single deep-hole site i which
we choose as origin. %e can then perform a par-
tial wave expansion for all quantities, similar to
that done in the absorption case. s The details may
be found in Appendix A. In practice, that analysis
of rotational symmetry is rather academic, since
it brea' down in the spatial interference terms
when it j. For simplicity, then, we consider only
one angular-momentum channel, say /=0, and we
ignore complications arising from polarization and
coherent scattering. Thus we assign the same
matrix element so~ to the four electron-photon ver-
tices of Fig. 3. %e moreover assume that

~as = «a&a ~

where l~ is an isotropic cutoff factor equal to one
when z~ = z~ and zero when e = I c„-z~ l

~ D. This
assumption of separability simplifies the algebra
considerably, as it anows momentum sums to be
performed at the outset. Every conduction elec-
tron operator c~ or c, will have a u„associated
with it so that the electron propagator involves
only the operator g = Qu, c„.

In the Kjeldysh-Schwinger formalism the free-
electron propagator has four components, depend-
ing upon in which time branches the extremities
find themselves. These are defined in Fig. 4.
Analytically,
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v& E e d&,

v& 6 8 dc'
~g)

(16a)

(16b)

+ C'(r, r') e(7 —r') .

Here v(c) is the density of states of energy c mea-
sured from e~ and e is the usual step function.

Now let (t&(r, r'; i, u, i', i') be the full-electron
propagator in the presence -of the "intermediate
state" interaction with the transient core hole:
The electron xnay scatter any number of times with
the hole on the upper branch in the interval (i, u)
and/or on the lower branch in the interval (i', u').
The Dyson equations for the components of (t& are
easily written. For instance,

(18a)

(18b)

We have introduced functions 0(r) and ri'(r) equal
to one in the ranges (i, I) and (t', I'), respectively,
and zero elsewhere. Similar equations are obeyed

by P, and (t&'.

C. Asymptotic approximation, Calculation of transition rate

The Eqs. (18) are exact. We now make the cen-
tral approximation of our work: %e assume that
the times of interest I T —v'I are long compared to
the inverse bandwidth D" and we replace all the
C(r, r'} by their asymptotic form in the limit
Dl & —~'I » I. Any structure at short I v —v'I is
lumped into a 6 function. Such an approximation
is discussed in Ref. 6; it is only valid if both in-
cident and scattered x rays are near threshold,

(gp ((t) (4 g)

Our asymptotic calculation can only pretend to
determine the singe'i~a behavior net. threshold-
a quantitative estimate of the transition rate for
large & or &' is outside its realm. For simplicity
we assume particle-hole symmetry in the conduc-
tion band so that v and u are even functions of c
(this is in no way essential and may be relaxed at

I

the cost of extra algebra). We thus find, with
&=0',

C(& = C~ vo P(1/1 —r ) &

c = (c )*= vo/(r —r' —ic) .
When this result is used in Eqs. (18}, we find a
set of two coupled singular integral equations of
the Mushkhelishvili type. 8

Actually, the two coupled equations reduce to

one& as fQllows:
Use Eq. (19) in Eqs. (18) and subtract the two

equations. This leads to a relation between (t) and

[1+i&So'(r)] 4 (r, r') = [1+~g()(r)]&.(r r'}

+ &fv05(r —r ) &

(20)
where g= vo V is the dimensionless coupling con-
stant. In this way, we eliminate ft) and find that
(t&, obeys

A(r) (II&,(r, r') = -- dr"

&& fi(r ) 4.( rr')+f(r, r'), (21)

&(r) = [1+v'g'n(r) n'(r)l/[1+ S m'(r)1,

fi(r) = Arg[ri(r) —rf (r)]/[1+ ivgrt'(r)],
(22)

f(r, r') -v'g'q'(r) (,)
v 1+i'(r)

FIG. 4. The components of the free-particle propaga-
tor.

I I
r- r' 1+ivgq'(r) (28)
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Equation (21) is of the standard Mushkhelishvili
type. Its solution is given explicitly in section 108
of Ref. 8. We express the result in terms of the
phase shift 5 for electron-deep-hole scattering at
the Fermi surface. In our model, tan 5=kg. We
also define

&(r) = [(r —u)/(r —t)]' ',

&'(&) = [{~ ~')/(~ - f')]"' . (24)

The function P, is defined with a branch cut from t
to I, with arg g =+ c above the cut and arg $ = 0 on
the rest of the real axis. (' is defined similarly
on the range (i', u'). Then the complete solution
of Eqs. (18) and (19) may be written as follows:

—P,(&, &'}=P,Re)'(r')Re . . .', -v5(v -r')sin5cos59{r),
Vo 7'- V

1 {, 1 Re((r') Re)'(r)
vo

' 7 —7' —ic ${v ) f'(r,')

1, , 1—P'(r, r') =, . Re
( )

Re,(,)
g(&') ('(r.),1 1

—P,(r, 7') =P ~Re)'(r)Re, „,+v5(r —r') sin5cos5q'(r) .
vo

c ~ 7

We note that the various components of Q are all
singular when r or v' approach the edges of the
interaction range t, u, t', or u'. Such singularities
are due to the asymptotic approximation of Eq.
(19); they are healed by introducing a time cutoff
=D' as in Ref. 6.

From the full transient propagator Q, it is now
straightforward to obtain the open line and elosed-
loop contributions to S in Eq. {15)(our discussion
parallels that of Ref. 6): We derive C with respect
to the interaction strength V. This is equivalent
to picking out any one vertex on either the upper
or lower interaction ranges. Thus

R(7) 5$,(v, r) = van(7')

1 1
X

T» —t 7» g

+& — eos25 .
A similar correction occurs for q'Q, . We insert
these corrections into Eq. (26}and integrate to
the cutoff D . The resulting correction 5C is
given by

eC 25—= —cos Gin ~eg 7f D

u —t'+is t —u'+i& 1
i —i'+it u —u'+ ie (u —i) (u' —i') ' (29)

Clearly, the asymptotic result [Eq. (25}]cannot
be used here; in fact, it diverges for 7'=v. We
rather remark that when v'- ~, the product of
transient factors $ in Eq. (25) becomes a constant
independent of t, cc, t', u'. The reason is that on
a short time scale, the propagator Q is the same
as if the potential V were established Pernaanemtly

(a hardly surprising results }. In such a limit, C
is related to the energy shift 6 of the electron
ground state due to the static potential V; indeed,
one verifies that

Since icos~5=86/sg, we find, from Eq. (28),
sc (X/D2)d /ra

(SO)

We note that Eq. (M) has only logarithmic accur-
acy since the cutoff D is only known qualitatively.

Then open-line contribution [the bracket of Eq.
(15)] is even simpler: It is equal to

isvi [P,(u, t) $,(i', u') —Q (t', i) Q'(u, a')] . (3l)

Using Eq. (25), we find that

Co = —ib, (g —t —u'+ t') . (27) V2 D2 2d/I'

(s i)4 (i + )=( i)(gg )

When exponentiated, this zeroth-order contribution
gives a shift in the threshold frequency {do, a rath-
er obvious effect that we ignore by a redefinition
of +o. The interesting features come from the
transient factors $ in Eq. (25). If we expand t', $'

in powers of 7' —v' axjd let v'-7', we see that

gQ, (r, v) acquires a new contribution

&2 D2 2d/r
4 (i', i) P (s, u') =

(t' —f —ic) (a —u'+ ic) X

(32)

The net open-line contribution Eq. (SL) is then
equal to

—v
~ ~

X(D /X)~" .
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Inserting Eqs. (30) and (32) into Eq. (5), we obtain
our final result

S(t, u, u', t') = —
i vo u)

i

' X' D ", (33)

with )) =26/v —6 /v . Remember that while the ex-
ponent n is exact, the cutoff D is only qualitatively

I

defined.
With Eq. (33) the problem is solved; we need on-

ly Fourier transform S as in Eq. (19) to find the
scattering cross section. Unfortunately, this last
step is rather messy. Using Eq. (29), we have (up
to a constant factor)

«co O t' —ig t —u' 1 1m
W( ') = du' dt dt' e'""

u' —xt t - t'+ lc t(t' —u')

We can check that the analytic structure of S is correct by the change of variable t'- v+u'. Eq. (34) be-
comes

0 «oo

W( t) dtdv d t
&

au((v ))&-((e-v')((' (u + v ~~) (
(u —tc}(t —v —u + tc}tv

Since the singularities in the u' plane are all above the real axis, this form guarantees that V=O if w &(d',
a comforting conclusion. %e perform a different change of variable, better suited to the actual determina-
tion of W: t —t'=v', u' —(t+t') =2x. Then, from Eq. (34),

W((u, (u') = Jt du' dv' f(u', v') [(u' —ie) (v'+ ie)]" ' e """ '"" ', (35a)

f(u', v') = [[4x2 —(u' —v' —tz} ]/[4x~ —(u'+ v')z]])~ .
ft'«IP' l /3

(351)

D. Fluorescence and scattering

The integrand of Eq. (351) goes to 1 when x- ~,
so that there is a divergence in fwhich can only be
cured by introducing ex ab~Pto a damping factor
exp(- I'x) = exp[--,' I" (u —t+ u' —t')] into the inte-
grand. Vfe immediately see from this form that
this corresponds to introducing a finite lifetime
for Ne deep hole. This divergence, cured by life-
time effects, precisely corresponds to the fluo-
rescence singularity we are looking for. Indeed,
let us add and subtract 1 in the integrand of Eq.
(351) including the damping factor. We find

Wz(~ ~') = Wz(- ~', (d)

[1st u'- —v', v'- —u' in Eqs. (35a) and (36)], we
need only consider one case-say 0&(d' & ~. %e
evaluate Eq. (35a) using Eq. (36) and the variable
change a=-,' tu'+v'I, z=(u'- v'}/lu'+v'i. We find

Wz((L), (d') =4Re

4(z )z) e(a(~-~')(a~0) (36}[1-(z- tz)']'

where zo = ((d+ &u'}/((() —(d'}& 1. The a integral
yields (within constant factors)

f(u', v') =—+—
i
u'+ v'

i g, , + 0(I'),r 2 Iu'+e I

(36a)
where

)((z —iz}dz
W„(v, (()'}=4 Re

X=I(I-z')"'. (39),

(361)

When inserted into Eq. (35a), the first term of f,
1/I" gives the fluorescence contribution to the
scattering rate:

The last integral over z must be performed numer-
ically. In Appendix 8 we reduce it to a sea/ inte-
gral more suitable for computing. Here we only
comment on general features:

(i) The Raman scattering rate is a homogeneous
function of (d and &u' of degree -(1+2u}, i.e.

Wr((d, (d') = e((u)(o 8(- (d') u)' /I' . (37)
1 (dW(, ')=(„(~ .f —. (40)

%'e see that 8'~, as expected, is the product of the
absorption probability ~ (d (up&0), the emission
probability ((: &o' ((d' &0) and the lifetime I"

Genuine Baman scattering 8'~ occurs only when

(d, &o' have the same sign (the intermediate state
is then virtual). Mathematically it arises from
the second term of Eq. (36a). Since

This was expected from dimensional arguments. ~~

The infrared singularities are thus we11 marked.
(ii) If t((d =(d —~'«(d (energy transfer small

compared to the distance from threshold), zo is
» l. In Eq. (83))' we expand )((z) =A+ B/zz+ ~ ~ ~ .
Ultimately, we find
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&z(~, ~') n~/~"" . (41)

The transition rate is proportional to the energy
transfer Afg, a result that follows at once from the
exclusion principle: The number of excited states
having n electrons and n holes with net energy
smaller than E goes as E "—hence a density of
states 0- E~" '. For small h~, the scattering is
dominated by n =1. Then the density of final states
is ~ b(d, while the matrix element for scattering
is resonant, behaving as I/d~; hence the result
of Eq. (41).

(iii) If & «+, z, is close to 1, the integral in
Eq. (B3)'3 is dominated by the range z= 1, in which
X(z)= —,

' (z - 1)""'. We then find

&z(~, ~') = (I/~"~"") . (42)

The enhancement of 5'~ due to infrared singulari-
ties is evenly shared between the incident and
scattered frequencies.

(iv) Between the limits (ii), (iii), a numerical
solution of Eq. (B3) is required. A qualitative
interpolation'~ that fits both limits is

1 1
gz(~i& )= i ii in ~

(d(d (d
(43)

It seems that the noninteracting electron result
[first factor of Eq. (43)], is enhanced sejarately
by the absorption (second factor) and emission
(third factor) processes.

(v) We emphasize that these results are still
very far from experiment. %'e have neglected the
actual smearing due to finite lifetime and, more
essential, we have ignored the interference effects
[terms with i' in Eq. (14)]. In view of these

limitations, it is not worthwhile to carry the cal-
culations further.

IV. INTERFERENCE EFFECTS

A. Modification of propagators

We now turn to the interference terms which are
described by the same diagrams of Fig. 2 where
now the upper and lower core-hole lines corre-
spond to different atomic sites i,j. Rotational
symmetry is broken and we cannot decouple the
different angular-momentum chanxmls as in Appen-
dix A —this precludes any precise quantitative cal-
culation. We can nevertheless achieve some quali-
tative understanding by using the same separable
interaction as in Sec. III: Momentum sums are
performed at the outset; the channel separation is
not a problem. From Fig. 4, we can see that the
bare propagators G, and G, are unaffected by the
fact that iw j, since they propagate entirely on the
upper and lower branches, respectively, in the
presence of only one core hole: the one at i for
G„ the one at j for G,. On the other hand, as we

have discussed earlier in Sec. II [material follow-
ing Eq. (12)], G' propagates between the two sites.
We have

G- (i)
~ Q 2 e li-yt+IR

k&kp

(
(i)

~ Q az z-ia~f+l&R(g

k&kp

With this modification, the Dyson equations (18)
for the transient propagator P and the algebra
leading to the kernel 8 [Eq. (15)] remain valid.

When t is much larger than the inverse band-
width D ', G';& takes on its asymptotic form

eiky R e-fkpR
Gig(i) =

2 a, ii i- i/iv, ~ a i iii, + ~) ' (45)

where k„, v„are the Fermi momentum and veloc-
ity and R= I R;&I. The 1/t behavior which is re-
sponsible for the infrared singularities, appears
only when i» R/vz, in which case

D() sink~ g
t+ i& k~R

(46)

In this asymptotic limit, the nonlocal nature of the
interference terms shows up in two ways:

(i) a reduction factor n =sinkzR/kzR&1 for each
bare-electron line between the two branches of the
diag ra,m;

(ii) an increased cutoff R/v„ for those same
lines, below which the asymptotic form Eq. (46) is
invalid. If R is small (e.g. , i and j nearest neigh-
bors), then roughly R/v+=D ', and this second ef-
fect is negligible in view of our crude treatment of
the cutoff. On the other hand, the reduction 0. in
the amplitude of G' has a drastic effect on the scat-
tering rate and it deserves a more careful discus-
sion.

Within this asymptotic, one-cutoff approxima-
tion, the transient propagators (t}, and ft}&& obey the
same Eqs. (18) and (19), except that G' are every-
where multiplied by a. The Dyson equations are
still two coupled singular integral equations of the
Mushkhelishvili type, but unfortunately they no
longer reduce to a single equation as they did when
~ =1. As a result, we were unable to solve them,
despite the apparent simplicity of this 2x 2 matrix
problem. "

B. Limiting cases

Fa,iling an exact solution, we looked for ques-
tions that we could answer. One possibility is to
expand in powers of n, i.e. , according to the nurn-
bers of lines O'. Physically, this is an expansion
in powers of the number of electrons and holes
really excited in the scattering process. Final
states with n electrons and n holes contribute a
term ~ o. " to S~z. Such an expansion is meaningful
when I ~ —(d' I « I ~ I, since multiparticle excita-
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tions are then restricted by the exclusion princi-
ple'6: The scattering is dominated by n=1. The
corresponding contribution to the interference
term $&& is the same as that to S«except for an
extra factor n . Thus, for small energy transfer,
we may transpose the former result [Eq. (41)]
without further calculation. On the other hand,
such an expansion in powers of a is clearly very
bad when lv -&'l =&, as it ignores the excitation
of large numbers of electrons and holes (each with
very small energy), which is known to be the major
feature of infrared catastrophes. The first terms
of the a expansion can at best provide trends, not
quantitative approximations. %e nevertheless car-
ried out the calculation of 8 and 8'to order 0.~ in
Appendix C. We find the expected result [Eq. (41)]
if l m —v'

I &(d. In the opposite limit 0&~' «(d, the
scatterin]I rate W(&o, &o') is reduced by a factor
= (&u'/&u)' as compared to Eq. (42). While the
general trend (reduction of the singularity in the
interference terms at low a'} is probably correct,
the precise result is not reliable.

C. Interference and Auorescence

Since we are unable to find the line shape of the
scattered light [i.e. , the precise v, &o' dependence
of W(&o, v'}], we may restrict our ambitions and
ask only for the I" dependence of 8'in the fluores-
cence region v'&0&&. This is not a matter of
semantics only, as the very existence of the inter-
ference terms (ixj) in the case of fluorescence
raises questions of principle. If we really have
two real transitions in a row (separated roughly
by a lifetime I' ') between which a core hole exists
at some &veil defined l-affice site, how can there be
interference'P %hat is questioned here is the very
concept of a res/ intermediate state, as displayed
by the singularity of W(&u, ~') when I'-0. This
problem is of general interest, exceeding the
framework of Raman scattering itself; it warrants
a discussion in the present case where an explicit
answer may be found.

In the case of interest, I'«(d, —co' so that the
transition rate W(&o, &g'), which is the transform
of S(t, u, u', f'), is controlled by the behavior of S
for large values of x=-,'(u+u'-i-i'}. In fact, the
important range is x~ I'"~, which is much larger
than the other typical intervals f —f' &o 1; u —u'
= co '. The (d, (O', I" dependences of 8' are thus
decoupled since they depend on separate time vari-
ables —respectively t —t', u- u', x. If we look
at the I' dependence only, it is sufficient to know
the x dependence of 8 for arbitrary values of the
other variables. So we set t=t', I=I'. Such a
choice permits the solution of Eq. (18). The &o, &o'

dependences of 8' involve the same difficulties we
found for genuine Raman scattering.

The Dysoll 8q11a't1011s (18) can now be solv8d 81nce

we may set 1I'(1'}= 1l(1') .As compared to Eq. (19},
6' needs a factor u. If we define a boo dimension-
al vector P =(Q„P ), we may cast Eqs. (18) into a
single vector equation

(1 —ivgaa, ) g(1, v')

=&+g d1'" P „(n1—irma) p(1", 1'), (4V)
t

where the oq are the Pauli spin matrices and the
inhomogeneous term A has components

The solution of Eq. (4V) is straightforward and is
given in Appendix D. It yields explicit expressions
for P, and 4 . From these we may find the open-
line and closed-loop contributions to Eq. (15}.
Now it is clear that the open lines in Fig. 3(b) give
a factor that vanishes when x- ~, while those of
Fig. 3(a} remain finite. The former graphs are
therefore negligible and in the latter, the x depen-
dence arises entirely from the closed-loop factor
e . Using the results of Appendix D, we find that

S(O, x, x, o) =I/x'"'", (48}

in which y is an angle defined by

tan1y =vega(I —n )/(1+ v1g1n2) .
It follows from Eq. (48) that in the fluorescence
limit,

W((0& (d ) 1/I (5o)

We note that when n =1 (i =j, identical sites), y =0
in agreement with Sec. II [when f= t', u = u', Eq.
(25) displays no infrared singularity]; in the op-
posite limit n-0, y- 5 (the phase shift).

%'e can now decide whether interference effects
do or do not exist in the case of fluorescence. Ac-
cording to Eq. (50), the itj contributions to W are
certainly negligible in the long lifetime limit
(F- 0), since they involve a weaker power of 1/I'
than the term i=j [for which W~ 1/F of Eq. (3V)].
If I' increases, interference terms can in principle
become important; however it is very likely that
Eq. (50) is to be interpreted as a reduction of or-
der (I'/e) ~1, or (I'/&o') ~1, as compared to
the i =j term. In the framework of our calculation,
such corrections are negligible-they would only be
important in the transition region near threshold
(&o, &o' 5 I') in which the distinction between Raman
scattering and fluorescence becomes very vague.
From this point of view, interference terms are
no longer surprising in the fluorescence case;
they correspond to the tail of the transition region.
Because I' is finite, the energy is not strictly con-
served in the intermediate state and the latter is
always slightly virtual. Thus there is a component
of coherent Raman scattering for which interfer-
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ence effects are to be expected. %hether the large
number of interference terms iw j can make up for
the smallness of each is not clear. It seems likely
that their influence can extend well beyond the
transition region.

%e note that the lack of interference effects in
the limit I'-0 is a consequence of final-state in-
teractions: For free electrons, y [Eg. (49)] would

be zero and W wouM behave as 1/I' for both i =j
and i ej. Interference terms would then be of major
importance in the fluorescence process. This is not
so surprising, since the incoming absorbed photon
excites different atomic sites with a well-defined
phase coherence. If this coherence persists until
another photon is emitted, interference should take
place. The fact that the absorption process is real
is in a sense irrelevant. During the long lifetime
I' ', a resonance builds up between the incoming
photon and the core excitation which in itself does
not affect phase coherence; as long as it exists,
the deep hole retains perfect phase memory. The
latter can only be disrupted by inelastic processes
(the final state interactions} that change the fre-
quency of the wave function in a random way. If
inelastic processes do occur, the phase fluctuations
of different sites become uneorrelated after some
time, the emitted photons are no longer coherent
and interference disappears. The longer the Me-
time, the more the phases have time to decorre-
late themselves and therefore the more interfer-
ence terms will be suppressed. This is just what
we find; the inelastic processes arise from the
final-state interactions of the deep hole with con-
duction electrons, the energy of the intermediate
state is blurred, the frequency of the intermediate
state undergoing random fluctuations. The possi-
bility of interference is controlled by the correla-
tion of the corresponding phases on atomic sites
i and j. For i =j, the correlation is of course per-
fect and & = 0 [a = 1 in Eq. (49)]. When i and j are
separated, the correlation is less and less perfect
(y increases) and interference disappears. Still,
it takes a long lifetime to achieve this result as it
is the frequency which fluctuates, not the phase
itselt'.

The question posed at the beginning of this sub-
section is in fact answered by the observation that
the experiment being described here, even in the
case of fluorescence, does not measure the actual
site of the core hole in the intermediate state.
The excitations in the final state are not 1ocalized
and in the absence of random processes (such as
final state interactions) it would be an error not to
add, with well-defined phases, the amplitudes of
all processes (i.e. , all localized core hole sites)
which lead to the same final state.

In a sense, the above discussion is quite stan-
dard. However, it is not usual to view Raman

scattering and fluorescence in this way and this is
the main reason we went into it at some length.
%e are well aware that it does not provide concrete
results that can be tested against experiment.
For that, what we would need is an explicit calcu-
Iation of W~y(I'd (d ) for t4 j and for arbitrary (d/I
and &o'/I"; then we could discuss the influence of
interference on the line shape, which is certainly
essential. . The formalism we used is perfectly
suited for this problem. Unfortunately, we do not
know how to solve the resulting equations, except
by expansion methods which are clearly bad in the
presence of infrared catastrophes. Hence we have
only tried to provide partial answers that shed
some light on the physics of the problem.
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APPENDIX A

Here we discuss briefly the angular-momentum
decoupling for the no-interference of Sec. III. Let
(f„m,) and (I,', m,') be the rotational quantum num-
bers of the upper and lower core hole lines in Fig.
3. To take full advantage of the resonance we re-
quire l, =l,' (i.e. , a single-core energy level);
however, we may have m, 4 m,'. As a result, the
four independent electron-photon vertices in Fig.
3 depend on m„m,' and also the incoming and out-
going photon polarizations m» m~. Each matrix
element may be expanded in spherical harmonics:

~a(me~ mo) =Ewim(m„m~) y~(k) .

In this ease, E=E,+1, m=m, +m~. One shows
easily that E, m are good quantum numbers along
each conduction electron line in the diagram.
Therefore, the quantities I. and C break into sums
such as

c=gc, ,
(A 1)

Qt, t') =Q zo, (m, m~) w, (m,'m~) L,

(s is the spin degree of freedom). The different
spin and angular-momentum channels are decou-
pled, although dependent on m„m,', m» m&. In
this respect, the diagrams of Figs. 3(a) and 3(b)
behave rather differently. In Fig. 3(a), one neces-
sarily has m, = m,'; there is no interference in the
scattering through different components of the core
state. On the other hand, we may have m 4 m',
in which case the scattered light is partiaQy de-
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T2 T

FIG. 5. Cuts for the integration of Eq. (39) when t~

polarized. Indeed, it is totally depolarized if we
select I=0 from Eq. (Al). In Fig. 3(b), the situa-
tion is reversed. Here m=m'; there is no depo-
larization. However, it is possible that m, wm,'

(coherent scattering by various core states; hence
interference). We note that the latter processes
only contribute to inelastic scattering when final-
state interactions are included.

APPENDIX 8

In the integral of Eq. (39), the denominator has
a branch point at z = zo —tz/(&u —&o'), which lies
a,bove the real axis if ro' & v, below if ro & au'. In
contrast, the numerator y(z) has two branch cuts
extending from + 1+i& to +~, fully above the real
axis. If & & z' aQ singularities are above and by
closing the contour below, we find W(&o «u'} =0,
as expected. In the other case, (d & (d', the cuts
are depicted in Fig. 5. Before defox ming the con-
tour, we note that we may add a constant to
X(z —iz) without affecting the integral (the corre-
sponding integrand is analytic in the upper half
plane). Therefore we replace X(z) by y(z) - y(zo},
which heals the singularity near z= zo. We then
deform the contour to a hairpin around the lower
cut as shown by the dotted line in Fig. 5. The
phases of the denominator are shown on the figure.
Equation (39) becomes

-8
Wz(ur, v') =, „„z„Re dz

x X( —'
) —X( 0

—' ), g..sinS„„(BI)
I

For z~zo&1, we have

Ref(z —iz)
Re/(z —tz) e z lmjz -1I

Now, g(z) is given by Eq. (36b), the integrand of
which has branch cuts in the complex x plane as
shown in Fig. 6. To calculate Re/, we consider

FIG. 6. Cuts for the integration of Eq. (36b).

c)

FIG. 7. Structure of graphs when interference effects
are included.

the integral

"~ r«'-2 '
I=

i z —1 d«.
LI,

We may evaluate I either by splitting the integra-
tion range into (0, 1) and (I,~) or by closing the
contour around the lower cut. %e then find

&1 p «z lm

$(Z —tf) =
i z d«+ tslQTftl

"o 1 —x

d-.

Equation (Bl) for W takes the form (within constant
factors)

Wz(u&, u&') = Wz(- m', —&u)

1 x(z) —~(z,)„
)GD —(d I

t i l+Rtt
zol

I ML+Rff

so

('1 tP «8 1~
~(z)=(P I)x.,i l(I „z

zo=(~+ ~')/(~ —~') .
The integrals of Eq. (BS) must be found numerical-
ly. Equation (BS) is the most explicit form of our
result.

APPENMX C

We want to calculate that part of S(t, u, u', t')—
and of W(u&, &o')—that is of order a, i.e. , which
arises from diagrams containing only oee line
G (r,', ~&) and only one line G'(rz, rz). Such graphs
split into an upper and a lower part connected only

by the two cross lines O', G . Consider the upper
part, which contributes to S a factor F(t, u, 7'„rz)
The open bnes may be arranged in two ways,
shown in Figs. 7(a) and 7(b). In addition, some
of the external points t, L, 7.„7&may coalesce as
shown, for emmple, in Figs. V(c) and 7(d). Al-
together, F(t, u, r~, 7z) is given by
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E(ft St T(t 'rg) = 8 ((t)B(fd 8)

x[V5(v~ —ra)+ P' 4'B(r~t rz)]

—[6(f- r, )+ Vy, (f, ~,)]

&& [5(r, —u) + Vp, (r~, u)]], (Cl}

study of x-ray absorption. 6 They are

1— 1—(t', (~i, ra) = P Ret'(ra)
~o ~i 7'a

1
xRe —m5(v, —r, ) sin5 cos5 g(v, ) t

&(&i

(C2)
where Q, is the transient propagator in the pres-
ence of the upper branch core-hole potential only
[scattering within (i, u) and no excursions to the
lower branch] and C(u, f}denotes the closed-loop
contribution with the same restriction. The quan-
tities (t)„Vhave been obtained previously in the

where $(r) is defined in Eq. (24). Let P (f', u', v,',
rz} be the similar contribution from the lower part
of the full graph.

To order n, vie find that

I

B(t, u, ', P)= fudt, dt, dt,'dt, P(tu, t„'t,)P(t', ', ,', ,')B(,—,')B'(,' — t).
t t'

We Fourier expand G' according to Eqs. (16). F appears in the expression

(C3)

F(f g 7'~ Tp)c 1 1 2 8 dTgdTp-8 ~ ~ E(fgt f2) 1C- f)
t

We use Eq. (C3} in Eq. (12) and find

f0
tu(, u')=uuu f td, tJutdtt) )'Bll( —u ' —t, tt),

0 . D

(C4)

where

B=B(t,t, )=f u 'P(t, t, u)d* (C6)

in which

1 + $7fgQgg
&=(tys '«b) a a (: ~1+kg n

[we set u(e, ) =~(ea) =1]. In Eq. (C5), we recognize
the usual Golden Rule, where nB(&„ez, ~'} is an
effective matrix element for one particle-one hole
excitation, taking into account all many-body-ef-
fects in the scattering amplitude.

Combining Eqs. (Cl)-(C6), we see that the cal-
culation of W(&o, ur'} is reduced to a series of quad-
ratures (rather messy, actually}, the behavior of
which can be estimated in limiting cases. %'e do
not pursue this point further, the purpose of this
Appendix being to stress the idea of an effective
matrix element.

M'PENDIX 0

In Eq. (4V), let us set

(1 i&g«i) —4 =0' .
Then g' obeys the integral equation

d'(t)=d( )+PJ dt" P „) Bd ( "), (M)
1

The eigenvalues of 8 are easily found; they are

1+kg Q

Thus, there exists a constant matrix U such that

UI3U = Xcr3 . (D3)

If we set g" = U(J)', we find that Eq. (Dl) becomes

g"(~, ~') = aI, + 55(~ ~'), -1

in which a, the only coefficient of interest to us,
turns out to be

d-(.) «( ) f=)d' P.
1

(D4)
The matrix integral equation (47) is thereby di-
agonalized. The solution to Eq. (D4) is found ex-
plicitly in Ref. 6 and is given by

t(r')/t'(v) 0 1 v, siny cosy g(7')/g(v) 0 0
f(&)lf(r') 0 —t(~')/t'(v ) —iso(

(D5)

In Eq. (D5), the angle y is defined by tany=mXg and the quantity r(~) =[(u —7)/(t —i)]" ' differs from ( [Eq;
(24)] by the replacement 5- y. Equation (D5) is only valid if ))(v) ))(v') =1. From (J)" we go back to (J) and
find
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1 + tÃgc(ct

1+kg e
Combining Eqs. (D6) and (D6) and making use of Eq. (D3), we finally obtain

(. ..) y(. ..) ~o t(r), &(r') 1, t(r') |(7)
2(( ~ m'(('(:((r') ((r& a ((r} ((v'( - (wag&)I

' (DV)

in this way, we find g = ((f „(f( ) and by a similar
argument (P„Q').

The closed-loop contribution C is given by Eq.
(26); it involves P,(r, r). Were it not for the sin-
gular factors t in Eq. (DV), C would vanish. If
however we expand t'(r)/f(v') in powers of (7' —r'),
we find that (f(,(r, 7) and $,(r, 7) acquire a new
"transient" term

t

from which me obtain
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The result in Eq. (48) follows at once. We do

not give further details on this calcula, tion as it is
identical to that done for x-ray absorption.
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IIn calculating say P~Q, t), there is some ambiguity as to
whether v u, v' t from the inside or outside of the
interval (t, u). The former choice implies an extra fac-
tor cos26 as compared to the latter. Such an uncer-
tainty, involving only a real factor, is unimportant in
view of the qualitative nature of the cutoff. We make
a consistent choice everywhere: 7, v' are outside (t, u).
That the two terms /~fly~ and p™ft)'combine in. such a

way as to give the simple result o" Eq. (32) is a conse-
quence of our simple model involving a single angular-
momentum channel. In the general case, cross terms
with different Q, m) make the open-line contribution to
S definitely more complicated.

~~One may remark that in the diagrammatic representa-
tion, fluorescence arises from those graphs which

split in two disconnected parts, one located near (t, t'),
the other near (u, u').
Refer to Eq. {37): The net degree in powers of v, ~g',
I' or equivalently, of the inverse cutoff, is the same as
in Eq. (40).

~3See Appendix B.
4That Eq. (43) is not the exact result can be seen by con-
sidering the case n = $, in which the solutions (nay be
found explicitly in terms of elliptic functions.

'~As shown in Ref. 8, Chap. 18, these equations are
equivalent to a Hilbert problem for a two-dimensional
vector 4 (f.) which obeys the functional relation 4 (t+i&)
=G(t) f(t-i&)+A(t), G(t) is a 2x2 matrix which de-
pends only on g(y) and q'(7.}. If the matrix G could be
written in the form G(t) =Xi+i&)/X(t -ic), where XQ)
is analytic everywhere except the real axis, then the
solution of Eqs. (18) would be straightforward. Such
a decomposition of G, obvious in the one-component
case, cannot be found in closed form for a 2 &2 matrix.

~~See the discussion following Eq. (41).


