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4 theoretical investigation of surface polaritons in the circularly cylindrical geometry is presented. The

complete set of MaxweB's equations (retardation efFects are not neglected) is solved with the simple

dielectric function, e(co) = 1 —co'/eo', where cs is the bulk plasma frequency. The resulting

transcendental equation for the eigenfrequencies is solved via numerical methods for three representative

values of the cylindricality constant, a = co a/c, where a is the cylinder radius and c the velocity of
light. In addition to the real nosmghative surface plasmons, various virtual radiative surface plasmons

exist with properties depending rather strongly on a. The results are compared with existing

experimental data. Further experiments are proposed in order to reveal the most interesting features of
the surface plasma modes.

r. INTRODUCTIOX

Plasma oscillations, i.e. , the collective mo-
tions of an electron gas, are an inherent property
of sobd-state plasmas. A nonzero local charge
density in a metal or semiconductor, whose con-
duction electrons form an electron gas, creates
long-range Coulomb fields which organize the sys-
tem into collective motion. The condition, v KeO
in the bulk material, where k is the electric field
in the bulk, gives rise to one set of plasma oscil-
lations, commonly known as the bulk plasma modes,
which are characterized by the plasma frequency
a&~= (4sns /m)'I, where m and e are the electronic
mass and charge and n is the electron density. The
bulk plasma modes exist alone in the idealized
situation where the system is unbounded by sur-
faces ~

However, the presence of surfaces complicates
the situation. Not only are the bulk plasma modes
modified but new modes are created, called sur-
face modes, which are absent in the bulk. These
surface modes have properties and dispersion
relations, differing from the bulk plasma modes
and varying according to the characteristics of the
surfaces. As with the bulk modes, the surface
modes can be excited by incident electrons or
photons, and, in fact, have been detected experi-
mentally in three different geometries —the planar,
the spherical, and the cylindrical geometries.
There has been, to date, extensive theoretical and
experimental investigation of the planar 5 and, to
a lesser degree, the sphericale geometries, lead-
ing to predictions and properties which have been
verified and well understood. However, there has
been limited work in the cylindrical case. Englman
and Ruppin~ have considered the problem of surface
optical (SO) phonons in ionic crystals of cylindrical

shape; the general theory for the behavior of the
modes as well as dispersion curves for the non-
radiative modes have been presented. An optical
experiment to excite surface plasmons (SP) was
performed on Al cylinders by Miziumski (these
will be shown to be virtual radiative SP in Sec. IV).
Ngai and Economou have discussed the validity of
the electrostatic approximation to the real nonra-
diative SP of a cylinder. These latter modes have
been investigated by Ashley and Emerson'0 and dis-
persion curves have been included.

The solution of the complete set of Maxwell's
equations in the planar and spherical geometries
[with the condition that V k =0 in the bulk, which

gives rise to the surface plasma oscillations (SPO)
alone] leads to electromagnetic fields at the sur-
faces with either E, or H, zero, where E, and H,
are the normal components of the electric and mag-
netic fields at the surfaces. Thus the plane and the
sphere allow pure magnetic waves (TE waves) and

pure electric waves (TM waves) as the two inde-
pendent solutions of the Maxwell equations. ' '
After applying the well-known boundary conditions
for the fields to the pure electric wave solution
(since this solution permits the existence of sur-
face charge and, consequently, SPO), a transcen-
dental equation is obtained which can usually be
solved for the dispersion relations of the surface
plasma modes in each geometry. However, the
cylindrical geometry does not allow this separa-
tion and the eigenmodes with V'- E = 0 in the bulk

are superpositions of electric and magnetic waves
(except for the modes without any angular depen-
dence). ' " The cylindrical natural modes have
both the perpendicular and the parallel field com-
ponents coupled together. Upon application of the
boundary conditions, a rather complicated tran-
scendental equation for the dispersion relations
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Reasons exist for theoretical and experimental
investigation of the surface modes in the cylin-
drical geometry. The latter is a geometry inter-
mediate between the planar and the spherical and,
thus, the surface modes should contain the charac-
teristics of the other two geometries; yet, partly
because of the coupling of the normal and parallel
field components, these modes will have their
own distinct properties. Moreover, the cylindri-
cal geometry is open to more varied experiments
which can better reveal not only the properties of
the surfa, ce modes but also the nature of the ma-
terials used. A case which will be discussed in
more detail in Sec. V is the application of a static
magnetic field Ho along the axis of a cylindrical
conductor such that incident electrons of mass &pe

and charge g will spiral about the cylinder with
frequency aro=eH0/mc, creating thus external
fields which can be Fourier analyzed to a funda-
mental 0 and to higher harmonics +~0. Thus, by
varying the field Ho, a resonant excitation of ra-
diative surface ylasmons may be achieved yrovid-
ing a promising source of radiation.

The purpose of this payer is thus the investiga-
tion of SPO in the cylindrical geometry. In Sec.
II, the complete set of Maxwell's equations (re-
tardation effects are not neglected) is solved with
the condition, V f = 0 in the bulk, and the tran-
scendental equation is obtained. Using a simple
dielectric function of the form z(&u) = l —&oz~/&o for
the conductor, where re~ is the bulk plasma fre-
quency, we solved the transcendental equation
numerically for the dispersion relations of the sur-
face modes for three representative values of the
constant, a= ~~u/c, where u is the radius of the
cylinder; a description of the numerical techniques
and the results are presented in Sec. ID. The
only reported experimental study of SPO in cylin-
ders is discussed in Sec. IV in the liggt of the
findings of Sec. III. Possible future investigation
is discussed and a summary is given in Sec. V.
Finally, the Appendix contains an analytical study
of the behavior of the surface modes in the vicinity
of the photon line.

II. THEORY

The system under consideration is a circularly
cylindrical conductor of radius g imbedded in a
dielectric of infinite extent, with the cylinder axis
along the g axis. The conductor is characterized
by a dielectric function zc(ro), while the dielectric
is characterised by en(~).

As noted previously, the cylindrical eigenmodes
are superpositions of electric- and magnetic-type
waves. The components of the electromagnetic
field for the gth mode are given by"

where j = C denotes the components inside the
cylinder, y &c, andj =D, those outside the cylin-
der, r & u, such that Zc(z) = 1„(z), the Beseel func-
tion of order n, Zn(z) -=Ho'(z), the Hankel function
of the first kind of order ~, and the prime denotes
differentiation with respect to the argument g =- Ep.
The Bessel and Hankel functions, Z„(~) and H„"'(x),
insure that the field components are finite at x = 0
and y = . Furthermore, p. '~ are the magnetic
permeabilities of the respective media, g~ ~ and
b„' are constants determined from the boundary
conditions,

Kq =~ zq(&o)/c —k, for j=C, D

8„=exp(in8+ ik~z —i(of) .

By applying the boundary conditions, that the
tangential components of the electric field h and
the magnetic field 5 must be continuous at the
cylinder surface, y = g, a system of four linear
homogeneous equations is obtained which is satis-
fiei by the four coefficients g ' and & ~ . This
system of four homogeneous equations does not
admit the simplified solutigns with either aQ g's
or aQ 5's vanishing, corresponding to the mag-
netic and electric waves, respectively, except for
the n=0 mode (hence, the SP eigenmode is a super-
position of both electric and magnetic waves). "
The nontrivial solution is obtained by letting the
determinant of the system vanish. The expansion
of this determinant gives rise to the transcenden-
tal equation '

pc &„'(Kcu) pn H„'(Enu) (u&/c)'~c((o) J„'(ICcu) ((u/c)'en((u) H„"'(SC~u)
ICcu 4„(ICcu) Ecu H„' (Knu) pcICcu J„(Ecu) pnKnu 'H( 'K)nu
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(2. 3)

whose solutions are the dispersion relations, (d„
= e„(k,), of the natural modes of the system, the
SP modes, for the propagation constant k, and
mode number yg.

The 8 dependence of the components of the elec-
tromagnetic field for the sth mode, Eq. (2. 1),
enters only through the factor e'~ of Eq. (2. 2).
For the symmetrical mode, kg= 0, the fields are
independent of 8. The coefficients, go

'~ and y()

are then independent of each other, and pure elec-
tric (H, =0) a,nd pure magnetic (E,=0) waves are
allowed solutions of Maxwell's equations in the
circularly cylindrical geometry. ' The pure elec-
tric wave, which gives rise to surface charge,
leads to the trivial transcendental equation for
n=0'11

((o/c)'e, ((o) J,(E,a)
p, K,a Z~(K,a)

(~/c)'e (~) &g"(E a)
p cKna Ho (Kna)

=0. (2.4)

The SP mode, resulting from the solution of
(2. 4), has an uninteresting behavior compared to
the SPO, with angular dependence (s ~ 1) whose
fields are superpositions of electric and magnetic
waves. There is only the real nonradiative branch
to the surface mode; the corresponding ~=0 vir-
tual radiative mode does not exist. Moreover,
this nonradiative branch lacks the minimum in its
dispersion relation, a characteristic found in the
n ~ 1 modes for certain curvature.

Since the fields of the g = 0 mode are independent
of 8, this SPO "sees" no curvature to the cylinder.
The only variation in the fields is the periodic one
along the cylinder axis, z, given by the factor
e"»' in (2. 1) and (2. 2). The surface charge forms
periodic bands of opposite charge along the z direc-
tion. This is analogous to the bands of surface
charge set up on a semi-infinite metallic plane by
its real nonradiative mode. ' Thus the pg = 0
cylindrical surface mode behaves similarly to the
planar mode, having only a nonradiative branch
with no minimum in its dispersion curve. The
nonexistence of the virtual radiative g= 0 mode has
been verified by the authors in the numerical anal-
ysis of Sec. IH with the substitution of (2.4) into
Eq. (3.3). The real nonradiative pg= 0 mode has
been studied by Englman and Ruppin and Ashley
and Emerson. '

e((o) = 1 —(u'»/(o', (3.1)

where u~ is the bulk plasma frequency. The di-
electric is assumed to be air with cn(cu) = 1. Also,
the media are assumed nonmagnetic so that p.~ =-1

and pD:—1

By introducing the changes of variable

A = oy'ur», K= k,/k» = k,c/&u», (3.2)

where 0 and E are now dimensionless variables,
and the above results for ec(&u), eo(&u), and pc D,
the arguments of the Bessel and Hankel functions
become, respectively,

V, = o(A -E —1) i

Vo
——u(A —K ) ~ with o,'=k~=to»a/c, (3.3)

where p is the cylinder radius. Then, by rear-
ranging the terms, the transcendental equation
F(k„&u) = 0 is brought into a more simplified form,

F(K A)=(A —1)(A —E PX +A (A —K —1) Y

—(2A —l)(A —K )(A —E —1)XF—
pg E =0,

(3.4)
where pg is the order or mode number,

V
~.'(Vi) y V

&."'
(V2)

1 J (V )1 offuj(V )
(3.3)

Before the start of the numerical investigation,
the results of which are presented in Figs. 1-3,
an analytical investigation, which is contained in
the Appendix, was attempted. Certain general
properties of the SPO were revealed, v which were
later verified by the computer analysis. In brief,
two distinct behaviors were found: (i) the SPO in
the region of E&0 are real nonradiative modes,
real because the equation F(K, A) =0 gives rise to
real eigenfrequencies, A= A(K), for real K, and

III, NUMERICAL TECHNIQUES AND RESULTS

Before the equation F(k„co)= 0 can be solved, it
is necessary to know the form of the dielectric
functions ec(co) and co(&u). The usual procedure is
either to find the constitutive equations which re-
late the currents and charges in the specific sys-
tem in terms of the electromagnetic fields, a
step which often involves the development of so-
phisticated approximations, or to draw upon al-
ready developed approximations, choosing the one
which best fits the specific system. A reasonable
choice for the dielectric function of a metal' is the
simple expression
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region of E & 0 are virtual radiative modes, vir-
tual because E(K, A) = 0 results in complex eigen-
fretluencies, A= A(K), for real K, where the
imaginary part of A is the inverse of the lifetime
of each mode, which is now finite rather than in-
finite as for the case of the real modes, and ra-
diative because the fields behave as propagating
cylindrical waves for increasing y. The photon
line, E= 0, is the line of demarcation for the SPO,
such that the dispersion relations for the real
modes can approach it asymptotically but never
cross it.

The core of the numerical analysis was the sub-
routine which calculated the values of the Bessel
functions. The standard computational techniIlues"
were employed to calculate the Bessel, Neumann,
and modified Bessel functions, Z„(x), F„(x), f„(x),
and K„(x), for integer mode number It, and real
argument x; the values were accurate through the
fifth decimal place when compared with Watson's
tables. "

The real modes were obtained initially. ' An

iteration procedure was used and thus required
that EII. (3.4) be rearranged so that the process
converged,

A = [&'K'+ (A' —K') Xq]' "/q,
where

q=(A'-K')X-(A'-K'-I) r, (3.6)

and X and 1'are defined by (3.6) and (3.3). The
initial value of the iteration process is provided
by the electrostatic limit5' (c- ~) of (3.4), which
simplifies to

(3.7a)

I i I a I I I I

0.00 0.20 0.40 0.60 ' 080
K

I.OO
where

J„'(V) H„"' (V)
g (y) t ffu)(y} (3.7b)

FIG. 1. (a) Dispersion relation for the n=1 SPO of a,

circular cylinder with n =%~=0.1, where II&—- &@Pc ie
the plasma wave vector and a is the cylinder radius. 0
= ~/~& is the frequency normalized to the plasma frequency
v& and K =kg/A& is the normalized wave vector along the
z axis, the cylinder axis. The electromagnetic solution
is exact. The electrostatic and planar approximations
(see text) are shown. (b) Dispersion relations for the
m=1, 2, 3„and 5 virtual rediative BIO of a circular cy-
linder with e =4~=0.1, where k»=(d&/c is the plasma
wave vector and a is the cylinder radius. 0= ~/co& is
the frequency co& and K=A, /4& is the normalized wave
vector along the g axis, the cylinder axis. The radiative
modes are the exact electromagnetic solutions.

nonradiative because the electromagnetic fields
associated with these modes decay exponentially
to zero outside tbe cylinder; (ii) the SPO in the

for the electric wave mode number n.
Because the argument V is imaginary, X and Y

are real ratios (see the Appendix) and (3.7a) is a
real exact relation for real E. This relation,
called the electrostatic approximation, has the
asymptotic behavior —Ar- 1/g2 and A r-0 1/$2.
It is a valid approximation5'e in the region of large
K, i.e. , k, » &c/c, for the eigenmodes of (3.4).

For the initial values of K, K» 1, (3. f) calcu-
lates the electrostatic value Ae, which is then in-
serted into (3.6) to calculate a new value A, .
is returned to (3.6) and the process continues un-
til a certain accuracy is achieved, i.e. , the value
Gz after L iterations is within a certain error
compared to the previous value, Q~„&, in the pro-
gram, the same accuracy as that of thy Bessel
function values was desired, i.e. , I ~1, —I, y t
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FIG. 2. (a) Dispersion relation for the n =1 SPO of a
circular cylinder with n =k~ =1.0, where kI, = rulc is
the plasma wave vector and g is the cylinder radius. 0
= ur/co& is the frequency normalized to the plasma fre-
quency ~& and K=k~/k& is the normalized wave vector
along the z axis, the cylinder axis. The electromagnetic
solution is exact. The electrostatic and planar approxi-
mations (see text) are shown. (b) Dispersion relation for
the a=5 SPO of a circular cylinder with ~ =k&n= 1.0,
where k»= &&/p is the plasma wave vector and e is the cy-
linder radius. 0 = ~/ur& is the frequency normalized to
the plasma frequency ru& and E = krak& is the normalized
wave vector along the z axis, the cylinder axis. The
electromagnetic solution is exact. The electrostatic and
planar approximations (see text) are shown. (c) Disper-
sion relations for the n =1,2, ..., 6 virtual radiative SPO
of a circular cylinder with 0, =k~ = 1.0, where k& = v&/c
is the plasma wave vector and a is the cylinder radius.
& = e/~& is the frequency normalized to the plasma fre-
quency ~& and K= k~/k& is the normalized wave vector
along the z axis, the cylinder axis. The radiative modes
are the exact electromagnetic solutions.

&10 ~. Subsequently, for each succeeding value
of K, instead of the electrostatic value at this K,
the electromagnetic value at the previous point K
is used in (3.6) for the iteration process (this was
necessary because of the eventual inadequacy of
the electrostatic approximation due to retardation
effects). In this manner, the dispersion relations,
f)= A(K), were obtained for the real modes.

However, this method was not applicable to the
virtual modes, whose eigenfrequencies are com-
plex, since the Bessel function subxoutine re-
quires that the arguments of the functions be real.
Yet ) F(K; 0)1 has a minimum at the point (K, 0)
for real Kand 0, Q&E, when 0 coincides with the
real part of the complex eigenfrequency of a vir-

tual mode. These modes appear as peaks in the
function

(3.6)
where F(K, 0) is given by (3.4) and where the nu-
merator removes the background due to the trivial
solutions, A =Ks and A =Kz+1, of the equation
F(K, 0)=0 (these solutions would otherwise ob-
scure the virtual modes). The program thus cal-
culated the values of G(K, 0) at each point of a
grid in the region of Q&K; the grid was made fine
enough so that the real part of the complex eigen-
frequency of each mode, the center point of the
peak, and the imaginary part, the half-width of the
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FlG. S(a) Dispersion relation for the a = 6 SPO of a circular cylinder with»r =kss =10.0, where k&= ~pc Is the p)«ma

wave vector and c is the cylinder radius. 0 = ~/~& is the frequency normalized to the plasma frequency ru& and K=k, /k&

is the normalized wave vector along the z axis, the cylinder axis. The electromagnetic solution is exact. The electro-

static and planar approximations (aee text) are shown. (b) Dispersion relation for the n =16 SPO of a circular cylinder

with o =k&s =10.0, where k& = u&pc is the plasma wave vector and a is the cylinder radius. O = u&/&oI, is the frequency

normal. ized to the plasma frequency v& and K=kg/k& is the normalized wave vector along the z axis, the cylinder axis.
The electromagnetic solution is exact. The electrostatic and planar approximations (see text) are shown. (c) Dispersion

relations forthes=1, 2, .. . , 15 virtual radiative SPO of a circular cylinder with n =k&s =10.0, where k&=capo is the

plasma wave vector and a is the cylinder radius. A = ~/v& is the frequency normalized to the plasma frequency cu& and

K=k~/k& is the normalized wave vector along the z axis, the cylinder axis. The radiative modesare the exact electro-

magnetic solutions. (d) Graph of the ratio Im Q/Re 0 vs the wave vector K for the n=1, 2, ... , 8 virtual radiative SPO

of a circular cylinder with a =k~ =10.0 ~ where k&= &ape is the plasma wave vector and a is the cylinder radius. O

= co/~& is the frequency normalized to the plasma frequency (d& and K=k~/k& is the normalized wave vector along the z

axis, the cylinder axis. For Im 0 &Be 0 (dashed lines), the lifetimes are too short for the modes to be well defined; for

Im 0 &He 0 (solid linea), the modes become better defined. The curves terminate at the photon line.
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peak, were accurate through the third decimal
place.

The numerical analyses discussed previously
were exact calculations of the SPQ in a circularly
cylindrical conductor. In addition, an approxima-
tion was employed, a technique devised by C.
Miziumski to explain his experimental results,
which, for us, would serve only as a comparison
for the actual modes. This approximate technique
treated the cylinder as locally flat so that its SP
eigenfunction is the same as for a semi-infinite
plane; the curvature introduces only periodic
boundary conditions. This approximation, hence-
forth referred to as the planar approximation, has
some validity for very thick cylinders. '0

The dispersion relation, for the SPQ in a semi-
infinite conductor, characterized by the dielectric
function cc(/d) = 1 —aP~//d, in contact with a semi-
infinite dielectric with cn(&d) = 1, is given by

pi+ i N+ (1+ i -4)1/R]-1/2

q = k„/kq,
(3.9)

where k„ is the wave vector parallel to the surface
of the plane. The resulting SPQ are real non-
radiative modes with the asymptotic behavior,
id„o~ck„O and &o~~„&u~/g2, where k„&co/c.

When (3.9) is applied to a locally flat cylinder,
the properties of the cylinder enter through the
wave vector, k„. Ne can then define

k„=k, +)g, (3.10)

where k, and @ are the propagation constants in
the g and 8 directions, respectively. k~ is in-
versely proportional to the wavelength y~ of the
oscillation propagating along the cylinder's cir-
cumference; the cyclical boundary conditions de-
termine this to be g~= 2wa/s, where s is the order
of the oscillation and a the cylinder radius
(2sa, the cylinder circumference), so that

kii = 2s/X'„= n/a .
Using (3.10 and 3.11), we get

(3.11)

4 = k„/k, = [(k./k, )'+ (s/o)']'",
where e= k~ and the factor s/o. 'determines the
cylindricality of the system such that in a thick
cylinder (a» 1) s/u is a negligible factor for
small s. Introducing (3.2} brings the dispersion
relation (3.9) into the form

A [1+ i qN+ (1+ i q&)1/8] -1/2

(3.12)

q = [K'+ (s/~)']' ", (3. ia}

so that the results, for mode number ~ and the
parameter e, can be compared with the exact SPQ.
Equation (3.13) has the asymptotic behavior-
As~ 1/Q and at K=O, A{ I&(+c//s)

+[1+—,'(a/s)']' ] ' ', i.e. , the photon line is
crossed.

Some of the results of the computer analysis of
SPQ in a circularly cylindrical conductor are con-
tained in Figs. 1-3. The graphs therein are sep-
arated into two types —those containing the dis-
persion relations, computed by the electrostatic
and the planar approximations, and the exact elec-
tromagnetic equation for the virtual and real modes,
for a certain g and n. Also shown are those con-
taining the dispersion relations of the virtual ra-
diative modes alone for the three values of u,
where += k~ is a measure of the cylindricality of
the system. The data were obtained for three
values of u, 0.1, 1.0, and 10.0, i.e. , the cylin-
ders ranged from thin to thick (by varying only the
radius a) or from fair to very good conductors (by
varying only the plasma frequency &d& where k
= (u, /e).

Figure 1 contains the modes for +=0.1 and the
results are applicable to systems with high cylin-
dricality, i.e. , u«l or n/o»1. For all values
of pg, the mode number, the electrostatic approx-
imation is an accurate approximation to the exact
dispersion relations for the real modes. Of course
for E ~ 1.0, retardation effects become noticeable
as the electromagnetic curve bends and approaches
the photon line asymptotically (with a difference of
less than 10 5 for K~ 0. 6) while the electrostatic
curve continues across. As was expected, the
planar approximation is invalid for systems with
high cylindricality, exhibiting constant behavior
A = I/$2, for 0 & K & ~.

A very interesting feature of the real modes is
the minimum in the dispersion curve, e.g. , Fig.
1(a), for the s= 1 mode. The position and value
of the minimum depends on pg such that for pal=1

the frequency is 9.2% less than I/g2 and the mini-
mum appears at E= 15.V. As pg increases, it
shifts to higher E, according to the relation K „
= 1.5 s/n, and the frequency rises: for /i=2,
K „=29.5 and &A=4. 8%, and for n= 3, K „=43.3
and 4A = 3.2%.

In order to understand the occurrence of the
minimum we can first use electrostatic considera-
tions and then examine what modifications retar-
dation effects bring. Electrostatically both at k, = 0
and k, = ~ the curvature of the cylindrical surface does
not influence the eigenfrequency which remains as
in the plane case: ~~/$2. At k, = ~ the above
statement is obvious since this k, = ~ wave sees
the surface as flat, at k, =0 one can calculate the
eigenfrequency as the pole in the attraction force
between the cylinder under consideration and a
parallel straight wire carrying a uniform oscillat-
ing (in time) charge if(t) =aloe'"'. This force is
proportional to the image charge q'(f) and the
latter is the same as in. the plane geometry, name-
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ly q'(f) = [1 —e(&u}]q(t)/[1+ c(&u)]. Hence, in both
cases the SP eigenfrequency is given (electrostat-
ically) by the solution of the equation 1+c (&o) = 0.
Thus me need a variation of the fields along the
axis direction in order to make the effects of the
curvature of the cylindrical surface felt. On the
basis of the previous arguments we expect that
these effects will be more significant when g= g
= n/+. By comparing with the results for a sphere
(where the eigenfrequency ar, = ~~/[I+ (1+1/I)]'~
& a&~/g2) one expects that the effects of the curvature
of the cylindrical surface mould be to decrease the ei-
genfrequency, and consequently to create a minimum

when y, = s/s, in agreement with our results. One
also expects that as g increases, for a given a,
the effects of the curvature mould be less and less
pronounced; this property is in agreement mith

our results too.
%hen the minimum occurs well to the right of

the g line, the above electrostatic picture for the
minimum is valid [see Figs. 1(a) and 2(b)]. When

the minimum is close to or to the left of the g line,
retardation effects invalidate the electrostatic de-
scription and the minimum actually disappears
[see Figs. 2(a), 3(a), and 3(b)].

For 0.=0.1 the virtual modes are well-defined
radiative modes with the half-width ImQ ~ 0.01
&ReO for all~ and for all values of Efrom K= 0.0
to the photon line and with ReA= I+K. Despite
the constancy in frequency, ReA, which Fig. 1(b)
shows, there is some variation according to g and
E for the virtual modes, abehavior whichbecomes
more noticeable for higher O'.. For example, the

n = 1 mode has ReQ= 0.7044 and ImQ= 0.0046 at
E=O.O, values which change to ReQ=0. 7019 and,

Im0 = 0.0083 at E= 0.06. The modes for n» 2
show negligible change in half-width with ImQ
& 0.0001.

Figure 2 contains the modes for @=1.0 and the
results are applicable to systems with moderate
cylindricality, i.e. , a=1.0 or 0.5&s/a&5. For
the lower modes, ~ ~ 4, the electrostatic approx-
imation is no longer as accurate an approximation
to the exact dispersion relations as in a highly
cylindrical system; for g» 5 the system can be
considered highly cylindrical. Moreover, the
planar curves show more variation mith respect
to E: this variation is greatest for ~= 1 and de-
creases for increasing pg until the constancy of
frequency (~1/g) of highly cylindrical systems
is recaptured for g» 5.

The minima in the dispersion curves have been
affected by the increase in 0.. The minimum in
the yg = 1 mode has disappeared entirely w'hile for
n» 2 the locations of the minima are still propor-
tional to the factor s/o. , i.e. , K „=l.3 s/n for
n» 2, a marked shift towards the photon line. The
frequencies differ from I/g2 by the amounts 6.1%

at K „=2. 1 for n=2, 3.7% at K „=3.7 for n=3,
2. 7% at K „=5. 1 for a= 4, and 2. 1% at E „=6. 5

for n= 5. Figures 2(a) and 2(b) give the disper-
sion curves for +=1 and z= 5, respectively.

The virtual radiative modes have been altered
by the change from high to moderate cylindricality.
The g=1 mode has peeled off from the group of
modes with frequency = I/g and lies at A= 0.6.
Moreover, it is poorly defined with Img= 0.602
&&ReQ at E=O.O, which increases to IrnQ=1. 331
xReQ at K=0. 5. The g=2 mode is better de-
fined with ReQ= 0.6756 and ImQ= 0.0223 at E= 0.0,
values which change to ReQ= 0.6679 and ImQ
=0.0075 at E=0.06. The n» 3 modes recapture
the well-defined character of the modes of the
highly cylindrica1. system with ImQ ~ 0.0001 for
the E range of E=0.0 to the photon line. These
modes, 1 &n& 6, are contained in Fig. 2(c).

A third system was examined, that with @=10.0.
The results are applicable to systems with low
cylindricality, i.e. , a»1.0 or n/c. «1.0. The
real nonradiative modes for ~= 6 and 16, are con-
tained in Figs. 3(a} and 3(b), while the virtual ra-
diative modes, 1 & s & 15, are in Fig. 3(c}. The
variation of the inverse lifetimes of the lower-
lying modes, ~ ~ 8, with resyect to the wave vec-
tor E, is shown in Fig. 3(d) where ImA/ReA is
plotted against E.

A change has occurred in the real modes; the
minima no longer exist. They are still present in
the electrostatic ayproximatiops for the modes ob-
served, i.e. , for 1& pg& 20, but not in the elec-
tromagnetic curves. Instead, the dispersion
curves decrease gradually from A=1/P for K»1
until E& 5.0 mhen the retardation effects bend the
curves toward the photon line. The electrostatic
approximations diverge from the exact solutions
in this region. Yet, the planar curves do not,
verifying thus the assumption that the planar ap-
proximation should be valid for a» 1.0.

The virtual modes also show interesting behav-
ior. They are now spread across the region de-
lineated by A= I/g, K= 0.0, and the photon line.
The lower modes have lifetimes so short that they
are almost nonexistent except near the photon line
where they become better defined. For example,
the g=1 mode has ReQ&0. 1 and ImQ» 2.0ReQ,
the n= 2 mode is better defined with ReQ=O. 1586
and ImQ=0. 319 at E=0.O, values which change
to ReQ=0. 3006 and Im0=0. 002 at E=0.3, and
the g=3 mode has ReQ=0. 2491 and ImQ=0. 312 at
E=0.0 and ReQ=0. 4043 and ImQ=0. 002 at E=0.4.
The intermediate modes, 4 & g & 8, show similar
variation with respect to E but with progressively
longer lifetimes. The modes for ~» 9 are mell
defined with ImQ ~ 0.01ReQ. Moreover, the real
part of the eigenfrequency for these modes remains
fairly constant in the range 0.0 ~ E& photon line,
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whereas for n» 8, 4ReA&0. 04, an appreciable in-
crease in ReA with respect to E.

The planar approximation can in certain limiting
cases be used to estimate the real parts of the
complex eigenfrequencies, ReA, of the radiative
modes (Figs. 1-8 illustrate the varying accuracy
of the approximation). However, this is the only
information that can be obtained from this approx-
imation. The electromagnetic solution of Eq. (3.4)
gives also the decay rate (=ImA), the dependence
on mode number n and wave vector E automatically.

Before we conclude this section we would like to
draw attention to the quite different behavior of
the ReA and ImA as a function of' k, for the modes
n=1, u=0. 1, @=1.0 [Figs. 1(b) and 2(c)t on one
hand, and the modes n=4, 5, etc. , =10 on the
other hand. One can understand this difference
on the basis of results for the plane geometry.
The former modes (I= 1, a= 0.1, a = 1) are some-
how similar with the radiative plasmons in thin'

films in the sense that both are due to surface
charges of opposite sign situated opposite to each
other. The behavior of ReA and ImA is similar
to the thin-film virtual mode; i.e. , ReA decreases
with k, while ImA increases with k, . On the other
hand, the modes for o,'= 10 (g = 4, 5, etc. ) are sim-
ilar to thick-film modes in the sense that opposite
surface charges sit next to each other (due to the
large values of e the charges located diametrically
are almost decoupled). This observation together
with the known results for a single surface explains
the behavior of these modes as a function of k„
namely the increase of ReA and decrease of ImA
with increasing k, . Of course modes with in-be-
tween behavior are present, e.g. , the modes a=1,
n= 2, 3, etc.

IV. COMPARISON WTH EXISTING EXPERIMENT

One method of experimental detection of SPO in-
volves the scattering of lj.ght from the electron
gas confined to a smooth metallic surface. If the
scattering is inelastic such as by the coupling of
the photons to the elementary excitations of the
system, i.e. , surface plasmons, structure is
introduced in the optical properties of the system.
The position of this structure, i.e. , peaks or dips
in the reflectance and transmission of the light,
is determined from the resonance condition, i.e. ,
the matching of the frequencies and the wave vec-
tors of the photons and the SP. The details of the
structure (the linewidth, strength, shape, etc. of
the peaks and dips) usually require a quantitative
investigation of the photon-SP interaction. How-
ever, extensive experimentation on the interaction
of light with metallic surfaces of various geom-
etries, e.g. , the plane, thin and thick films, and
the sphere, has verified the above qualitative state-
ments and have shown them to be geometry inde-

(u cos P„((u) ck, (=(o), (4. 1)

where k, (ap) is obtained from the planar approxi-
mation, Eqs. (3.9) and (S.11), as a function of u
and n.

Aluminum was evaporated onto a quartz fiber
with a radius of 25 pm, forming a cylinder of ra-
dius a = 29 pm, with a bulk plasma wavelength
g&= 828 A, for this optical experiment. It was then
illuminated by an He-Ne laser of wavelength
~ = 6328 A. These values can be converted to the
system of parameters given by (S.2):

e= keg= 2200,

Ai = (u/(op = 0.131,
K k, /k&= AI cosP=0. 131cosP .

(4. 2)

The value of e shows that Miziumzki's system is
one of extremely low cylindricality where the plan-
nar approximation should give reasonably accurate
estimates of the real parts of the eigenfrequencies
of the radiative modes. As noted previously, how-
ever, the lifetime of these modes cannot be ob-
tained from the planar approximation.

It is not possible to obtain the eigenfrequencies
of the radiative SP numerically via Eqs. (3.3)-
(S.5) for &= 2200 because the arguments of the
Bessel functions are too large. " Instead, extrap-
olation of the results for e= 10.0, as shown in
Figs. 3(c) and 3(d), permits us to discuss the be-
havior of the virtual radiative modes for this sys-
tem. First of all, we should expect that the re-
gion, delineated by K=O. O, A= 1/Q, and the pho-
ton line, will be densely populated by the virtual

pendent (Refs. 8 and 5 provide reviews of the rele-
vant material).

Consequently, as we shall discuss below, struc-
ture in the optical properties of metallic cylinders
was found at the position expected from the res-
onance condition for photon-SP interaction. This
fact together with the extensive experimentation
in the other geometries leads to the conclusion
that the observed structure is indeed due to the SP
excitation by light. A further confirmation of this
would demand a quantitative study of the inter-
action, a project which is currently under investi-
gation.

Miziumski performed an optical experiment to
detect the SPO in a cylinder. It consisted of il-
luminating a metallic cylinder with a laser. The
intensity of reflected light was then measured by
a photocell as a function of 8, the angle of inci-
dence with respect to the cylinder axis. The re-
flected intensity of the laser light, as P was varied,
showed regularly spaced dips, a structure explained
by the excitation of SPO. This structure occurred
for 1' » P» 5' and was associated with the modes,
55» n» 58, as computed from
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FjG. 4. (a) Dispersion relations for some of the SPO involved in Mizuinski's optical experiment, calculated according
to the planar approximation (see text) which is almost exact for this case. An aluminum circular cylinder of radius
29 p with a bulk plasma wavelength of 828 A is illuminated by an He-Ne laser of wavelength 6328 A. P is the angle of in-
cidence of the laser light, 01 = co/~& = 0.131 is its frequency normalized to the bulk plasma frequency ru&, o. =k~ = 2200,
where k&= co&/e is the plasma wave vector and a is the cylinder radius, and K=k~/k& is the normalized wave vector along
the z axis, the cylinder axis. The frequency Ql and wave vector K are related by K=01 cos p. The laser canexciteSPO
of the same GI, and E. (b) Reflected intensity of the laser vs the angle of incidence P reveals a sequence of dips corre-
sponding to the excitation of the g = 55, 56, 57, and 58 SPO as calculated from the planar approximation tafter Miziumski
(Ref. 8)]. An He-Ne laser of wavelength 6328 A. illuminated an aluminum circular cylinder of radius a =29 p, with a
plasma wavelength 828 L, such that QL, = e/~& = 0.131 is the laser frequency normalized to the plasma frequency co& of
aluminum, %=kg/k& is the normalized wave vector along the z axis, the cylinder axis, and of =k& a =2200.

modes. Some of these modes are shown in Fig.
4(a). The lowest modes will have disappeared en-
tirely, as almost with the pal=1 mode for +=10.0,
thus creating a threshold number so, i.e. , so/
o«1, such that the modes, g~ ~, can be ob-
served. Moreover, we shouM expect three regions
where these radiative SPO mill exhibit different
properties, i.e. , different degrees of definition,
or progressively longer lifetimes.

These refdons are: (i) 0.0» A &0.3, (ii) 0.3» A

& 0.6, and (iii) 0.6» A» 1/+. The first region con-
tains modes with very short lifetimes, with ImA
~ ReA at E=0.0; the modes become better defined
with increasing Re0as the photon line is approached.
The second region will contain the intermediate
modes with progressively longer lifetimes, with
ReO&ImA&0. 01 ReA; these will be even more
closely spaced but will not show as much variation
with respect to K as the region (i) modes. These
intermediate modes will, of course, become better
defined as the photon line is approached, and cor-
respond in behavior to the modes 4 & g ~ 9 for
0.'= 10.0 in Fig. 3. The extremely well-defined

modes with ImA &0.001 are contained in the third
region; these will be almost constant in frequency,
ReA, and extremely closely spaced.

Miziumski's experiment occurred in region (i),
in close proximity to the photon line, since Az

=0.131 and %=A cosP=Q. 131 for P&5'. Al-
though the modes are better defined near the pho-
ton line, their lifetimes are still so short that
little energy is absorbed by the system and the re-
flected intensity shows the weak structure depicted
in Fig. 4(b). No further dips were observed after
P= 5' because, as P increases, Kdecreases, so
that the lifetimes of the modes are decreasing, as
expected. Also the dips are separated by only
about 40 min of arc which verifies the expected
density of the modes.

A threefold increase in A~ will push the experi-
ment into the second region where the lifetimes of
the radiative modes are much longer. The struc-
ture in the reflected intensity as a function of the
incident angle P should now be enhanced. The dips
are more pronounced; P is no longer limited to
less than 5' either, because of the longer lifetimes
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of the SP in general in this region. However, the
structure should weaken as P increases because
of the expected decreasing lifetime. Furthermore,
a fivefold increase in A~ would push the experi-
ment in region (iii). The modes should be very
closely packed in this region; however, not so
many can be excited by the incoming photon be-
cause of the constancy of their eigenfrequency.
Thus, distinct dips, indicating excitation of the
individual SPO, could be probably detected.

A~ can be increased with only minor modifica-
tions of the system. . This is effected either by
substituting a laser with a higher frequency, i.e. ,
by increasing only (d which causes an increase in
A~ with no change in a, or by using cylinders of
different metals with lower plasma frequency, i.e. ,
by decreasing (d~ which causes an increase in A~
as well as a decrease in e, or both.

It should be noted that repeating Miziurnski's
experiment with higher A~ and lower o,'(which can
also be achieved by decreasing the diameter of
the cylinder) would produce much more pronounced
structure in the reflected intensity of the laser
beam.

V. DISCUSSION

In this section we present a brief qualitative dis-
cussion about possible physical consequences of
our results. A detailed quantitative study of the
subject discussed here is presently under way.

We consider first the excitation of the real SP
by any one of the well-known methods, i.e. , in-
teraction with external charged particles, mainly
electrons of high (keV) or low (eV) energy or
photons. For a thick enough cylinder (n» 1) we
expect line shapes and total cross sections simi-
lar to those encountered in flat surfaces. How-
ever, as e becomes smaller and smaller the mini-
rnum in the dispersion relation should appear and
inQuence the line shape. For a ~ 1 one expects
the minimum to show in the line shape as a steeply
rising precursor peak joining smoothly the lower
side of the main broad peak at &o~QR. Such a pe-
culiar line shape, which is characteristic of SP
in cylinders, requires for its observation a reso-
lution of better than $&o& and an a of one or less.
The latter condition implies a radius of 500 A or
less for a typical metal and of 10 ' cm for a typi-
cal doped semiconductor. Note also that the exis-
tence of the minimum would have important con-
sequences on whatever effects are due to plasmon-
plasmon interactions, e.g. , in experiments in-
volving two-plasmon production. '

It is much more interesting to study experimen-
tally the radiation associated with the virtual SP
in cylinders. As we have seen, a variety of modes
exists exhibiting different eigenfrequencies and
quite different linewidths. What is more, the

variation of the eigenfrequencies and linewidths
with k, (i.e. , with the angle of emittance of the
radiation) shows quite different behavior for dif-
ferent modes. Thus, a wealth of physical situa-
tions is present awaiting its experimental verifi-
cation and study. Miziumski's experiment has
shown clearly that the radiative SP are detectable
even in quite thick cylinders. However, it is
much more interesting to study the radiative SP
in not so thick cylinders, because, then, the
modes are better defined, well separated, and
exhibit a variety of different behaviors. It would
be very interesting to study the radiative SP in
cylinders of e less than 100 to cy of the order 1.
For a typical metal this implies radii from 10 '
cm to 10~ cm, respectively; for a doped semi-
conductor the corresponding numbers are 10
10 cm. The experimental techniques used for
the study of SP in plane surfaces and sphere can
be used in the present geometry.

The results presented in this work allow a di-
rect calculation of the radiation emitted during one
period by one SP. Indeed this radiated energy
equals h Imw. Thus all one has to do is to calcu-
late the cross section for exciting SP by the exter-
nal source in each particular case.

One case of possible importance is the excita-
tion of SP by external electrons which stay close
to the surface so as to maximize the electron-SP
interaction. The cylindrical geometry allows the
realization of such a configuration jLf one employs
a static magnetic field parallel to the axis of the
cylinder. Then the external electrons can revolve
around the cylinder in circular orbits exciting con-
tinuously SP which in turn radiate. This process
can be sustained at the expense of an externally
supplied electronic kinetic energy. The frequency
of the emitted radiation which falls in the ultra-
violet for a metallic cylinder makes this possibili-
ty very attractive. To calculate the emitted ra-
diation one has simply to find the cross section for
exciting a SP by a revolving external electron and
then calculate the steady-state distribution of SP
due to their excitation by the external electrons
as well as to the inverse process of absorption of
existing SP by the electrons. The electron-SP
cross section can be calculated by an extension of
the methods used in plane and spherical geome-
tries.

It is useful to examine the problem of excitation
of radiative SP in another way. An electron re-
volving in a circular orbit with a frequency (do

emits radiation which can be Fourier analyzed to
components characterized by a wave vector k,
(the z axis is perpendicular to the plane of the
orbit) and a frequency m&uo where m is a positive
integer. Each such component acts as an external
"force" on the cylinder under consideration.
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Vfhenever the frequency ~(do and wave vector 4,
coincide with an eigenfrequency &o„(k,) and eigen-
vector k, of the natural modes of the system (i.e. ,
the SP) a resonance condition is satisfied and a
significantly enhanced radiation should be observed.
The condition for this resonant enhancement of an
harmonic m(do is

m(o2= ro„(k,} . (5.1)

Ne have benefitted from discussions with V.
Celli and E. D. Palik. This work was partly sup-
ported by the National Science Foundation under
Grant No. NSF -6834404.

In this section, it will be shown that, despite
the fact that E(k„co}=0 cannot be solved by ana-
lytical methods, the general behavior of the SPO
in a circularly cylindrical conductor ca,n be re-
vealed. The nature of the modes, whether ra-
diative or nonradiative and real or virtual, will be
determined. Moreover, the behavior of the dis-
persion relations in the vicinity of the photon line
will be studied. This will be accomplished by
using the properties of the Bessel and Hankelfunc-
tions contained in G. N. Watson. '2

The radiative or nonradiative character of the
SPQ is determined by whether the electromag-
netic fields associated with the surface plasma
have the form of traveling waves or exponentially
decaying waves outside the cylinder, y & g. The
fieM components are given by (2. 1), (2. 2), and
the dielectric function en(1d) = 1 so that the fields'

Whenever the eigenfrequency &u„(k,) is almost k,
independent the enhancement is expected to be
very significant. Since 0 is proportional to the
external static field we can satisfy Eq. (5.1) for
various values of m. One can in principle see a
successive enhancement of various harmonics
m&u2(m = 1, 2, 3, . . . ) by decreasing the external
field from a maximum value for which ~2= &o„(k,).
For a metallic cylinder even for the highest avail-
able fieMs Eq. (5.1}can be satisfied only for very
high m (of the order of 100 or larger) where the
spectrum is essentially a continuum one and the
various harmonic cannot be resolved. On the
other hand, for a doped semiconductor +0 can be
almost of the same magnitude as (d„and the en-
hancement of successive harmonics can be ob-
served. Note, however, that, when ~o-w„, the
original dielectric function e(&u) = 1 —&u2/&o2 is mod-
ified~ depending now not only on (d~ but on the new

frequency coo. This would complicate and modify
the results reported here but the method of theo-
retical study and the qualitative aspects discussed
above will remain unchanged.
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behavior is dependent upon the behavior of the
Hankel function H„")(2) for order n and argu-
ment 2-=Knr=r f(cv/c) an(~) —k, ]'~ =/4&/c)
—k,]'~ . For k, &&a/c, 2 is imaginary, i.e. ,
@=fr(k, —e/c) ~ -=lx~ where x* &0, and the Hankel
function H1"(jx") is related to the modified Bessel
function K„(x~) which decays exponentially for in-
creasing r. For &u/c &k„x is real and H„")(x}
behaves as a traveling cylindrical wave for y» g. '
Thus, for k, & ~/c the SPO are nonradiative modes
with exponentially decaying fields outside the cy-
linder, whereas for e/c & k, the SPO are radiative
with fields acting like traveling cylindrical waves.

The real or virtual character of the SPQ is de-
termined by whether the solutions of E(k„&u) = 0,
&u„= v„(k,) for real k„are either real or complex.
A real mode has an infinite lifetime, i.e. , the
imaginary part of the eigenfrequency is zero,
while a virtual mode has a finite lifetime, i.e. ,
the imaginary part is nonzero. Yet we can state
immediately that, since the SPO for &u/c & k, are
radiative, they must be virtual modes, otherwise
conservation of energy would be violated. How-
ever, the nonradiative modes are not open to im-
mediate prediction and their character can only be
determined by further manipulation of the proper-
ties of Z„(x) and H„")(x).

The ratios X and Y, given by (3.3) and (3. 5),
are the important factors in E(K, 0), i.e. , Eq.
(3.4). When K& 0, both arguments V1 and V2 are
imaginary; i.e. ,

V, = fa(K'+1 —O')'12= fy,',
V, = fa(K' —a')'~2= fVg,

so that X and K are defined by the modified Bessel
functions f„(v) ) and g(V2):

.y, ~„'4') yg Q(v) )' ' ~ ( v') ' f (v") '

H"'( v*) K'(y*) (A2)

2 Hu)( yg) 2 K (yg)

where the prime now denotes differentiation with
respect to V, or Yg. Because I„(V,*) and g(V2)
a.re real positive functions, ' X and 7 are now
real positive ratios and E(K, A) = 0 is thus a real
equation. In similar manner, for K & 0 & (K + 1)'
V& is imaginary and V& is real so that the ratios
are

.f„'(V,') „H„"'(V,)
1 I(yw) t 2Hn) (y)

X is xeal and positive as before, but F is complex
because the Hankei functions H„"'(V2) are complex
for all n. Thus, E(K, 0) = 0 is a complex equation
and gives rise to the virtual radiative modes for
0 & K. However, we suspect that the eigensolu-
tions for E&0 wQl be real because of the real
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character of E(K, 0) in this region.
The behavior of E(K, 0} in the vicinity of the

photon line is determined by the ratio 1'. The

vanishing of the argument V& causes the Hankel
functions to blow up, thus allowing H„"'(Vz) to be
evaluated through the infinite series, '

If„"'(V,)=Z„(V,)+&r„(V,)= 1+-' in(-,'V,)+y--g — Z„(V,)-'-g(-I)' ' ' g -+

f ~ (s —I —1)I (, (A4)

where

~„(V2)=Q
I }( f)l(kVw)"

The recurrence relations'

—.'[I„,(w)+f„.,(w)] = Z„'(w),
(AV)

and y= 0.577215. . . , because of rapid convergence
of the terms. Thus as K 0 we define 5-=(A
—Kw)'&'2«I so that by (3.3) we get

V, =- u5, V, -=u(5' —1)'"-a(-I)'"=au. (A5)

Moreover, because V& is imaginary and a con-
stant, the ratio X is a real positive constant, i.e. ,
by (A2)

X= 4&„'(u)/I„(u)] .
Because of the similarity of behavior of the

Hankel functions for all pg at the origin, we expect
a similarity of behavior of F(K, 0) for all n in the
vicinity of the photon line. Thus, F(K, 0) for z = 1
will be examined. Moreover, only terms up to
order 5 will be kept in the series expansion be-
cause of the factors In(wVz) and

n-&~(n —l —1)}(, ) „~,
l~

dominate the expansion.

are now used to obtain X and Ffor g=1, suchthat

lw(u) + f,(a)
2 f(u)

e,"'(u5) —a,"'(u5)
a,"'(a5)

(AB)

by (A3), (A5), and (A6). The series expansion
(A4) up to order 5w gives

Ifou (u5) =(I + (z/ )[w2+y2 1n(z a5) —1]}
—(-.' u5)'[I+ (2f/w)(y —1)],

Hg" (u5) =$1+ (2i/w)[ln(m5) + y —1]](-,'a5)

—(f/w) (-,' u5)-', (A9)

Ifw (u5) = [1+(f/ )(w2y ——,')] —,
" (-,'u5)' —(;/w)[1+ (~~u5)-w]

Inserting (AQ) into (Ag) gives

1+[2y+ 2 in(-,'u5) —wj](~a5)~ —(Sy -'g 3')('u5)'-
—1+[2y+ 21n(-,'u5) —wf —2] (2u5)w

(Alo)

Then, with 5= (0 —Kw)' w and n = 1, (3.4) becomes

F(K& 0) = (A —1) 5 X + fP(5 —1) Fw

—(M —1) 5w(5w —1)XF—K = 0 . (All)

Inserting (A10) into (All), multiplying out the
terms, and keeping only those of order up to 5,
result in the equation

(1+X)+0 (a [2y+2ln(-,'u5) —wj —1] —2(1+X)).
(A12)

If 5 is real, i.e. , A&K, the term In(&as) is
real and consequently (A12) is a complex equation.
However, when E& A, 5 is imaginary since we
have 5-=(A —Kw) ~2. This can be represented by

l

5= z5~ = g" 5~ where 5~ is real, such that the
natural logarithm becomes

ln(-,'a5) = ln( —,
' u5*}+—,'fw.

Thus (A12) is a real equation:

(A13)

(1+X)+0 (a [2y+ 2ln(m5") —1] —2(1+X)]=0 .
(A14)

Moreover, the nature of the modes has finally been
determined —virtual and radiative for A & E, and
real and nonradiative for E & A. Consequently,
E(K, 0) is not continuous across the photon line
and should approach it asymptotically for E= A,
E& A. This latter point can be shown by giving
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values to a and 5~ in (A14), i.e. , for a = l.0 and
5~=a '=0.006V38 we have 0=0.390214, while for
e= 1.0 and 5~ =e ' =0.00004M, 0=0.301083.
Another computation, but this time with += 0.1,

gave 0=0.695524 for 6~=@ and 0=0.687272 for
5~ = g . The values of the modified Bessel func-
tions in Watson' were used to compute X for both
values of a.
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