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The general quantum-mechanical extension of Luttinger and Tisza's approach to the ground state of
crystals with dipoleWpole and exchange interactions is given. It is shown that within this approach the
ground state can only be ferro- or antiferromagnetic if the unit cell contains only one or two
magnetically equivalent atoms or ions.

I. INTRODUCTION

This paper is an extension of the work of
¹iemeijer~ and of Niemeijer and Blote, to be
referred to as I and II hereafter; and of Luttinger
and Tisza's work on the ground state of regular
arrays of classical dipoles. In Ref. 3 the reason-
able assumption was made that for classical di-
poles on Bravais lattices, with one dipole per unit
cell, the ground state mould be in the class of
states with periodicity of twice that of the lattice.
The problem then was reduced to finding the mini-
mum of a 24-dimensional quadratic form with cer-
tain additional constraints; hence, the problem is
still too difficult to handle in practice. In I it mas
proved that one could simply look for the lowest
eigenvalue of the 24' 24 matrix that defined the
quadratic form, because the constraints are al-
ways automatically fulfilled due to the translational
symmetry of the lattice. In II these results were
extended to lattices with tmo ions per unit cell, as
was done simultaneously in Ref. 4. It mas also
shown in II that two equivalent ions per unit cell
mas the maximum number of ions that could be
dealt mith generally in the Luttinger- Tisza. ap-
proach.

In I it was shown that the classical approach was
identical to a quantum-mechanical approach when
only Hartree wave functions mere admitted, i.e. ,
all correlations mere neglected. The Present Pat) er
is set uP comP/etely quantum mechanically, i.e. ,
all correlations in the basic cell are correctly
taken into account.

Now for a general value of the spin, themainre-
sult is surprisingly the same as that of I and 0:
if the quantum-mechanical (where the phrase
"quantum mechanical" serves as a counterpart to
a Hartree wave function) wave function has twice
the periodicity of the lattice, it can only be purely
ferromagnetic or purely antiferromagnetic, i.e. ,
all canted structures are excluded. As far as the
authors are aware, all substances with predomi-

nantly dipolar interactions have been found to order
ferro- or antiferromagnetically.

II. FORMULATION OF THE PROBLEM

Consider a Bravais lattice with P(P = 1 or 2)
magnetically equivalent ions per unit cell. Arbi-
trary unit cells have been drawn in Fig. 1{a)
(P=1) and Fig. 1(b) (P=2). For simplicity, the
origin of the coordinate system has been chosen
at one of the ions. The position of the second ion
in the cell [no. 9 in Fig. 1(b)] is arbitrary. The
numbering of the ions in the figures will be used
in the text. There are no restrictions on the basis
vectors a, b, and c, nor on the angles betmeen
them; the whole lattice is invariant under the group
I' of translations f, a+i& 6+ f, c (l, integers). {The
notation of I is used. )

Every ion carries a magnetic moment p, whose
components are

where p.~ is the Bohr magneton and the S's are the
spin operators. The total Hamiltonian can be
mritten as

H= Q H, ~, Ho=t)d, ~S;.S~+Do

~) 0 ~ 1)(Pi |i))
fj

where

1 if i and j are nearest neighbors
0 otherwise

~ ~

~

~

r&& is the vector that joins ion i to ion j, with com-
ponents r,&, tr is the exchange-interaction strength
between nearest neighbors; it would be simple to
take more-general anisotropic exchange interac-
tions into account. The total Hamiltonian can be
written as
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FIG. l. (a) Basic cell
of a lattice with one magnet-
ic ion per unit cell; (b)
Basic cell of a lattice with
bvo magnetic iona per unit
cell.

(a)

(5)
Sp

2 2 &xlsisflx& ~ ~i~'

where

aa Pg t'2 &u&UV

a I Z ff~g~s&v~ &gregale ~It jy

+ vi)~ g~g .

%e shall now formally construct all wave func-
tions that have twice the periodicity of the unit

cell as follows. Let g stand for the spin vaxiables
of the &p spine of the basic cells of Figs. 1(a) and

1(b), respectively. By F we denote the subgroup
of I' consisting of all translations over two lat-
tice sites: 2l& a+ 2fz6+ 2lec (f, integers). Now let
L(y) be the set of spin variables of the set of &p

spina obtained by applying y z I+ to the basic Sp

spins. For the most general wave function 0 of
the total lattice that has twice the periodicity of
the lattice, we can then write

e= II, x[t(y)],

where X is any wave function of the basic set of SP

spins.
As noted in I and II, this is the quantum-mechan-

ical analog of Luttinger and Tisza's construction of
classical dipolar arrays with twice the periodicity
of the lattice. The main point of this paper wil) be
to show that the general class of wave functions as
given by Eq. (7) are either purely ferromagnetic
or purely antiferromagnetic for P =1 or 2. A de-
tailed quantum-mechanical ground-state energy
calculation for a specific crystal, viE. cerium
magnesium nitrate (CMN), will be given in a sequel
to this paper.

Using Eq. (5) we can write for the expectation
value of the energy in the state 4' per particle

1
/iiy'(p)= Z ~i&',

t~ {&I

(10)
/tab(p ) P g uB1

Sp
ltd

(here the sums again run over the selected parts
of the entire lattice), Eq. (8) can be rewritten as

(p

xmas

x
Hgai a, l

Sp

+ g g w 7&x Is. Ix& &x Is'I x&

= &x Iffo"'Ix&+E.(x) .

2 &xlsflx&&xlsTlx& +, J~i'
t

g4i

The prime on the summation sign means that the
sum is taken over the sites of the basic cell; it
will from now on be omitted; i denotes the super-
lattice of sites generated by F from the ith site
of the basic cell. Here Eq. (7) has been used.

The wave functions X span a (2S+ 1)8~ dimen-
sional space. In I and II the procedure was to
select from this space the Hartree wave functions,
so that the correlations disappeared out of Eq. (8),
l. e. ,

&xls;s'Ix&-&x Is Ix &&x~lsllx~& .
This step turns the problem into a classical one,
since now the expectation values of the spin opera-
tors can be separately used as variables and treated
as the components of classical vectors, independent
of the magnitude of the spina.

%e shall not do this now, and the problem will be
set up completely quantum mechanically. Introduc-
ing the abbreviations
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Equation (11) can be considered as the expectation
value of a Hamiltonian

(12)

III. CASE OF ONE ION PER UNIT CELL: p = 1

The Hamiltonian in this case is
8

Ho~'~= Q Q AN~~(1)S, S~) .
i4JA N, JS

(13)

We denote by P&, t= 1, . . . , 8 the permutations

P &
= I (identity),

P p
= (1, 2)(3, 4)(5, 6)(V, 8),

P = (1, 3)(2, 4)(5, V)(6, 8),
P4 (1, 4)(2, 3)(5, 8-—)(6, 7),
P, = (1, 5)(2, 6)(3, 7)(4, 8),
Pq (1, 6)(2, 5)(3, 8)——(4, 7),
P, = (1, V)(2, 8)(3, 5)(4, 6),
Ps= (1, 8)(2, 7)(3, 6)(4, 5) .

(14)

It was shown in I that the matrix A, ~& (1) is in-
variant under the operations

describing the interaction between 8P spins, the
energy of every eigenstate X being corrected by a
"self-energy" E,(}(), which for each dipolar sys-
tem is predetermined for every eigenstate X of
HQ)

All the properties of the eigenstates of Ho~',

such as their being ferro- or antiferromagnetic or
their having a canted structure, [except for the
energy, which has tobe correctedby afactor E,(1&]
are completely determined by the Hamiltonian
Ho+' ~ If the ground state of Hp' turns out to be
ferromagnetic, a correction for the energy due to
demagnetizing effects also has to be made, but this
will be a problem in actual calculations only.

Here we shall only be concerned with the prop-
erties of the Hamiltonian Hp~', and shall show on
the basis of its symmetry properties that, for P = 1
or 2, its eigenstates always fall into two classes,
namely the purely ferromagnetic and the several
purely antiferromagnetic ones.

linear combinations such that each forms the basis
of an irreducible representation I", of the group
P, . Hence q is a good quantum number, and we
can label the wave functions as ~q, r&, where x
labels the different eigenfunctions of Ho" belong-
ing to the same representation 1",.

For a fixed n (a=x, y, s) of course, eightlinear
combinations S~ of the operators 8;, i = 1, . . . , 8
can also be formed such that they transform as one
of the representations 1, . If one defines by q; the
ith component of the row vector q (= 1, . . . , 8) in
Table I, one readily verifies that these operators
Iae are given by the expressions

8

s, =Ps;q, (16)

If we want to calculate the expectation of any

8,. in a representation I', , we have, according to
signer' s theorem,

&P,(q~&(S,",)P,(q~&&= &q~)P S,", )q~& (17&

and since all elements have cycle 2, we do not have
to distinguish between the operator P, and its in-
verse; consequently

&qr ~8,.~qr& = 6. ..C„, o. = x, y, z .
Inspecting now Eq. (16) and Table I, we note that
all the wave functions in the representation I'1 are
ferromagnetic, and all wave functions belonging
to the representations I', , q = 2, . . . , 8 are anti-
ferromagnetic. In the latter case, the expectation
values of the components of the spins on sites i
= 2, . . . , 8 (parallel: +1, antiparallel: -1)with re-
spect to the spin on site 1 are given by the q&.

'

(18)

The result of the foregoing property is that
[whatever the values of E,(}() of the different eigen-
values oi' the Hamiltonian Ho ' are] if the quantum-
mechanical wave function of a system with one ion
per unit cell and dipole-dipole and exchange inter-
actions is invariant under the operations of 1", it
can only be purely ferromagnetic or antiferro-
magnetic. The corresponding possibilities are
shown in Fig. 2. Only in the case of Purely ac-
cidental degeneracy of the lowest level of I.", with
the lowest of all other I",'s, both after correction

A f~q(1) =A(~, (1)~~ . (15)

The permutations P„ t = 1, . . . , 8, form a group
P, which is equivalent to the Abelian group
C2Cz C2, and which correspondingly has eight
classes and eight different one-dimensional ir-
reducible representations I', . Its character table
is given in Table I.

There are (2S+1)' basis wave functions. On ac-
count of the fact that the Hamiltonian Ho ' is in-
variant under the group P„ it is possible to form

PI

q=1 1
2 1

q=3 1
q=4 1
q=5 1
q=6 1
q=7 1
q=8 1

P2

1
—1

1
1

—1
1

—1
—1

1
—1
—1

1
1

—1
—1

1

P4

1
1

—1
1

P5 P6

TABLE I. Character table of P~.

P8

1
—1
—1
—1
—1

1
1
1
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p&G. 2. Possible configurations of the ground state for the basic cell for one ion per unit cell. Spins on open circles
are parallel to each other and antiparallel to the ones on the black circles. The number of the configurations corresponds
with the number q of the corresponding representation. There is one ferromagnetic, and seven antiferromagnetic con-
figurations.

with E,(I{) and the one of I'~ also corrected for de-
magnetizing effects, can the ground state possibly
show a canted structure, e.g. , one induced by a
small symmetry-breaking field.

IV. CASK OF TYPO EQUIVALENT IONS I'ER UNIT CELL: y=2

This case can be treated in essentially the same
way as the preceding one (Sec. Ill). The pertinent
Hamiltonian now is

16

ff,"'= g A;,'(2)S;S/z. (19)

As was shown in II, and also in Ref. 4, the matrix
Aq& (2) now is invariant under the operations

A, z/(2) = Agfg~; (2}, (20)

where now the operations I', are the group of per-
mutations

P,' =I (identity),

Pz = (I, 2)(3, 4)(5„6){7,8)(9, 10)(ll, 12)(13,14)(15,16),
PI= (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10,12)(13,15)(14,16),
P4= (1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13,16)(14,15),

PI = (1, 5)(2, 6)(3, V)(4, 8)(9, 13)(10,14)(ll, 15)(12,16),
Pe= (1, 6)(2, 5)(3, 8)(4, V)(9, 14)(10,13)(ll, 16)(12,15),

Pq = (1, 7)(2, 8)(3, 5) (4, 6)(9, 15){10,16}(11,13}(12,14),

PB = (1, 8)(2, 7)(3, 6)(4, 5)(9, 16)(10,15)(ll, 14)(12, 13),

PI = (1, 9)(2, 10)(3,11)(4,12)(5, 13)(6, 14)(V, 15)(8,16),
Pga= (1, 10)(2, 9)(3, 12)(4, 11)(5, 14)(6, 13)('l, 16)(8, 15),

P n = (1,11)(2,12)(3, 9)(4, 10)(5, 15)(6, 16)(V, 13)(8, 14),

Pgz= (1, 12){2,ll)(3, 10)(4, 9)(5, 16)(6, 15)(7, 14)(8, 13),

Ptz = (1, 13)(2, 14)(3, 15}(4,16){5,9)(6, 10)(7, 11)(8, 12),

Pg4 = (1, 14)(2, 13)(3,16)(4, 15){5,10)(6,9)(7, 12)(8, 11),
Pt5= (1, 15)(2, 16)(3,13)(4, 14)(5, 11)(6,12)(V, 9)(8, 10),

Pte= (1,16)(2, 15)(3,14}(4,13)(5,12)(6, ll)(7, 10)(8,9) .
(21)

[Note that this is only true when the two ions are
equivalent, because the g tensoxs enter into

A;,'{2).]
The group P', is equivalent to C3 C~{3}C~I,

where I is the inversion with respect to the point
halfway between the line connecting the two ions in
the unit cell; consequently it is Abelian, contains
16 different classes, and 16 different irreduci-
ble one&imensional representations I', , q = 1, . . . , 16.
Its character table is given in Table II.

The (2S+ 1) 8 wave functions can now be grouped
together in linear combinations that transform ac-
cording to one of the irreducible representations
I', of the group P', . Again q is a good quantum
number, and the eigenfunctions of Ho ' can be
labeled as (q, r), where r labels the different eigen-
functions of HP~ in one representation I', (from
now on q and r refer to the group P', rather than
P,).

For a fixed a (a=x, y, z), sixteen linear com-
binations 8, of the operators S&, i = 1, . . . , 16 can
be found such that they transform as one of the
representations I', . They can be explicitly formed
now with the help of the character table II: by de-
fining q& as the ith component of the rom vector q
(= 1, . . . , 16), it can in the same way be verified
that these sixteen operators are given by the ex-

pressionss

16

3~ = Sg qgy Qf=xyp~z ~ {22)

If we now want to calculate the expectation value
of S,. in any representation I',.we find according
to the same reasoning following Eg. (1V) in Sec. III

(q, r ~S, e ~q, r) = 5.,..&„, a =&,y, z . (23)

inspecting Eq. (22) and Table II, we come to a con'-

clusion similar to the one in Sec. ID: all the wave

functions in the representation I'& are ferromagnetic,
and all wave functions belonging to the representa-
tions I', , q =2, . . . , 16 are antiferromagnetic.
Again, in the latter case, the expectation values
of the components of the spins on sites i=2, . . . , 16
(parallel=+1, antiparallel= -1)with respect to the
spin on site 1 are given by the q &, respectively.
The corresponding possibilities fnr the basic cell
are shown in Fig. 3.

Again the result of the foregoing property is that
whatever the values of the E,(X) of the eigenfunc-
tions of the Hamiltonian Ho+' are, if the quantum-
mechanical ground-state wave function of a system
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TABLE II. Character table of P&.

10

I f P2 P3 P4 fo ff Pi2 Pi3 Pf4 Pfs Pfe

q=l
q= 2
q=3
q=4
q=5
q=6
q=7
q=8
q=9
q= 10
q= 11
q= 12
q= 13
q= 14
q= 15
q= 16

1
1

-1
-1

1
1

—1
1
1

—1
—1

1
1

-1
—1

1
—1

1
-1

1
-1

1

1
—1

1
—1

1
—1

1
—1

1
—1
-1

1
1

—1
1

—1
1
1

—1
—1

1
—1

1

1

1
—1

1
1

—1
1

—1

1
—1

1
1

1
—1
—1

1
1

—1
—1

1
1

—1
—1

1
1

—1
-1

1

1
—1

1
—1

1
—1
-1

1
—1

1

1
—1

1
1

—1

1
—1
—1

1
-1

1
—1

1
—1

1
1

—1
1

—1
1

—1

with two equivalent magnetic ions per unit cell and
dipole-dipole and exchange interactions is invariant
under the operations of I', then it can only be
purely ferromagnetic or antiferromagnetic.

The statement about the accidental degeneracy
at the end of Sec. ID applies here identically.

V. IMPOSSIBILITY OF EXTENDING GENERAL METHOD TO
MORE THAN THEO (EQUIUALENT) IONS PER UNIT CELL, OR

HIGHER PERIODICITY OF THE GROUND-STATE
VfAUE FUNCTION

It should first be remarked that the whole struc-
ture of the proof of the main result for the case of
two iona per unit cell is based on the underlying
group P,'. lf the two ions are no longer magnetical-
ly equivalent, the matrix A,& (2) is no longer in-
variant under the inversion I—hence, under the

permutations PQ, . . . , P&6-and as a result the proof
breaks down. The invariance under these last
permutations gives rise to the fact that the matrix
A(2) can formally be written as

) (MN) (24)

where M and N are both 24 x 24 matrices, although
they still have the same invariance group P, as
A (I).

If there were three (even equivalent) ions per
unit cell, in order for an analogous proof to go
through, as in the two preceding cases, one would
need an underlying symmetry group P, of 24 ele-
ments, which is a natural extension of P, and P, .
This, however, is generally impossible (except
when the three ions would occupy very special posi-

0
i

I

I

r ~
lz

0
9

P
P

.d-—

9 9 ~

/ ip

FIG. 3. Possible configurations of the ground state for the basic cell for two ions per unit cell. Spins on open circles
are parallel to each other and antiparallel to the ones on the black circles. The number of the configuration corresponds
with the number q of the corresponding representation. There is one ferromagnetic and, therefore, fifteen antiferro-
magnetic configurations.
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tions in the unit cell) since, for three ions per unit
cell, the matrix A(3) will obviously have the fol-
lowing structure:

(I NO)
A(3)= N M P

(o s

where the 24x24 matrices M, N, 0, and P still
have the same symmetry as A(1), viz. , P~.

The impossibility of extending the method in
general to wave functions that have a periodicity of
more than twice that of the unit cell has been dis-
cussed at length in II, and is a result of the fact
that the character tables would then always contain
complex numbers.

YI. CONCLUSION

It has been shown that the ground-state quantum-
mechanical wave function with twice the periodicity
of the lattice, for arrays of spins of arbitrary
magnitude and one or two equivalent ions per unit
cell, with dipole-dipole and exchange interactions,
always is purely ferromagnetic or antiferromag-
netic. This conclusion can in general not be made
for crystals with more than two ions per unit cell,
or if the ground-state wave function has a higher
periodicity than twice that of the unit cell.

As mentioned before, a detailed calculation of
the ground-state energy of a crystal of spins ~,
with one ion per unit cell, and almost exclusively
dipolar interactions, viz. , cerium magnesium
nitrate, will appear as a sequel to this paper.
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