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%e study the resistivity p and the Hall coefficient R for a polycrystalline metallic host which

possesses carriers with a variety of transport properties, particularly an anisotropy over the Fermi
surface in the background defect scattering rate. Using the s-d model we derive general expressions for

p and R when the metallic host contains a dilute concentration of magnetic impurities. Our theory
when applied to Cu-Au{Fe) correctly predicts the dependence of p and R on temperature, magnetic
field, and Fe concentration C. The formulas can be expanded in powers of the concentration and we

find that the terms in p and R which are linear and quadratic in C are consistent with each other
and agree with experimental findings reported in a preceding paper.

I. INTRODUCTION

Numerous theoretical studies' have been made
on materials containing dilute magnetic impurities
which exhibit the Kondo effect. Of the many physi-
cal properties of these systems which have been in-
vestigated, the Hall effect has received relatively
little attention. The Hall coefficient has often been
used in materials as a standard test for the
existence of carriers having different transport
properties such as carriers of different effective
masses. In the case of an impurity which has a
spin magnetic moment, a magnetic field alters the
coupling between the impurity moment and the host
conduction electrons.

In the presence of an external field IJ there
exist tmo kinds of carriers, namely, spin up and
spin down (with respect to H}; and the relative
numbers and scattering rates of each spin species
vary as a function of field. The Hall coefficient
should therefore be a useful investigative tool.

Theoretical studies on the Hall effect in Kondo
systems include those by More, ' by Beal-Monod
and%einer, ' and by Fert and Jaoul. ' The first
tmo works include potential scattering and spin-
spin scattering from the magnetic impurity as
mell as electron-spin and impurity-spin coupling
to an external magnetic field; they assume that
host electronic lifetimes are infinitely long. The
third paper discusses the influence of irnpurity-
spin electron-orbital coupling on the Hall coeffi-
cient. All three papers assume that there is only
one type of carrier in the conduction band.

The payer of More and a fourth payer by Bloom-
field, Hechtand , Sievert' (BHS} indicate that the
resisitivity depends on the sum of the conduction-
electron spin-up and spin-domn relaxation times,
7'~ and 7 ~, while the anomalous part of the Hall
coefficient depends on their difference. The BHS
paper assumes an infinitely long host electronic
lifetime and utilizes a symmetric density of states

for single carriers, but does not include potential
scattering from the magnetic impurity. This
paper points out that the spin-flip process for
both spin directions is being frozen out by a
depopulation of levels as the magnetic field
H increases, since there is a decrease in the
populations of both the impurity spina and the
conduction spins parallel to the magnetic field,
this being the state of higher energy. %hen an
H field is turned on at lom temperatures, it couples
to the individual spins and hence begins to prevent
the spin-flip scattering from taking place; both
T~ and T~ increase with H and T and consequently
the resistivity decreases mith increasing H and T.
%ith no asymmetry in the effective density of
states, 7~ and 7~ increase in precisely the same
way, so that (rt —r~) = 0, and there would be no

contribution to the anomalous Hall coefficient.
More's calculation includes an asymmetry (due
to magnetic impurity potential scattering) which
allows one of the spin-relaxation times to increase
slightly more rapidly than the other with H.

In the preceding paper' (hereafter referred to
as Hall Effect I) we report on an experimental
investigation of the Hall coefficient in Cu-Au alloys
containing dilute concentrations of Fe. The ma-
terials studied mere polycrystalline and included
significant background scattering (even in the
absence of the Fe impurities) of the conduction
electrons. This condition contrasts mith the as-
sumptions of the four papers discussed above.
Moreover, the study by Fert and Jaoul assumes a
strong external field mhich suppresses spin-flip
scattering, and this does not apply to the experi-
mental conditions of Hall Effect I. In order to
interpret our experimental findings, me need to
utilize a theory which takes into account the ef-
fects of significant host scattering as well as a
realistic (not free-electron) band structure Our.
examination of existing theories did not reveal
any treatment which satisfied our requirements.
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It is well known that the Fermi surface (FS)
of the noble metals is continuous and multiply
connected. The FS parameters (such as relaxa-
tion time, velocity, mass, and curvature) vary
over the FS and they change continuously as a
function of Cu-Au alloying. In this paper we study
the influence on the anomalous resistivity and Hall
coefficient of an anisotropic host-defect relaxa-
tion time' as well as the magnetic impurity's
charge-contrast potential and spin-spin inter-
action with the conduction electrons in a magnetic
field.

In Sec. IIA we derive the general expressions
for the resistivity p and the Hall coefficient R
in the presence of a magnetic field for an aniso-
tropic host containing a magnetic impurity. The
quantities p and R are expressed in a power series
in the concentration C. The coefficients are in-
tegrals over the FS and will therefore depend on
host properties. In the Appendix we discuss
several forms of the conductivity tensor for a
polycrystalline specimen. In Sec. II 8 we break
up the integrals over the FS into sums of terms,
each of which has a different relaxation time T.
We show that for p, the linear term in C must be
positive and the quadratic term must be negative.
For R we show that a linear term exists, and
can be of either sign depending on the relative
values of the anisotropic relaxation times, ve-
locities, and curvatures. We also show that for
a single isotropic carrier in the presence of back-
ground scattering, our formula for 8 reduces to
a form which has no linear term in C. In Sec.
IIIA we discuss the FS symmetries and aniso-
tropies in noble metals and their influence on
the host Hall coefficient shown in Fig. 1 of Hall
Effect I. In Sec. III 8 we analyze the FS geometry
and present values for the anisotropic relaxation
times based on calculations and transport. and
de Haas-van Alphen measurements in noble-
metal binary host materials. Section IV uses
this analysis to evaluate the general expressions
for the Hall coefficient of Cu-Au alloys containing
Fe impurities derived in Sec. II B. We then discuss
the experimental data from Hall Effect I in the
light of these theoretical considerations.

II. THEORY OF RESISTIVITY AND HALL

COEFFICIENT IN METALS CONTAINING

DEFECTS AND MAGNETIC IMI'URITIES

A. General expressions for p and 8

We take the external static I field along the
positive z axis. Then each electronic spin species
makes a separate contribution to the conductivity
tensor, o =cr +~ . Each o is evaluated by in-
tegrating in k space over a constant energy

surface, e, (k) =a~ s-psB .Spin up or down cor-
responds here to s=+1 or —1, respectively. Due
to the fact that the host samples are polycrystal-
line and disordered alloys, their bulk relaxation
times T are quite short so that (d, T«1. Here
(d, is the cyclotron fre(luency, eH/mc. We as-
sume that defect scattering (rather than phonon
scattering) is dominant at the low temperatures
at which the polycrystalline samples are being
studied. The total scattering rate of the conduc-
tion carriers is given' by the sum of the scat-
tering rates due to the host impurities and foreign
impurities

1/r=1/r, +Ca, .

Our use of a binary host alloy and our restriction
to low temperatures essentially eliminates the
influence of electron-phonon scattering. However,
this latter interaction can be implicitly included
by regarding 1/r, (the scattering rate in the
absence of magnetic impurities) and Ca, as the
total scattering rates due to defects and lattice
vibrations.

In the following, we neglect the spin dependence
of everything but the impurity-induced scattering
rate e, . To terms linear in +, T, we have for the
diagonal and off-diagonal conductivity (times H ')

v' =v'(122'2} ' g vvdd,

v„'=—v'(Svv'v} ' P v'v'}2dd, ,

where e is the magnitude of the electronic charge,
dS~ is a k-space surface element, v is the velocity
at point k of the FS, and Ã is the mean curvature
of the FS at point k. For further details, see the
Appendix of this paper.

We assume the host defect scattering rate is
much greater than that due to the (dilute) magnetic
impurities and using E(I. (1) we expand r in powers
of C, the fractional concentration of Fe impurity:

T To CR~ To +C ~ ~ To+

T'=To-2Cu To+SC'a'T + ~ ~ ~ .

The resistivity is computed from p=a' '. Now we
obtain

(r =o' +c' = e'(6w'h) ' P (- C)' o„,
r=0

where
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0'p = dSg, vToy (T~ = dSg, QT~ Q+
pressions do not obey Matthiesen's rule that the
phonon and impurity contributions to the resistivity
are simply additive.

3 2+02- 02~ = dSa vTo+»
Cp

and

2Q&=Rt +&i, Ql+lRl =2(R++R ) . (8)

In terms of these quantities then, in powers of C

to order C',

8. Discussion of linear and quadratic terms in C

Let us now consider the terms in Eqs. (7) and

(10); i.e., the anomalous contributions to p and
A. The linear term (in C) in the resistivity is
explicitly positive, while the quadratic term is
easily proved to be negative; i.e., e20o —01&0.
To see this we represent the integrals over the
FS by weighted sums fdS„~~ ~ =+fv, ~ ~ ~ . Then
we have

6N'9g 0 0 g ',
P 2 1+ C C +o o 0

e0o

For the off-diagonal conductivity we carry out a
similar calculation and obtain

as=as&+aei= —e'(Sffh'c) ' Q (r +)I(- C)' a„„,
r=p

~o0'2-0 1
2

1 3 2 3 2
o 2 +

2 K]Ng V]V~ Tong+]T ~+ T ~g
ig

2 2
~&~STp&VC~+ ~Tpg Vg O'+)

1 ~ %2=aa, + —~Zm, lvfT, T fv, vf(T„a„—T la, f) &0.

where

0'= de & v To

0'g~ = de, Nv To@+

0g2= de, N v'To CR', +Q'

(8) Note that the term quadratic in C is a sum of two
negative terms and thus can derive from two
sources: the first term, -coa2, depends on the
difference between the scattering rates of the
spin-up and spin-down electrons (with respect
to H), and the second term depends on the aniso-
tropy over the FS of the scattering rates.

The linear contribution to 8 may be either
positive or negative depending on the characteris-
tics of the conduction electrons. Representing
the surface integrals by sums again, we have

1
0 ffpRl lip 1 0 llil 2 Q NlNf Tpl Tpf VlVf

The Hall coefficient is defined as R =a„/a' so that
from Eq. (8) and the square of Eq. (7) we find

8 = (- 12w'affp/eca ', )(1+28,C + 3gi',,C '+ ~ ~ ~ ),
(10)

where

&ai
1 y0'o 0'eo

~u' 0'~2 2 V~ 4 0,0~,
0'

p 0'gp 3 0'p 3 0'p0'gp

When the phonon scattering rates (due to the
vibrations of the host lattice and the magnetic
impurity atoms) are not completely negligible
(but are still smail compared to the host defect
scattering), we can further expand the T's and
e's appearing in p and B. Because of the non-
linear dependence on the 0, , the resulting ex-

(Tpl a yl Tpf &y f )(TplVl Nl Tpf Vf Nf ).

(12)

First we note that for 8, + 0, we need an anisotropy
over the Fermi surface of both the scattering rate
ratio Toe+ and the quantity T, v¹ In real ma-
terials these anisotropies are common. We pause
now to consider the isotropic case.

For a spherical Fs with one effective carrier
(free-electron model) we have her =m, vr, ap

=4m'~ Tov~, etc. Here m, is the free-electron
mass. Then from Eq. (12), 8, =0, while fram
Eqs. (5), (9), and (11), A, =T'pa' This was o.ur
original expectation: since e'ap/(6e'h) =me'T, /
mp with ff = 0 ff (8m ocr/h ), it follows that

A = —(nec) '[1+(CT a )'+ ~ ~ ~ ]

P=(ffe'Tplmp) '[I+CTpa, —(CTpa )'+ ~ ~ ~ ].
(18)
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That is, the primary anomalous contribution of
the magnetic impurities to p depends linearly on
C and depends on e„the sum of the spin-up and
spin-down scattering rates; and the secondary
anomalous contribution to p depends on the square
of C and o. , the Chfference between the spin-up
and spin-down scattering rates. The linear term
is missing entirely in the expression for R, and
its leading anomalous term is identical to the
secondary one of p.

For the case of an anisotropic FS, since the
argument of the double sum in Eq. (12) depends
on the pairing (i +j), it is convenient to define
ordered pairs (ij =k) such that r«a„&7 0~ a+~,
and then we further define

$0)Kg 7Q) 7pg V) Vg —+
7pf Q+f 7pf Q+f

7Q]vg N] —7Q~ v~ N~ = X~ .
(14)

Then we also have

(15)

Note that the quadratic term in p can be written
in these terms as o,o,+ -v', =Q, W, Y~. Since we
have defined k such that K~&0, contributions to
R, are positive if X,&0. That is, Z, &0 if (a) both
contributions are electronlike (P, and F~, both
positive) or holelike (Ã, and Ãz, both negative)
and

] 8, /Ã, ~
& r„v,/(v„v, ); (16)

or if (b) there is a holelike (8~& 0) and an electron-
like (F, &0) contribution. To find the net value of
R j we must sum all the pair contributions Z,

III. BINARY NOBLE-METAL ALLOYS: HOST
PROPERTIES

A. Behavior of host Hall coefficient and
resistivity: Discussion of experimental data

The Cu-Au system allows complete miscibility
for all compositions. The two metals are in
mutual solid solution'; they are alike with respect
to valence and crystal structure; however, they
have very dissimilar atomic volumes. For the
disordered alloy, Nordheim's concentration rule
for the resistivity is supposed to hold:

p, —(const. ) 0-X(1 —X),
where p, is the resistivity of the host alloy with-
out Fe, and X is the at.% Au in the Cu-Au alloy;
and indeed we find that the resistivity of our host
samples obeys Eq. (1V). Our data'0 in fact obeys
the formula

po- [0.004+52.8X(1 —X}] pgcm. . (18)

Now p, depends on o, ,' and R, goes as o,„/o', .
Since o „depends linearly on 7Q while v„„is
proportional to 7,', we expect both these quantities
to change with composition according to the change
in the average 7Q. Because the formula for Rp
effectively divides out the average 7Q and v, the
measurement of RQ is a sensitive gauge of the
changing lattice constant and relative relaxation
times. This leads to the complicated compositional
behavior of the Hall coefficient R, of the host alloy
without Fe shown in Fig. 1 of Hall Effect l. (Note
that in Hall Effect I, the host Hall coefficient is
referred to as R~.) From this figure and from
our p, data" we indeed find that (-R,/p', ) ' '
-(-o,„)' ' also obeys Eq. (1V). This means that
the dominant scattering rates, 7 ', change together
and that Eq. (17) is obeyed by the average r '.
The lattice constant increases as more Au is
added, and hence the magnitude of the Hall co-
efficient is expected to increase (since R ~ 1/kz,
where kr is the Fermi momentum). This in-
creasing trend is indicated in Fig. 1 of Hall Effect
I. The magnitude of RQ for pure Cu or Au is less
than predicted for one electron per atom in the
conduction band. This is attributed to holes or
negative-curvature contributions to 0~. In
Ziman's" calculation the cancellation due to the
negative mass necks" yielded an R, too low in
value as compared with experiment. In order to
compensate this, Ziman assumed that 7 on the
necks (r„)was less than r on the belly (r, ) of
the FS. However, Deaton and Gavenda" found
from their ultrasonic attenuation measurements
on reasonably pure Cu that 7„=87~ . We note that
the mean free paths in their samples were limited
by impurity (not phonon) scattering. According
to Ziman, " in nondilute Cu-Au alloys, the dif-
ference in atomic volumes could cause 7„to be
less than 7, . However, Heine" points out that
Hurd's" Hall-effect data on Ag-Au alloys indicate
that over a narrow band about the neck center,
r„»r~even for 50% concentrations. On the FS
of Cu and Au there are significant bulges toward
the square X faces of the Brillouin zone (BZ);
there are negative curvatures associated with the
regions where these peaks join the bulk of the FS
(the belly) (see Fig. 1 herein). Thus, these areas
(c and d on Fig. 2), as well as those at the neck
and the juncture of the neck and the belly (f and

g on Fig. 2}, provide the regions of the FS which
reduce the magnitude of R, . We propose that the
Hall-effect data on the Cu-Au system can be ex-
plained by the peaks below X having large positive
curvature while the necks at L have large negative
curvature and 7 's larger than 7, (due to the non-
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FIG. 1. Brillouin zone and Fermi surface of a noble
metal. Four orbits are shown: neck (n), dog's bone

{dog), extremal (ex), and belly (b). The basic ~ of the
Fermi surface is outlined by the dashed line.

admixture of P and d states) would be unaffected
by alloying these two metals and the condition
T, «T„would prevail. For alloys of Cu and Au,
however, it is expected that the difference in their
atomic volumes would give the same effect as
charged impurities and the relative proportions
of P-wave to s-wave scattering would increase.
We agree with this statement but feel that the
relative change would still be small and the con-
dition r~& T„will still hold for Cu-Au alloys as
well as for pure Cu or Au. We feel that the reason
Ziman had to invoke the condition x„&7, was that
in his simplified treatment he only allowed two
relaxation times over the whole FS. This contrasts
with our differentiating between the 7 on the peak,
belly, neck, and juncture regions.

B. Presentation of approximate anisotropic FS
parameters

s-state character of the electrons there). Also
we require that the 7's from the juncture regions
are different from the belly 7. We propose that
as the alloy composition changes from pure Cu

or pure Au, the v's from the peaks initially
diminish relatively more than the other regions,
and hence, these regions contribute somewhat
less to 8,. This explains the initial fall of R, on

either end of Fig. 1 in Hall Effect I. At higher
concentrations (0.25& X & 0.90)A, rises to larger
values, showing the lessening of the negative-
curvature contributions due to the relative short-
ening of T on the neck regions. (But still we feel
the condition r„&T, would hold. )

We wish to comment on the expectations of
Ziman" that ~„&7~ in Cu and Cu-Au alloys.
Ziman" points out that since both Ag and Au have
the same atomic volume, the scattering of elec-
trons on the neck (where the electrons are in an

L

FIG. 2. Basic & of the Fermi surface. The points
48

X, U, I, and E correspond to the points on the Fermi
surface which are intersected by the line drawn from the
center to the matching points on the Brillouin zone. We

divide the surface area into the regions a-g.

From an examination of the contour map shown
in Fig. 1, from a three-dimensional model of the
Cu FS" (from which Fig. 1 was drawn), and
from FS radii" and radii of curvature data" taken
on Cu, we have taken the basic +, of the FS (in-
dicated on Fig. 1 by dashed portion) and divided
it into seven regions as shown in Fig. 2. We choose
radii of curvature to parametrize each region
from characteristic points therein. These data
are entered in Table I under the rom N'. There
are two regions contributing negative mean curva-
ture (f and g encircle each of the necks under
I, (111)). Regions 5, c, and d have positive mean
curvature, but principal radii of opposite sign.
Region a is characterized by the peak under X
(100) and has equal positive principal radii.
Region e, which we have taken as the most ex-
tensive area (see the row w' in Table I), contains
both positive and negative principal radii; but
the mean curvature is positive everywhere and
the value of N' in Table I is characteristic of
this region (the belly).

The velocities are taken from Halse" and
Doezema and Koch" and are presented in Table I
in terms of the free-electron-sphere Fermi
velocity, v~ = 1.578 x 10' cm/sec. These velocities,
as well as the relaxation-time values taken from
Atkinson's analysis of his magnetoresistivity
measurements, are characterized by typical
points in the regions a-g. The true distribution
of 7, over the FS is probably more anisotropic
than Atkinson's analysis indicates. According to
Harris, "Atkinson used a somewhat simplified
parametrization of r(k); however, for our pur-
poses his analysis is sufficient. By identifying
the parts of the FS involved in the four orbits
measured by Deaton and Gavenda" (depicted in
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TABLE I. Approximate Fermi surface parameters for copper. The weights, so', are frac-
tions of the basic ~ FS area; ¹=10 N {cm), (Refs. 17-19);v'=y/(1. 578x10 cm/sec),
(Refs. 18 and 19)' vo = 7.6x 10' 7() (sec), (Ref. 20); 1/7.,' = (1/7,'); /(1/7~)~, (Refs. 21 and 22}.

Region

V

7Q

1/7;
l4 &0 5

peal

7tyl
0~+I'7 s2 y I2

0

Z0 /7'

0.092
(0.373)-'

+ (0.373)
=5 4

O.VQ

1.8
0.80
0.113
6.80
0.77
1.44

0.130
(0.42)-'

+Q
=2.4
0.77
1.7
1.40
0.170
3.14
0.54
2.38

0.186
(1.30)-'

-(1.62)-'
= 0.16
0.70
1.2
1.20
0.156
0.13
0.02
1.44

0.115
(0.25) '

—(0.68)
=2.5
0.78
2.1
1.00
0.189
4, 10
0.77
2.10

Q.382
{1.33)

+ (1,33)
= 1.5
0.74
2.7
1.12
0,764
3.40
2.60
3.02

Q.066
(0.31)

-(0.13)
4 3

0.60
2.9
0.40
0.115

—7.48
-0.86

1.16

0,031
(0.26)-'

-(0.10)-'
= -6.0
0.43

Q

0.12
0,053

—10.32
-0.55

0.48

r 0 = 3.6 x 10 " sec/po( p Q cm) . (19)

Also note that when we sum the entries in row
8 of Table I, divide by the square of the sum of
row 6, and then divide by the corresponding free-
electron value [(os/o', ) &,

= 3.0], we obtain RJR f,
= 0.68. This compares favorably with" the ob-
served Cu value, R~, /R&, = 0.66-0.70.

We remind the reader that the values of v pre-
sented in the fourth row of Table I are based
on relatively pure Cu (Atkinson's samples have
X ~0.01). They should all be scaled according to
Eq. (19) to give the first-order effect of alloying.
Furthermore, as pointed out in Sec. IIIA, as X
(or 1-X) increases from zero, we expect that
7', will become slightly reduced relative to v', ;
and then as X takes on values between 0.25 and
0.90, me expect that 7„milldecrease relative to
TQ ~

Fig. 1), we analyzed the relaxation time into four
characteristic values (pertaining to the neck,
peak, belly, and the region below K). The resulting
anisotropy mas consistent with Atkinson's relaxa-
tion-time map; homever, Deaton and Gavenda's
data mere taken on pure Cu having average v,
= 10 "sec while Atkinson's" average 7,= 0.4
x 10 "sec. The resistivity of our host poly-
crystalline samples of pure Cu is comparable
with that calculated from a v approximately equal
to that of Deaton and Gavenda's samples [see
free-electron calculation in Eq. (13) above]. How-
ever, our most studied composition CuAu, 4 3,
for example, has p0=6.4 p.Q cm. mhich implies,
in this case, that 7, =0.56@10 "sec. We note
here that from Eqs. (13) and (18) one may use the
formula

IU. EUALUATION OF THE LINEAR COEFFICIENT

IN R FOR Cu-Au CONTAINING DILUTE

CONCENTRATIONS OF MAGNETIC IMPURITES

We shall compute the magnetic impurity-induced
scattering (a, ) from the papers of BHS' and More. '
These authors take a contact potential for the
Kondo scattering, so that their scattering rate is
independent of the drift velocity; we make the
distinction between the different carriers by
writing

(Z~ = CE /T~

Thus the u, will carry the full temperature and
magnetic-field behavior of the scattering rate by
the magnetic impurity; while 1/rz will describe
the dependence on the FS position of the electron's
scattering by the Fe.

The FS scattering rate enhancement, 1/7,'(k),
may be estimated by considering the phase-shift
formalism for the total scattering rate in dilute
alloys. " The host electronic wave functions are
expanded in angular momentum components (L)
over the FS. The scattering of the host electrons
from impurity atoms causes changes in the phases
of these components. The contribution to the
1/r,' at each point of the FS depends on a sum
of components (s, P, or d symmetry) each of which
depends essentially on the product of three factors:
(i) the amount of s-, P-, or d-like character in the
Bloch state (these inverse partial lifetimes are a
measure of the s, p, and d charge densities over
the FS); (ii) the L-dependent normalization factor
for the impurity atom; and (iii) the sine of the
phase-shift change due to the impurity atom. Now

Coleridge' has made an analysis of his de Haas-
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van Alphen effect data in dilute Cu(Fe). He has
observed the effect of the magnetic-field-depen-
dent exchange scattering (Kondo effect} on the
Dingle temperature and has found that the scat-
tering of the neck electrons is unenhanced by ex-
change effects while the belly electrons suffer
increased scattering.

According to Harris, "scattering by Fe in noble
metals can be described by pure s- and d-wave
terms. The neck region of the Cu Fs is pre-
dominantly P like with some d-like character
(about 1.8: 1 according to Hefs. 21 and 22). Thus,
the large charge density of the p-wave component
of the electrons on the neck is unaffected by the
Fe impurities; only the d-wave component will
participate. However, the Fe contributes both
s and d scattering. The neck electrons have no
s-wave component, but regions b, c, d, and e have
the largest s- and d-wave component; hence the
electrons from these latter regions have their (ex-
change) scattering rate enhanced, while the elec-
trons from the neck region have their scattering di-
minished. Taking these considerations and the
partial lifetime FS maps of Harris" into account,
we propose the scattering rates (I/r,'), presented
in TaMe I.

Coleridge" notes that the resistivity data on
Cu(Fe) can also be understood by assuming that
while the belly electrons have their scattering en-
hanced, the neck electrons are scarcely affected
by the exchange scattering from the Fe impurities.
It is important for us to point out to the reader
(see Harris"} that there is an identity between
de Haas-van Alphen lifetimes and relaxation times
for noble-metal electrons scattering from Fe
imparities because of the absence of P- wave scat-
tering (the terms contributing to scattering then
have the same parity). Next we note that the
quantity p, taken from Ref. 5 and shown in Fig. 5

of Hall Effect I, is directly proportional to
a+(a, = 10' pN/DC}. Using this assumption, from
the sixth, seventh, and ninth rows of Table I, we

can calculate and present in Table II the necessary

data for evaluating o,o«R, in Eg. (15). The sum
of the 21 ordered pairings in Table II yields
Qy Zy = R i+Zy = —2. 8 & i .

As discussed above, the qualitative effect of
alloying is to reduce all the 7's according to Eq.
(19). Some of the r's (such as for regions a, f,
and g) may be reduced proportionately more than
others; but we expect the relative ordering of the
r's will be maintained. Also, the relative areas
and curvatures will change as the alloy composi-
tion moves from Cu toward Au; but again we do
not expect the qualitative features of Tables I
and II to change drastically. Thus the deduction
from Table II, that 81~0 should hold for the
CuAu alloys studied in Hall Effect I; i.e., we
expect for most of the materials under our con-
sideration that there is a contribution to the Hall
coefficient which is linearly dependent on C and
is opposite in sign to the host R, [see Eq. (10)].
However, as noted in Hall Effect I, one of the
alloy compositions (X=0.80} has a linear con-
tribution of the same sign as R, (see Fig. 2 there)
VVe note two other features exhibited by this
particular composition: (a} The host R, (shown
in Hall Effect I, Fig. 1) has a large maximum
at the 80% composition. The experimental value
has almost reached the free-electron value for
Ap This indicate s that the negative contr ibut ions
to o«(f and g in the eighth row of Table I) have
decreased while the positive contributions have
correspondingly increased. In this case, then,
since the host properties are so different from
those of other alloy compositions, we might ex-
pect that B,would be qualitatively different when
magnetic impurities are added. (b) Also in Fig.
9 of Hall Effect I, the magnetic-field dependence
of 8 for CuAu« is zero, and, as mentioned in
Hall Effect I, there appears to be a sign reversal
in Aep -82p. Of course T~ is very low for the Au-
rich alloys so very little H dependence is expected.
%'e see then that even in this anomalous case the
magnetic behavior is determined by the transport
properties of the host material.

I'A+LE Q. Ordered pairing of Fermi Surface regions for evaluating linear contribution to the Hall coefficient R.
Here ~k=(&0/7,")g —(&o//7s)y ~k ~~70'~ )4~ ~0v )~, Xk=(NT(fv )g

—(NTot )g, Zk=-W~ XkFk.

k -Fk W~ Xk -~k ~k Xk k -Fk W Xk

ab 0.00 0.0192 3.66
ac 0.94 0.0176 6.67
ad 0.66 0.0214 2.70
a e 1.58 0.0863 3.40
fa 0.28 0.0130 -14.29
ga 0.96 0.0060 —17.12
cb 0.94 0.0265 -3.01

0.066
0.000
0.038
0.464

-0.052
-0.099
-0.075

db 0.2 8 0.0321
be 0,64 0.1300

0.96
-0.26

fb 1 22 O O196 -1O 63
gb 1.90 0,009Q -13.46
cd 0.66 Q.0290 -3.97
de 0.92 0.1440 0.70
gtt 1.62 0.0100 -14.42

0.009
-0.021
-0.254
-0.230
-0.076

0.093
-0.234

ce 1.58
0.94

fc 0.28
fe 0.92
gc 0.96
ge 2.54

gf 0.6S

0.1190
0.0217
0.0179
0.0879
0.0083
0.0404
0.0061

—3.27
-11.58
—7.62

—10.88
-10.45

13y72
2 84

-0.614
-0.236
-0.038
-0.880
-0.083
-1.408
-0.012
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p=(6.37+1450C}pg cm.

Upon comparison with Ecl. (7), we see that

o', /co = 1450/6. 37 = 230.

(21)

(22)

From Fig. 2 of Hall Effect I and from Egs. (10)
and (11) we can obtain

The theory presented here makes definite pre-
dictions about the coefficients in the concentration
expansion of the expressions for the resistivity
and Hall coefficient. The linear term in p adds
to the host resistivity and has a temperature and
field dependence determined by o+ [see Eqs. (5)
and (7)]. As pointed out in Hall Effect I our ex-
perimental data follow quite closely this predic-
tion as is shown by the favorable comparison with
the calculation of u+ carried out by BHS. Further-
more, in the analysis of CuAu, which had a com-
paratively large impurity concentration, it was
found that a small quadratic contribution existed
which was opposite in sign to the linear one. This
is in agreement with the proof carried out in
Sec. II B. There is a contribution to the quadratic
term in both p and R which depends on 0. and this
can be obtained from the calculation carried out
by More. However, our measurements are not
sufficiently accurate to warrant such a quantitative
fit. In Hall Effect I we show that the concentration
dependence of R is dominated by the linear term
A, . Therefore, according to Eqs. (5), (9), and
(ll), the experimental data for 8-R„vres su

temperature and field should also be in direct
correspondence to a, calculated in BHS. This is
found to be the case; also it is noted that a small
C' contribution to R exists and the sign of this
term is positive for the CuAu, composition. Un-
like the quadratic term in p, the expression for
R, [ see Eq. (11)] may be of either sign.

As noted earlier, the sample CuAu„, was
studied most extensively. It obeys' the equation

explicit form for the H dependence of a, may be
obtained. Now for low magnetic fields and tem-
peratures, the theoretical expectation" is that the
anomalous magnetoresistance, ap = p(H} —p„goes
as -H'. From perturbation theory (high-T cal-
culations"), b,p is expected to be directly pro-
portional to -M', where hf is the magnetization
due to the magnetic impurities. Schmitt and
Jacobs" have made a detailed study of the T,
C, and H dependence of p and dp in Cu(Mn). For
all studied values of the parameters (dilute and
higher concentrations, above and below T~, and
full range of H),

~p/p(0) = —~m',

X&0 and independent of H. They conclude that this
is true under very general conditions.

Moreover, Franken and Van den Berg" in their
study of the Hall effect in Cu(Mn) and Ag(Mn) have
proposed in analogy with ferromagnetism that

R =Ro+R~MH

where R, and R are independent of H. Hence
they deduce that 8 vs [d p/p(0)] ' 'H ' should yield
a straight line; viz. ,

1/'2 g 1/2
A=Ao+Rm „(0) H '=Do+8'

(0)

(24)

Their data obey this equation very well; our data
(see Fig. 7 of Hall Effect I) also is fit by this
relation quite well. Our theoretical and experi-
mental findings for dilute alloys together with
Franken and Van den Berg's relation [Eq. (24)
here] lead to the result presented in Eq. (27),
which is derived as follows.

From E|I. (7) we have

ppo 1+~C; p 0 =po 1+ ' C

0 R 3gP Hl

2ROC ' o go eo
(23) and from Egs. (5}, (9), and (20)

Thus from Eqs. (22) and (23) we see that c,/&xo

and a„,/os, are of the same order of magnitude.
But according to Eqs. (5) and (9), both these
quantities have their orders of magnitude de-
termined by the product 7,e, . Then from the

r, relevant to this composition [see above Eg.
(19)] and from the a, of BHS (4x 10")we find
70A + 200 This shows that the anomalous p
and R are consistent with each other as predicted
by our theory; and that their order of magnitude
is determined by the host relaxation time and the
single-particle exchange scattering rate.

There is a further relation that can be deduced
from these observations. %e shall show that an

o', = C, &+, o'a, = C~

p- p(o)
p(0) p(0)

where

D, = c,[o,+cc,~,(o)]-' .

(25)

Similarly from Eg. (24}

R —R, =2R,CD, n„
where

D, = C,/o'0 —C2/oso ~

(26)

where C, and C, are independent of T and H. Thus,
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Now we shall combine Eqs. (25) and (26) which
assert that b,p/p, and 8 are linearly dependent
upon each other, with the nonlinear relation
specified by Eq. (24). Equations (25) and (26) in-
serted into the square of Eq. (24) yield

(27)

where

4D,A~H Ca+(0)
RI D

This result, Eq. (2'I), fits quite well the theoreti-
cal calculations in BHS and our own data in Hall
Effect I; it also yields the correct quadratic
dependence on H at low values of the magnetic
field, and the observed asymptotic behavior, H ',
at high values. " We point out that the high-field
logH dependence expected from perturbation theory
is only valid over a limited range of field decades,
as has also been pointed out by Yosida and Yoshi-
mors, "

U. CONCLUSION

A. Concluding statement and comments on skew

scattering theory

One of the major observations of our experi-
mental work reported in Hall Effect I is the pro-
nounced linear dependence on the concentration
of the anomalous Hall coefficient. Furthermore,
the temperature and magnetic field dependence of
the linear contributions to the anomalous resistivity
and Hall coefficient are almost identical to each
other and similar in behavior to the calculation of
the resistivity carried out by BHS.' Previous
theories of the Hall coefficient based on a single-
carrier host and a purely s-d interaction did not
obtain any linear contribution to R. A linear term
is found in the work of Fert and Jaoul however,
this is a perturbational calculation based on the
assumption that the 8 field is sufficiently high to
suppress spin-flip scattering. This assumption
clearly does not hold for the experimental condi-
tions of Hall Effect I, and the theoretical predic-
tions of Fert and Jaoul are therefore not appli-
cable. After our work was completed, we received
a preprint by Giovannini" in which he investigates
the spin-orbital scattering inQuence on R. He con-
siders short relaxation times (&u, r «1) but does
not include any anisotropy in v. A linear con-
centration dependence of R was found to result
from the inclusion of a spin-orbit (skew scattering)
term in the Hamiltonian, additional to the usual
s-d coupling term. The value of the coefficient of
the spin-orbital term was deduced by assuming
that the experimentally observed linear behavior

is due entirely to this term. The spin-orbit term
makes no contribution to the term in p which is
linear in C. We have shown here, however, that
from the usual s-d interaction, linear terms in
both p and R result, the latter existing if aniso-
tropic host background scattering is included,
which is the case in most realistic materials. We
can use the experimentally determined behavior
of p to calculate the coefficient of the s-d term
in the Hamiltonian. This coefficient can then be
used in our theory to calculate the linear behavior
of R, which is found to agree with experiment.
We find it unnecessary to invoke an additional
term to account for the order of magnitude of the
observed behavior. An additional skew scattering
contribution to R must be either smaller, or at
most comparable to the term derived in the present
paper. Giovannini' suggests that one could extract
details of the magnetic impurity state from experi-
mental data on R. We point out that in order to
do this, one must separate the two possible linear
contributions to R carefully. This might be done

by studying the effect of skew scattering on other
physical properties.

B. Summary

We have derived general expressions for the Hall
coefficient R and the resistivity p for a realistic
host which has anisotropic relaxation times and
contains a dilute concentration of magnetic im-
purities. Contrary to the expectations based on a
single-carrier model, we found that the same
linear (in C) terms contribute to 8 as well as p;
and this is observed experimentally. We then con-
sider the particular case of Cu-Au(Fe) and c;I-
culate the relevant FS parameters from known
transport measurements and analyses of noble
metals. We have found it necessary to include
anisotropy over the FS in the spin-scattering rates
as well as the host relaxation times. We find that
our theory correctly predicts the dependence of
R on temperature, magnetic field, and concentra-
tion. Further, our calculation yields results which
are the same order of magnitude as the experimen-
tal data. In particular, the terms linear in C for
p and R are numerically consistent with each
other; and the small C' contributions to p and R
which we predict are found to be in qualitative
agreement with the experimental findings reported
in Hall Effect I.
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APPENDIX

Here we derive and discuss the connection
between several forms of the diagonal (o} and off-
diagonal (crz) components of the conductivity tensor
for a polycrystalline specimen. Ziman" has
presented formulas equivalent to

relaxation time enters into Stern's formula.
From the Boltmann equation in the relaxation-

time approximation, ' we have for the diagonal
and off-diagonal conductivity

rr„=e'(wh') ' f dh, It' dururre, ,

u=e'(hw')r) '
r(j vr du (A 1) o,„=—o„,= —e'H(zk'c) ' dk, F7 v,

&(Tv„)
g 8~

v„=-e'(lh *hc) ' j} P (u' —v*, )

Cp

xM ' 'v 'dS

(As)

Here cp, the orbital parameter which runs con-
tinuously from 0 to 2n, and the orbital mass m
are defined in terms of the k-space electron orbit
induced by the magnetic field":

The integrals are over the k-space FS (e» = zr) in
one Brillouin zone; 7, v, and M ' depend on FS
position (i.e., even though evaluated at the same
energy, they exhibit anisotropies); and

ur=lr(h. )-
g dh/u. ; dru=( .,)- Irdh;

v~+vy =vi=v sin 8 (A6)

V =jf-h ' V'= g V'
gp j =xy»

4F4 erg rs 6 g ~~y Vg

8kX y

(A3)

Stern' has presented a formula which we gen-
eralize to

The velocity, u, given in E(1. (A3) is normal to the
FS, and vi is the component perpendicular to the
z direction (H field). The conductivity for a poly-
crystalline sample can be symmetrized and
averaged over all directions of H. In this case
it is convenient to change the integration variables;
from E(l. (A6} (fk, dig = jf(mt)d ) 'dk, dk; then in terms
of the local coordinates, dS», dk, dk = (vi/v)dS»
and

rr„=—e'(h h'c) '
r(I)

v'r'h(dh (A4) u=-', (u„rr„)=e'(he'h) '
j)r dd, ru'/v .

where Z is the mean curvature of the FS at point
A. Stern took 7 as isotropic, and was interested
in optical experiments for which case cov' » 1;
hence —r'-((h)+i/T) '= &a ', and therefore no

Finally, using Eg (AS) an.d averaging over all
H directions, "we obtain E(1. (Al). Now from
E(l. (A3) and vd 6/Sk = v,a/Sk„—v„&/&k„it follows
that

» = »» = e (2vk»c) hdk, -dye' ' " — " =-e'(2sk'c) ' &S»v ~ 'rH »

(AV)

E(luation (AV) reduces to Eq. (A2) if we average
over all directions of H and take into account the
symmetry of the FS [there exist conjugate points
such that v„-—v„,but (2I) sv,'h/sk„= v,M, „'

V,m+.-„].h
A very useful transformation of E(l. (AV) is

achieved by defining N, 33'" the normal curvature
of a normal section of the FS. It is equal to the
ordinary flexure of the curve formed by the inter-
section of the FS with the plane formed by v (the
normal to the FS) and dk (the tangent to the orbit).

I

The unit vector along dk is given by

dv v 8v„v„&v
d'k 8A 8k (AS)

k =(k, x v)/ik, x v( =(-v„i+v,j}/vi,
while the rate of change of the normal to the sur-
face with respect to k (along the orbit) is

dy/dfk =d[(g, i+v„j+v,k)/v]/dk .

We have then"
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so that

v„=—e'(2mb'c} '$ ds v'v'N.

Note that dk on the actual orbit and dk in the
normal section are equal; N is independent of
8; u' is given by Eq. (AS); and 7 depends only on
the position on the FS (not the direction of H)
After substituting Eq. (AS) into Eq. (AV) and

averaging over all orientations of H, we obtain
Eq. (A4). Note that the mean normal curvature
can be expressed" as N = 1/p, + 1/p„ where 1/p,
and I/ps are the principal curvatures of the FS.
Now pl and pp ale the radii of curvature in two
mutually perpendicular planes whose intersection
is normal to the FS. The combination 1/p, + 1/p,
is invariant" with respect to rotation of these two
mutually perpendicular planes about v. Also,
when the center of curvature of the normal section
lies inside the Fs, N or p is taken as positive;
while if the center lies outside the FS, N or p is
negative [see Eq. (AS)].

We note here that the normal curvature can be
calculated in a straightforward fashion from the

now standard representation" for the FS:

C, = g Cz«[1 —cos(—,'fak, )

x cos(s J'ak, ) cos(sKakg)] =(const).

Here IJK range over the non-negative integers.
This is in the standard form for the parametric
definition of a surface. According to Weather-
burn, "the normal curvature (which is the sum of
the principal curvatures at a point on a surface)
is an extrinsic property of the surface; and in
terms of the surface,

(const) = p(x, y, s),

e (II)
' ay ' ay

we have

&eh 8 8rh-g=v 8 =q ~ K-'
sx sx
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