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The recently reported measurements of the ultrasonic attenuation of both longitude~! and transverse
waves in a pure niobium superomductor by Carsey and Levy are »&yxed on the basis of a two-band

description of the supercondueting state. It is seen that smne of the ambiguities resulting from a
single-band analysis are not present in the two-band analysis.

I. INTRODUCTION

In a recent paper, ' Carsey and Levy have re-
ported the measurements~ of the attenuation of 110-,
80-, 42. 5-, and 21-MHz longitudinal waves and 51-
and 16.6-MHz transverse waves in a very pure
niobium superconductor (a specimen with a residual
resistivity ratio of over 7000). Comparing their
longitudinal data with the model of ultrasonic at-
tenuation of Maki, ~ which takes into account the in-
creased absorption of phonons by electrons near the
edge of the gap; with that of Fate et al. and Trivi-
sonno et al. , which assumes a difference of the
electronic mean free paths in the normal and super-
conducting phases; and with that of Lacy and
Daniel, which assumes that the normalized longi-
tudinal attenuation coefficient for a superconductor
having a second energy gap7 is given by

=F&(t) ~&1&tr +[1 —E&(t)] tj, or

tion coefficients of longitudinal and transverse
waves in a two-band superconductor is obtained
from first principles in a manner similar to that
used by one of the present authors to obtain the
mixed-state attenuation coefficient in a two-band
superconductor. ' Thus this paper serves also as
continuation of that paper.

II. TYCHO-BAND ATTENUATION COEFFICIENTS

and

N, eE(r, t-) + f„;+ f„„

As was pointed out in Ref. 8, the electrons in the
two bands should be governed by separate equations
of motion since they are subjected to different con-
straints. The equations of motion are

where

t ,(t)
E&(t) =

(
)'

(
)+const

and

a, (t) =a, (0) 1 ~4'

Carsey and Levy concluded that while each of the
above models was successful in explaining part of
the data, none of them were complete in the sense
that they were not able to explain all of the features
seen in the attenuation data. The purpose of this
paper is to present a two-band analysis of their
data using expressions for the attenuation coeffi-
cients different from the phenomenological expres-
sion for the longitudinal expression proposed by
Lacy and Daniel. Our expressions for the attenua-

t

= —N~eE(r, t) + f«; + f« „, (lb)

where j, «&(r, t) and V, «&(r, t) are the current a.nd

stress-tensor operators for electrons in the s (d)
band, respectively, and whose forms are the same
as those defined for a one-band system. ' The f's
are the various forces acting on the electrons and
which are defined in Ref. 8 along with all the other
quantities. ( ~ ~ ) denotes an ensemble average over
the ground state. These equations, (la) and (lb),
along with the equation of motion of the ions

d
M „—,T(& (r, t) = ZeE (r, t) + f;, ,

where (tt(r, t) is the displacement of the ion in the
neighborhood of (r, t), can be combined into one
via Newton's second law:

I -v t (r t) =—,—j (r, t) +V ~ r (r, t) — m, —j (r t) ~ V r (rt)) . ,
d ~ Z Z d
t Ns+Na dt s N+Nq u dt

Equation (3) can be further simplified by assuming that g(r, t) varies as

4 (r, t) = (j (q, (d )e"' ' "' .

(3)

(4)
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This results in Eq. (3) becoming

—M(d (j)(r) t) = (im, (t) j,(r, t) —V ~ r,&+ (im~(t) ji(r, t) —V ~ v~& .

Transforming to a coordinate system moving with the ions, 'o the above equation becomes

p„, '(t),. (q, (d) - ', (g', -m, N, +(),' mN )(2q,. [q ~ (t)(q, (d)]+q'Q, (q, (d)}

+(([h„,h.;]),.+&[h„, h„]) )~'0 (q, a)) =0, (8)

where

-$([h,", hL]&,„+&[h,", h,"]&,„}, (8)

h', =q r, „(.r, t). ——n,.(r, t) .

The sound-wave dispersion relation is different for
transverse waves since in this case, the displace-
ment vector P)(q, z) is perpendicular to the wave
vector q. Taking q to be pointing in the z direction
and the displa. cement vector to be in the x direc-
tion, Eq. (6) becomes

2 j f' 2 2 1 2
pfon+ 5 $NgMg V

fthm
++st'P2sV 2qI q

where

-(&[h,', h,']),„+&[h,', h,']&,„}~', (10)

h,
' = q T, „,(r, t) —m,.j,. „(r, t) .

The attenuation coefficients can be obtained di-
rectly from the sound-wave dispersion relations

I

where the ith component of h, «) is

h, (,),(r, t.) = q, r, (,),(r, t)/~

m (u)J (s) '(r t) .
For longitudinal waves, where P,. is parallel to the
wave vector q, the sound-wave dispersion relation
becomes

2 3 f 2 2 1pq„(d —
5 yNsms V,~ +N„222~ V ~~g q

(8) or (10). For longitudinal waves, the two-band
expression for the attenuation coefficient is

o'„= —Re [&[h~, h~]&,„+&[hL, h ]),„}, (12)p„,V,

while for transverse waves it is

(rT = —Re (([h, , h, ]&,„+([h~, h~]),„}. (13)

It must now be remembered that awhile the effects
of the Coulomb interaction between electrons be-
longing to different bands were taken into account
in Eqs. (la) and (lb), the effects of the long-range
Coulomb interaction between electrons within the
same band have not been taken into account.
Therefore, the various correlation functions ap-
pearing in Eqs. (12) and (13) are averaged over a
system containing long-range Coulomb interac-
tions. While these interactions do not lead to large
effects in the normal phase, they do lea, d to mea-
sureable effects in the superconducting phase.

It is, therefore, nec es sary to take into ac count
these interactions when evaluating the correlation
functions appearing in the definition of the attenua-
tion coefficients. This is best done by going to the
random-phase approximation (RPA). )' The result
of this treatment of the long-range Coulomb inter-
actions is that the longitudinal attenuation coeffi-
cient becomes

2

y g «T(Ntt l r(NN]&tI(N t'( (14)

while the transverse attenuation coefficient becomes

q 1&[r („„j(„]&,'„I '
~&dpion t i=s, tf ~kx& ~fx qt(j

The primes denote the fact that the correlation functions are now being averaged over a fictitious system
which does not contain the long-range Coulomb interactions.

The evaluations of the correlation function in Eq. (14) is straightforward and gives for the attenuation co-
efficient of longitudinal waves in a. two-band superconductor

N, ,t', t (ttl, )'ttt 'ql, t+ )
N, , t, t (ql, )'ttt 'q(,

) t (
p P l 3 q$ —tan ql '

p) V lq 3 qlq -tan. ql„
(18)
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where f, «& is the mean free path for the s (d) electrons and where f(x) is the Fermi-Dirac function. By
setting h, and b~, the two energy gape, to zero in Eq. (16), we obtain the normal-state attenuation coeffi-
cient for longitudinal waves. Thus at T, where both energy gaps vanish, we get ~„'/~~ = 1 (~L being the
normal-state attenuation coefficient). The evaluation of the correlation functions in Eq. (15) gives the fol-
lowing two-band transverse attenuation coefficient:

Pr, m, V [1 -g(qf, )]/f,]f(~,)+(X.~.v [1- g(qf)]/ fjf(r,)

nr (&a~u~cE[1 -g(q4)]/4A4)]+(&. ~.n~[1 -g(qf. )]/fA4f. )) ' (17)

where g(z) is the Pippard function

g(x) =,[(x'+1)tan 'x —x] .2x'

Setting A, and d~ to zero in Eq. (17) does not give
unity since the presence of the Meissner effect in
the superconductor precludes the existence of one
of the normal-state damping mechanism. %hat is
obtained by setting the energy gaps to zero is the
initial drop of the attenuation just below the critical
temperature T,.

III. TWO-BAND ANALYSIS

The three features of the single-band analysis of
the ultrasonic-attenuation data of Carsey and Levy,
which are of particular interest to us, are the ap-
parently different temperature behaviors of the en-
ergy gaps determined from the different sets of
attenuation data, the different values of the energy

2 5

2.0—

gap at T = 0 'K obtained from the single-band analy-
sis of the different frequency-attenuation data, and
the modification required of the Pippard function
(18) so that the initial drop in the transverse at-
tenuation conforms to the relation

~r/~r = 2g(qf) (19)

(this being the drop predicted in the single-band
theory' ). The apparently different temperature
behaviors of the energy gap are clearly seen if we
look at Figs. 5 and 6 of Ref. 1 and which are plotted
together in Fig. 1 of this paper. The values of the
energy gap at 7= 0'K predicted from a fit of the at-
tenuation data to the single-band attenuation coeffi-
cients range from a value of (1.7 2+0. 02)k sT, to
the value (1.93+0.03)ksT, when only the low-
temperature data are considered, and from a value
of (3. 52 +0. 1) ks Tto a value of (5.20+0. 15)ks T,
when only the high-temperature data are con-
sidered. '~ The greatest variation in the values of
the energy gap comes from the transverse data:
The high-temperature data for the 51-MHz wave
indicates an energy gap b (0) = (3.79+ 0. 10)ks T, ,
while the high-temperature data for the 16.6-MHz
wave implies an energy gap h(0) = (5. 20+ 0. 15)ks T,.

The remaining feature is that the Pippard func-
tion g(q/) had to be modified to'

g (ql) =g(q/)+ [1 -g(q/)]/l. 6 (20)
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FIG. 1. Temperature behavior of the energy gap in

niobium superconductor as determined from a single-
band analysis of Carsey and Levy's attenuation data.

in order that the initial drop in the transverse at-
tenuation be given by (19). Even with this modifi-
cation, the fits of the transverse-attenuation data
could not be made perfect at both high and low tem-
peratures, simultaneously.

The two-band analysis of the data on the attenua-
tion of the 110-, 80-, 42. 5-, and 21-MHz longi-
tudinal waves and of the 51- and 16.6-MHz trans-
verse waves in the niobium superconductor began
by noting that the two two-band coefficients in Eq.
(16) when normalized and in Eq. (17) depend on the
ratio (N, m, n„r)/(N, m, v,r), the two mean free paths
l, and l„, and the two energy gaps 6, and b,~. By
varying all the parameters, we noted that the two
attenuation coefficients were most sensitive to
variations in the values of the energy gaps and
least sensitive to variations of the mean free paths.
Because of the relative insensitivity to variations
of the mean free paths, we did not take into ac-
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FIG. 2. Temperature behavior of the primary energy
gap in a niobium superconductor as determined from a
two-band analysis of attenuation data.

count any possible temperature dependences in the
mean free paths. Later, we found that the uncer-
tainities in the values of the other parameters lead
to errors greater than the possible errors result-
ing from our neglect of the possible temperature
dependences in the mean free paths.

The actual two-band analysis of the data was in
two steps. By attempting to account for the initial
drop in the attenuation of the 51- and 16.6-NHz
transverse waves with Eq. (17), we were able to
determine the values of the ratio (N~m, v,~)/
(N, m, v,r) and of the d-band mean free path (the
mean free path for the s electron was taken to be
40&&10 ' cm) since the initial drop is independent of
the energy gaps. We found that we were able to ac-
count for the drops in both the 51- and 16.6-MHz
transverse attenuation by letting (N, m, v,~)/
(N,m, v,~) equal 80 and f, be equal to 20&&10 4 cm.
The second phase of our analysis involved the fit of

either the two-band longitudinal-attenuation coeffi-
cient [Eq. (16)] or the two-band transverse-attenu-
ation coefficient [Eq. (17)] to Carsey and Levy's
data by varying the values of the two energy gaps.
We found that a nearly perfect fit of all the data
down to 0. 3T, could be achieved if we assumed the
ratio between the energy gape, 6,/h~ was equal to
10. The temperature behaviors of the primary en-
ergy gap, h~, obtained from the attenuation data
for the different freouencies are shown in Fig. 2.
As we see, most of the points lie on a single curve
implying that all the attenuation data predict a
similar temperature behavior of the energy gap.

All. the attenuation data on the single niobium
specimen of residual resistance ratio 7000 point to
a primary energy gap 6,(0) equal to (2. 0+0. 2)ksT, .
This value for the primary gap is in good agree-
ment with the value b~(0)=(1.95+0.02)k Ts, ob-
tained by MacVicar and Rose' from some tunneling
measurements done on niobium superconductors.
The ratio between the values of the two energy gaps
is the same as that obtained by other tunneling
measurements' on niobium superconductors and by
a two-band analysis of the specific-heat measure-
ments on niobium superconductors. "

It should be noted, however, that the temperature
behavior implied in Fig. 2 and the value of the pri-
mary energy gap do not agree with the BCS predic-
tion even though the two-band model7 predicts that
the d-band energy gap should be BCS-like. We be-
lieve that the non-BCS-like temperature behavior
is most likely due' to the anisotropy of the d-band
Fermi surface and that the discrepancy between
our value for the energy gap and the BCS value is
the result of the strong-coupling nature of the nio-
bium superconductor. However, we do not rule
out the possibility that our neglect of the tempera-
ture dependence s on. the electronic mean free paths
may be the cause of the observed deviation from the
BCS predictions. This possibility can only be
checked our when a theory for the temperature de-
pendences of the electronic mean free paths in a
two-band superconductor is formulated. (We ex-
pect that the temperature dependences will be more
complicated than the temperature dependence pro-
posed by Maki' for the mean free path in an one-
band superconductor. )
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