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The dielectric function of a uniform electron gas is studied on the basis of the dynamical equations
which govern the response of the system to a weak external field. The deviations from the
random-phase approximation caused by exchange and correlation effects are incorporated in a local-field
correction which is related to the response of a certain two-particle correlation function. Using the
equation of motion for the correlation function we extract the exact behavior of the local-field
correction for large wave vectors or high frequencies. The high-frequency result is identical to the one
obtained from the third frequency moment. For large wave vectors we find that the local-field
correction tends to 2[1—g(0)]/3, g(0) being the value of the pair distribution function at r = 0. %'e

also recover the result of Kimball, giving a relation between the pair distribution function and its radial
derivative at r = 0.

I. INTRODUCTION

The dielectric function of the uniform electron
gas plays a central role in many theories of metal-
lic properties, and much effort has gone into ob-
taining accurate numerical information about this
function. It is well known that the conventional
random-phase approximation is unsatisfactory at
metallic densities because it treats in a proper way
only the long-range part of the Coulomb interac-
tion, neglecting the important short-range exchange
and correlation effects. In recent years several
attempts have been made to improve on the random-
phase approximation, taking into account the fact
that the exchange and correlation effects lead to a
local depletion in the density around each electron.
This makes that the effective field acting on an
electron differs from the macroscopic mean field,
and one refers to the difference as a, local-field
correction. The correction has been studied on
the basis of Green's-function analysis and diagram-
matic techniques by Hubbard, ' Geldart and co-
workers, 2 ' Toigo and %oodruff, ' and others.
A different approach was introduced by Singwi et
a/. , ' who expressed the local-field correction as
a functional of the static pair distribution function.
Several modified versions of this theory have sub-
sequently been presented. " '6

Unfortunately, the results of the various theories
can not be directly tested against experiments be-
cause one has to introduce additional approxima-
tions to take into account the interactions with the
lattice. However, there are a number of exact
sum rules which the true dielectric function has to
satisfy, and these can be used to test whether a
particular approximation is reasonable or not. The
most important sum rules are the following' '7':

(a) The fluctuation-dissipation theorem leads to
an expression for' the static pair distribution func-
tion in terms of the dielectric function. Although

the true pair distribution function is not known, a
minimum requirement is that it should be positive.

(b) The compressibility sum rule gives a rela-
tion between the compressibility of the electron gas
and the static dielectric function for small wave
vectors. Fairly accurate numerical values for the
compressibility can be obtained by means of the
virial theorem.

(c) The first and third frequency moments give
the leading terms in an expansion of the dielectric
function in inverse powers of the frequency, and
they contain information about the short-time re-
sponse to an external disturbance.

It turns out that the sum rules impose quite
severe restrictions on the possible approximations,
and at present there exists no theory which satisfies
all of them. The best compromise seems to be the
recent theory by Vashishta and Singwi. "

None of the sum rules listed above gives infor-
mation about the behavior of the dielectric function
for large wave vectors and small frequencies, and
in the literature there has been some controversy
about the proper behavior in this limit. ' "
%'e shall, in this paper, carry out a detailed study
of the dielectric function when either the wave vec-
tor or the frequency is large, and in particular we
shall obtain an exact expression for the local-field
correction in the limit of large wave vectors. In
the process we shall also obtain a general formula-
tion of the problem which hopefully can be used as
a starting point for improvements on previous
theories. As will be discussed later on there is a
great need for such improvements, because all the
existing theories are based on rather crude approx-
imations and serious questions concerning basic
physical aspects of the problem remain unanswered.

The outline of the paper is as follows, In Sec.
II we introduce the mathematical formalism and in
Sec. III we discuss the definition of the local-field
correction. This is expressed in terms of the
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linear response to an external disturbance of a
certain two-particle correlation function. The
equation of motion for the two-particle correlation
function is studied in Sec. IV, and the physical
meaning of the various terms is briefly discussed.
In Sec. V we specialize to the case when either the
frequency or the wave vector is very large. Vfe
show that in the limit of large frequencies and finite
wave vectors we recover the results previously ob-
tained through the third-moment sum rule. ' In the
opposite limit, when the frequency is finite but the
wave vector tends to infinity, we obtain a simple re-
lation between the local-field correction and the
value of the pair distribution function at zero in-
terparticle separation. Using the fluctuation-dis-

sipation theorem we also show that the logarithmic
derivative of the pair distribution at x= 0 is equal
to the inverse Bohr radius, in agreement with the
result obtained by Kimball2' through a completely
different method. Section VI, finally, contains
some concluding remarks about the validity of local-
field theories, and we list a number of questions
which need to be elucidated by future work in this
field.

II. BASIC DEFINITIONS

%e consider a system of N electrons in a uni-
form positive background perturbed by a weak ex-
ternal field. The Hamiltonian of the system is

Z ~a~ a}a+ ~~K v&9)~~ a-.I a. . . ai'&ia, e' af+qla. o2ttl k'e'

1 ~ @ext+ ~ ( 'q f)Zaf. g2, af a/2e &

ke

where ak-, and ak, are creation and annihilation
operators for an electron with momentum kk and
spin 0, V' is the total volume of the system, and m
is the mass of an electron. 4"~(q, f) is the spatial
Fourier transform of the external potential, and

v(q) is the Fourier transform of the Coulomb po-
tential, including the interaction with the uniform
positive background,

4ve /q if q&0

if q=0 .

The external perturbation leads to variations in
space and time of the density of electrons, and we
write

nCr, f) =n+n(r, f),
where n = N/V is the mean density in the absence of
any external forces and n(r, f) is the induced den-
sity. Throughout this paper we shall use the con-
vention that quantities which represent deviations
from equilibrium are denoted by a bar over the
symbol. According to linear response theory we
have after Fourier transformation with respect to
r and t

n(q, (o) = g(q, ~)e '(q, (o), (4)

where the response function g(q, u&) is related to the
dielectric function e(q, ~) through

E(q, (d)
, = 1+v(q)g(q, (o) .

The response function can be expressed in terms

of the equilibrium density-density correlation func-
tion, and it can, in principle, be calculated through
the conventional diagrammatic technique. ' '
The disadvantage with this method is that for me-
tallic densities all the diagrams are essentially of
the same order of magnitude, and it is not obvious
how simple physical aspects, such as the existence
of a correlation hole, enter in the theory. The
alternative approach which wQ1 be adopted here is
to study directly the dynamical equations governing
the response of the system to the external field.
For this purpose we write the local density of elec-
trons as

f„; (q, f) =5 nk~+f NQ, f), (s)

where the first term is the equilibrium part, n~;
being the occupation number for electrons with
momentum Sk and spin o. %e shall also introduce
a two-particle distribution function f~f„f...(r, r; f)
which in the classical case gives the probability to
find a particle with momentum Sk at the position r

(, f) =Pf„-."(,f),
kff

where f„-, &r, f) is the quantum-mechanical analogue(1) l

of the classical phase-space distribution function.
The Fourier transform of f- (r, f) with respect to
r is given by

f„-."(q, ~) =
& a; f1(f)a-. ;g,„(&)), (7)

and in the presence of an external potential we
write
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if there is at the same time t another particle with
momentum kk at the positign r . The Fourier
transform of this function with respect to r and r
is defined through

(3) ~I (1) ~ (1)ff;, r ~Cq, q;f)+fa, (q, f)ff. (q, f)

Summing this over all momenta and spin one ob-
tains the static structure factor S(q) which is es-
sentially the Fourier transform of the static pair
distribution function:

=(af;&2„(f)a;. ;.&
~ (&) a".„".I „.(f) a-„,;&,(f)) „

(8)
where the second term on the left-hand side repre-
sents the uncorrelated part of the two-particle dis-
tribution function. In the quantum- mechanical case
the function ff„.g.& (q, q; f) contains both exchange
and Coulomb correlations, and in particular it con-
tains information about the local depletion in den-
sity around each particle. In analogy with Eq. (8)
we write

(3) m c Q (&)fI„fo'Cq, q; t) =~~, ~.f„;,„-.o (q)

+f Pa je~a (qq q'~ l) (io)

where the first term is the equilibrium pa,rt.

g(r) —1= —P e"' [S(q) —1] .
a

By ordering the creation operators to the left of the
annihilation operators in Eq. (9}we have taken
away the self-part of the correlation function, and
this is the reason why SCq) —1 rather than S(q) ap-
pears in Eq. (11).

III. LOCAL-FIELD CORRECI'ION

Using the Hamiltonian given in Eq. (1) it is
straightforward to obta. in the equation of motion
for the one-particle distribution function f~, Cq, f).
Keeping only terms linear in the external field we
get after Fourier transformation with respect to t

[~—(h'/~)k ~ q]ff."(q,~) = &[&~-.ia..-&f" im..][@'*'(q ~)+ ~(q)sCq. ~)1

+ 2 ~(q ) 2 [fl 'ga, ;i' '-Cq q q i&) fx ga. ; j' "Cq q q i~)l ~~ty a ~ y +q ~e~ e ~ t ~ (Is)

The term e(q)sCq, &o) which appears together with
the external field is the Hartree mean field, and it
arises from the uncorrelated part of the two-par-
ticle distribution function. The effects of exchange
and Coulomb correlations enter through the last
term which contains the induced change of the cor-
related part of the two-particle distribution func-
tion. Neglecting this term for a moment, we ob-
tain after summation over k and cr

s(q, ~) =x'(q, ~)[c' 'Cq, ~)+~(q)sCq, ~)],
where

(18)
kfy

Within this approximation one should for consis-
tency use the free-electron occupation number,
and y (q, (o) is then the I indhard response function
for the noninteracting electron gas. Equation (14)
is the random-phase approximation and it means
that the electrons respond as free particles to the
external field plus the Hartree mean field. In
theories which go beyond the random-phase approx-
imation one argues that the presence of a correla-
tion hole around each particle modifies the Hartree
mean field, and one writes the effective mean field
acting on an electron as

+ g(q)[1 —G(q, a))]n(q, (o)] . (i7)

On physical grounds we should certainly expect
some modifications also in )t' (q, (o), arising for in-
stance from self-energy corrections. However, in
order to make contact with the existing theories,
we shall keep Eq. (17) in its present form, and we
shall look upon it as the definition of the unknown
function G(q, Id). This means that we include in the
local-field correction certain terms which would
more naturally belong in a modified free-particle
response function, and we shall discuss the origin
of these terms at a. later stage. For the sake of
clarity it should be pointed out that the free-par-
ticle response function is defined through Eq, (15),

O'"Cq, (o) =4"~(q, (o)+ v(q)[I —G(q, (o)]n(q, (o),

(i8)
where the function G(q, ~) represents the local-field
correction. Explicit expressions for G(q, &o) can
be obtained by making specific assumptions about
the shape and the dynamics of the correlation
hole. '~'3 In most theories one makes the additional
assumption that the electrons respond as free par-
ticles to the effective field, which leads to

sCq, ~) = x'(q, ~) (+'*'Cq, ~)



DIELECTRIC FUNCTION OF THE UNIFORM ELECTRON GAS. . .

where ng, a,re the exact occupation numbers for the
interacting system, and hence }( (q, &o) deviates
somewhat from the Lindhard free-electron response
function. It is obvious tha.t even if each individual
electron responds as a free particle, the total re-

I

sponse must still depend on the true distribution
of particles in the system.

Using Eq. (18) together with the definitions in
Eqs. (15) and (17) it is straightforward to obtain
the following exact expression for G(q, &o):

G{q,~) = - [o(q)X'(q, (0)))(q, ~)j '

In order to obtain explicit results we have to
(g}make approximations on ff„.f,, iq, q;&o). The most

common procedure is to factorize the two-particle
distribution function into a product involving one-
particle distribution functions and the static pair
distribution function. "~'3 Unfortunately, it is dif-
ficult to justify such approximations on a rigorous
basis, particularly if one is interested in the dy-
namical aspects which determine the frequency de-
pendence of G(q, &o). For this reason we shall carry
the exact formalism one step further and study the
equation of motion for the two-particle distribution
function in the presence of the external field.

IV. TWO-PARTICLE MSTRISUTION FUNCTION

Using the definitions in Eqs. {9)and (10) together
with the Hamiltonian in Eq. (1) we can derive the
equation of motion forgg, ,i...(q, q;(«)). After some
tedious but straightforward transformations we ob-
tain

fh0 —()f'/s))k ~ q- ()f /m)k' ~ q jj;;,i, (q, q;~)
teak « ~l

= ~i;i w (q» q» &) + ~i'e', i (q «q» ~)
(3} «I

+~%;i o'(q»q»(«))+~ie i'e'{q»q»+)

+ 5'i.;,i,(q', q; &o),

x4~'(q+ q';to), (20)

where the equilibrium part of the two-particle cor-
relation function appears. The term EP,i...(q, q;&o}
in Eq. (19) arises from the mutual interaction be-
bveen the first and the second particle, and thus it
contains all the effects associated with the two-
body problem. It is given by

I

where the terms on the right-hand side are associ-
ated with different aspects of the interactions in the
system. In order to discuss the physical Ineaning
of the various terms we make the classical inter-
pretation of fz~.,i.z(q, q;f) as giving the equal-time
correlation between bvo particles with momenta
Sk and Sk, and we refer to the two particles as
"the first particle" and "the second particle, " re-
spectively. The term Egi;{q,q';&o) arises from
the action of the external force on the first particle
in the presence of the second particle. Similarly,
Fi z;f,(q, q;(»)) gives the effect of the external force
acting on the second particle in the presence of the
first one. The explicit form of Pg„.i. ~ (q, q;&u) is

e~ r~4;i e'(q» q»(»))

1 r (2} m (2} g= &(&~(e+p7')/a«a)t'o'( 1 ) fi«(pt«c')/~ e;t'a'( q )~

& f;i e (q q i(»)) = Z (»(q )Pi "/a, ;i "/2, w(q-+q q -q i(«)} J'i- "/I, ;i"I /a, "(q+q q —q i~)l

1 m r (1} ««c (1) r
+ (»(q/i" i-i/2 Ji'»a/a z(q+q»(«)) "Li/m, a~i' i/2, 6'(q+q -«~)~

+ 1/"(q )("i'-i'/a «»' Ji «)'/m. e(q+q «~) "i'«i'/a, o'&f-i'/a, e(q+q « ~) ~ ~ (21)

The last two terms in Eq. (19) contain the many-body aspects of the interaction, and they lead to a screen-
ing of the external field and the two-body interaction. The term 5'i,;i.z(q, q;&o) arises from the interac-
tion between the first particle and all the surrounding particles in the presence of the second particle, and
similarly 5'i.,',i,(q, q; v} arises from the interaction of the second particle with the surrounding ones in
the presence of the first particle. These terms contain three-particle correlation functions, and in anal-
ogy with Eq. (9) we make a decomposition into cumulants, writing

(3} ««r «I I (1)~ (3. «I1fie'pe''1"I" (q«q «q»t)+fi««(q»t)fi'««/ i"«»" (q»q «f)
(1) I (2) (1) r I (3) t Q,} (1) z (1}+fi;(q, f)f;;,p ."(q,q; f)+f&"; (q, f)fi.;i «(i, q; f)+f~ (q, f)fi ~(q, f)fi-; (q, f)
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=(aI i/2„(t){2f 2 /2„(t)a2. i"/2, I (t)a2", ~ /2 -(t)aI. ,i./2 ~ (t)a-„,i/2, (t)) .
With this definition, the term representing the many-body forces on the first particle takes the form

$N ~t
~

l (2) Q&

~2 'f' '(q q +} ~fksiqi'V2. (q;2'o'( q } fiq{iqi )'/2(,q f'(') '( q )~2)(q+q )I{(q+q q{q))

(22)

(2) ~ r 0.) ~i 0,)
+ —~(q) m fI .-;2. (-q )[Xf.;/2„(q+q;~)-7;;/2, .(q+q;~}1

V It IIa

1 (3)
+ ~u(q}~~. i-/-2 n h i/2 ~ z. Xp .-;2. (q, q;~}

f(II +I

~I I ~l ~ll
+ &~ {){q / Z {J2-(("/2()'I('((~ lf '(("{q-q,q, q;(d} Ji-+(( /2, (qif ()'I";, {q q-, q, q;(d)1.

gt I gI I fyI I

(23)

Here, the first term contains the Hartree mean
field, and it can simply be added to Eq. (20), lead-
ing to a screening of the external field. The fol-
lowing bvo terms in the above equation contain cor-
relation functions describing the charge distribu-
tion around the second particle, and they repre-
sent the screening of the Coulomb potential from
this particle. The terms considered so far would
give the true force acting on the first particle if it
had been an infinitesimal test charge which does
not itself disturb the system. However, it is in
reality surrounded by a correlation hole which
modifies both the Hartree mean field and the
screened field from the second particle. These
modifications are described by the irreducible
three-particle correlations appearing in the last
term of Eq. (23).

In Eq. (19) the particles with momenta k and k
enter in a completely symmetric way. However,
when ff f ;„.(q. q-q; ,v) is inserted into Eq. (13)
we see that k labels the particle we are studying
whereas k labels one of the surrounding particles
which make up the correlation hole. Hence, the
terms in Eq. (19}which represent the forces on the
second particle are associated with the dyna. mics
of the correlation hole, whereas the forces on the
first particle determine its motion inside the cor-
relation hole. One may argue that a proper theory
should include in the local-field correction {"(q,(d)

only terms associated with the dynamics of the

If the external disturbance varies rapidly in time
the response of the system is determined by the
motion of the particles for short times. This is
essentially a free-particle behavior since it takes
a certain time before the motion of a particle is
changed by the forces from other particles. Simi-
larly, the response to a disturbance which varies
rapidly in space is also determined by the free-
particle behavior, because a particle travels a cer-
tain distance before it is affected by the presence
of other pa, rticles. This means that for la, rge
values of q or ~ the terms on the left-hand side of
Eq. (13) dominate over the term containing the
Coulomb interaction on the right-hand side. Thus
we get

fk(qq(d) =
I/ @ (g2/ }k

and after summation over k and a this leads to

(24)

correlation hole, whereas terms associated with
the motion of the particle itself should appear in a
modified free-particle response function. As was
pointed out by Goodman and Sjolander, who studied
the magnetic response, it is essential to take into
account the motion of the particle relative to its
correlation hole in order to get proper results for
high frequencies. 2{ Equation (19) may provide a
basis for further clarification of these aspects.

V. LIMIT OF LARGE q OR u

n(q, (o}= y2(q, (o)4 '~(q, (o)

@qxq
) ~ qq —(q'/q~)~q —(q'/~)q ~ q q ~ (q'/q lq' —(q*/m)q ~ q)

where we have made a trivial change of the summa-
tion variable. In the denominators we can here
neglect the term (N2/I/2)k q, and hence we obtain

0 Pgk 1
m (Ko)' —(I'(I '/2m)' '

@2q2

Ro+
2m

i. e. , for points in the (q, (d) plane well outside the

(27)

This formula is valid for frequencies and wave vec-
tors such that
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region of particle-hole excitations.
In order to get the leading correction to Eq. (26)

we have to take into account the last term in Eq.
(13}which leads to the local-field correction given
in Eq. (18). The two-particle correlation function,
appearing there, is governed by Eq. (19), where we

should now replace q by q —q . Using the same
argument as before we conclude that the terms
proportional to ~ and q, and associated with the
free-particle behavior, dominate over all the terms
arising from the Coulomb interaction. Neglecting
the latter we get

(
-i ~

)
1

h;ee q q ~q ~
—

p (8a/ )k (- -,
) (ga/ )p

[~Re.I e (q q 1 q i'o)+~r~a'Io(q
I
q- q i~)1. (28

Inserting this into Eq. (18) and using the explicit expression for p;.,p, .(q —q, q';or) given in Fq. (20)
obtain after some simple transformations

vCq)y'(q, (u)G(q, (o)n(q, ~)= ——,Q v(q )Q Q ~ — q' ——(k —zq ) ~ q+ —(k-k ) ~ q

k2
2

O'- - S2- a2
2

82 S2 /1
q ——k ~ q- q ~ q — ku - q2 ——k ~ q+ q ~ q2m m 2' 2m nl 2nt

PS~ So 2 5 - h ISo+ q ——ik —2 q ) ~ q+ —ik —k ) ~ q ~+ qa- —k ~ q — q ~ q2m m' m' 2m m 2m

2 5 ~ 8 ~l Q)
+ q ——k ~ q+ q ~ q kgb -q 4'" q

——,Q v(q+q')Q Q Ko — q' ——(k+-,'q') ~ qp'2
k lt' I'

2
2 2 -1

2 8 ~P I ~P ~ 5 ~ ~g «I2 2 2
— Ro+ q ——iK ——,q) ~ q R) — q ——ik +-,q) ~ q+ —(k-k ) ~ q2m m m

Io+ qa ——(k ——,'q) ~ q+ —(k-k ) ~ q f~, ;.;(-q)4'*'(q, a)) . (29)

For consistency we should only keep the leading
contribution of the above expression in the limit of
large co or large q. This leads to considerable
simplifications, a,nd as shown in the Appendix we
obtain for frequencies and wave vectors satisfying
the condition (27}

CCq, ~) = a(q, ~)Zg, [S(q') —1]N;, q' vq

1 g q ~ (q+q') v(q+q')
[ ~i)7r;. q' vs

(30)
w'here

1 [I'o + (mfa/2m)q']' [fao —( /tl2)qm']'
2 [Ro —(I'/2m)q']' [ao+ (k'/2m)q']'

(31)
This result is valid for an arbitrary potential

v(q), provided only that the sums over q are con-
vergent in the absolute sense. Several approxima-
tive theories lead to expressions for the local-field
correction containing integrals over the static
structure factor similar to those in the above equa-

tion. ' ' However, in general this comes about
because one has explicitly introduced the static
pair distribution function through a,n approximative
factorization of the nonequilibrium two-particle
distribution function. No such approximation has
been made in the present treatment. %e note that
the second term in Eq. (30) is independent of the
frequency, and it can be traced ba.ck to the term
Ef,z, f, (q, q;&o} in Eq. '(19). As was discussed pre-
viously, it is associated with the dynamics of the
correlation hole, and it represents a proper local-
field correction. The first term in Eq. (30) arises
from the term 5'„-„.I.~ (q, q; ur) in Eq. (19) and it
has to do with the motion of a, particle inside its
correlation hole. Vfe note that this term has a
drastic frequency dependence with a strong peak
around the free-particle energy (h /2m)qa.

Specializing Eq. (30) to the case when q is finite
but ar tends to infinity we get

1im G(q, (o)

1g q ~ q 'v(q~} q (q+q') 'v(q+q')
N;. q' v(q) . q' v(q)
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x [S(q ) - 1], (32) g(q, a&) =y'(q, &o) {1+v(q)[1 —G(q, &o)]}t'(q, (o)J . (40)

and it can easily be verified that the same expres-
sion is obtained by using the third-moment sum
rule. In particular, for a Coulomb potential we
have

This expression can be used to study the behavior
of the static structure factor for large q vectors.
Using the fluctuation-dissipation theorem,

lim G(q, ~)

(q ~ q')' [q (q+q')]'
q'q" q'(q+ q')'

x [S(q ) - 1], (33)

Sgq = —— Im y(q, (o) d(o,
FR+0

(41)

together with the asymptotic expressions for
g (q, ru) and G(q, &u), given in Eqs. (26) and (30),
we obtain for a Coulomb potential

which is the form used for numerical calculations
by Pathak and Vashishta. '6 In the opposite limit,
when &o is finite but q tends to infinity, we get

lim G(q, ar)

-' [S(q') —1]+1 —g(0) (34)

where we have used Eq. (12) to bring in the value
of the pair distribution function at z= 0. The above
equation can be compared with the relation

lim G(q, ro) = 1-g(0}, (36}

derived by Shaw' within the framework of an ap-
proximative theory by Singwi et a/. ' Equation
(35) has sometimes been referred to as an exact
condition on the local-field correction, but Eq. (34)
shows that this is true only if we exclude from the
local field the term associated with the motion of
a particle inside its correlation hole.

Including this term and specializing to a Coulomb
potential we obtain from Eq. (34)

lim G(q, (o) = —,
' [1-g(0)] .

In particular, in the Hartree-Fock approximation
we have g(0) = ~ and hence

(36)

Iim G"'(q, (o) = —,', (3&)

in agreement with the result derived by Geldart and
Taylor. '~' In general, the value of g(0) must lie
behveen 0 and & which means that

(38)

g & liill G(q~ QP) & p (38)
q e 40

It is perhaps worth noting that Eq, (36) is identical
mith what we obtain by specializing the high-fre-
quency result in Eq. (33}to large wave vectors.
The mathematical reason for this coincidence is
that the function a(q, &o), given in Eq. (31), tends
to unity both for large wave vectors and large fre-
quencies.

Using Eq. (17) we can write the response func-
tion y(q, v) as

x'(q, ~)
I —t (q)[1 —G(q, ~)h'(q, ~) '

For large values of q the term proportional to v(q)
in the denominator is small, and hence we can write

s(q) —1 = — , , g(o) .See mn
5 q

(42)

On the other hand, it follows from the general prop-
erties of Fourier transforms that

lim q'[S(q) —1]= —8vng (0),
where g (0) is the radial derivative of g(r) at r= 0.
Comparing Eqs, (42) and (43) we conclude that

g'(0) me' 1

g(0) g' a '

(43)

(44)

where a is the Bohr radius. This exact relation
between the slope of the pair distribution function
and its value at r= 0 has previously been derived
by Kimball using a completely different method. 23

His argument was that when two electrons are very
close to each other their mutual interaction domi-
nates over the interactions with the surrounding
particles and hence one needs only solve the bvo-
body problem. In the present treatment we have
used no such arguments, but me claim that our ex-
pression for G(q, &o) is exact for large q or &u and
hence that the two-body aspects of the problem are
automatically included.

VI. CONCLUDING REMARKS

The idea of a local-field correction has proved
to be very fruitful, and numerical calculations have
led to significant improvements over the random-
phase approximation. However, there is still a
considerable lack of understanding of various basic
physical aspects. First of all, the very concept of
an effective field described by some function G(q, ~)
is questionable because electrons with different
momenta have different surroundings, and hence
the force acting on an electron depends on its mo-
mentum. Secondly, granting that the concept is
physically meaningful, there is still the question
of how an electron responds to the effective field.
In particular, one needs a better understanding of
the motion of an electron relative to the surround-
ing correlation hole. This aspect of the problem
is essential for the frequency dependence of the
response function, as was made obvious by Goodman
and Sjolander in the magnetic case. ~ Most theories
have been based on the assumption that G(q, &o) is
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independent of frequency, but there is no good
justification for this assumption. For instance,
Eq. (30) shows that for large q vectors there is a
very drastic frequency dependence around the free-
particle energy. For smaller q vectors the fre-
quency dependence is presumabty less drastic so
that G(q, a&) varies smoothly over the region of
particle-hole excitations, but it may still be essen-
tial.

In order to clarify the problems discussed above
it is essential to have as a starting point a rigorous
formulation where different physical aspects enter
in a clear-cut way. It is our hope that Eq. (19)
which governs the response of the two-particle cor-
relations to an external field can be used for this
purpose. Although it is a very complicated equa-
tion, the physical meaning of the various terms is
quite clear. In order to obtain explicit results it is
certainly necessary to make drastic approxima-
tions, but hopefully one should at least be eb1e to

gain a better understanding of the limitations and

the merits of different approximative theories.
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APPENDIX: MATHEMATICAL DETAIL

We shall here discuss in some detail the steps
leading from Eq. (29) to Eq. (30). We start by ex-
panding all the terms on the right-hand side of Eq.
(29) in inverse powers of

[aors(kz/2m)q'],

For
instance, we have

2 2 1

Ru — q ——[k+ ~~ ) ~ q2m m

k a - S
q + m- q —%+-.q) ~ q+ mo — q —(k+-. q) ~ q + ~ ",2m 2m m' 2m m (A1)

and similar expansions can be made of all the other
terms. For finite values of k and q, the above
expansion is obviously rapidly convergent when
q-~ or (d -~. However, k and q are integration
variables which can be arbitrarily large, and the
question arist. s whether one can interchange the
order between the limiting procedure and the in-
tegration. There is clearly no difficulty if all the
terms in the expansion lead to convergent integrals,
but because the terms contain successively higher
powers of the integration variables it may well
happen that divergencies appear at some step in
the expansion. To clarify this point, let us first
consider the simple one-dimensional integral

p ce

f(z) = . f(x)d»,
~p Z —X+ i&

which has a structure somewhat similar to the in-
tegrals in Eq. (27). Expanding in inverse powers
of z we obtain

1,"" oe

I(z)= —
' f(x)dx+ —' xf(x)dx+ ~ ~ ~ (A3)

Z Pp Z +p

It is an easy mathematical exercise to prove that
the first term in this expansion is the dominant
term for large values of z, provided that the in-
tegral J'0 f (x) dx is nonzero and convergent in the
absolute sense. If the integral Jo xf(x) dx, appear-
ing in the next-order term, happens to be divergent
it means only that the leading correction has a non-
analytic behavior. Returning now to Eq. (29) we
observe that the terms on the right-hand side can
be reduced to a sum of integrals of the form given
in Eq. (A2), except that the integral over x is re-
placed by three-dimensional integrals over k, k,
and q . This is not expected to be an essential dif-
ference, and we conclude that we can freely use
expansions of the type indicated in Eq. (Al) as
long as the integrals appearing in the final answer
are convergent in the absolute sense.

Collecting all terms of lowest non-vanishing or-
der in [h&o+(h /2m)q ] ' on the right side of Eq.
(29) we obtain

p- - —- 1 I'' S2 g2 4
v(q)1'(q, ~)G(q, (o)n(q, (u) = —— )zo — q' + Ro+ q'

2 m 2m
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x —,P s(q')(q ~ q')'g gf;".',„;., (-q')e'" (q, ~)
tty k'a'

-3 RO- g — fÃd+

( ) ~ Z Z» ~ qf -;-;(- q )4" (q, )
Ro f'o'

& ~P ~(q+ q')4 (q+ q')1'g P fg; I & (- q )4'"'(q, ~) .
V

fy R' y'

(A4)

(2) ~ (a)f~;a. (-q)=f-.;; r;(q) . (As)

In the derivation we have made use of the obvious
symmetry relation:

This can be proved as follows. %'e first observe
that the symmetry requirement makes that only
the longitudinal part can be nonzero:

which makes that certain terms vanish identically.
Furthermore, the second term in Eq. (A4) vanishes
because

g gi qf,'.'I„-...(-q')
k Pe'

qeq ~ ~ ~I {2) ~I
,~ ZZI q f..;9. ( -q). -

g g fI+I
(AV)

(2)
Z k qff.;r. (-q )=0

ka k' a'
Secondly, from the conservation of particle number
it follows that

d 2

q, t P q, 0 = — k ~ q ag. ~g~„ag„-g~„ap, -.)2, ~ a„-. ,".g„.
t 0

(As)

where the expectation value on the right-hand side
differs from fg;," .(q ) only through the ordering
of the operators [cf. Eqs. (9) and (10)]. Using the
commutation rules we get

a~—g g l .q'f('I„;„(-q')
Sty k'o'

q' —N —(p(q', t) p'(q', 0) )
PPZ i+ t~ 0

which is zero because of the first-moment sum
17' 18

It is now straightforward to obtain Eq. (30) from
Eq. (29), using the asymptotic form for yo(q, &o)

and y(q, &o), given in Eq. (26), and the expression
for the static structure factor, given in Eq. (Il).
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