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Exact solution in an external magnetic field of Ising models with three-spin interactionse
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The three&pin interaction Hamiltonian X =——J3Z«»& saba&a» -HZt s; -H'Z& 0& (the s and 0 spins belong
to different sublattices) is solved for some two4imensional lattices by a generalized star-triangle transforma-
tion. The H' = 0 internal energy, specific heat, and magnetization are explicitly calculated, and the singularity
structures of other functions (e.g.,x) are studied. Although the actual critical-point exponents remain the
same as for systems with two&pin interaction, the three&pin interaction gives rise to different amplitude and
background terms. In particular, the H' = 0 magnetization is nonzero for all finite T, because of the lack of
spin-reversal symmetry; the diameter is seen explicitly to have an energy singularity, with critical exponent
1 —af.

Ising models with three-spin interactions have
attracted considerable recent attention, in part be-
cause they represent an example of a many-body
Ising spin system lacking the usual "up-down" spin-
reversal symmetry. ™Thus far the only results
have been for the zero-fieLd three-spin Ising mod-
el, and functions that might be expected to display
highly unusual behavior (e. g. , magnetic response
functions such as the magnetization m) have not
been obtained.

It seems desirable to study further three-spin
interaction Hamiltonians and in particular to search
for situations in which exact results can be ob-
tained in nonzero external magnetic field.

Consider the three-spin Ising interaction Ham-
iltonian

3C —= —jg Z s»o'»g»» —HZs» —H Q(»» q (1)
(ffk& i

where the s spina belong to one sublattice [cf. Fig.
1(a}]and the o spins to another (s =+1„(»=~ 1).
The index i runs over all spin sites of the s sub-
lattice, the indices j, k denote sites of the 0 sub-
lattice, and the notation (ij h) denotes that sites j,
k are nearest neighbors of the site i. The mag-
netic fields H, H' act separately on the s and 0
sublattices, respectively; the special cases H= H'
and H= —H' correspond to direct and staggered
magnetic fields. For many two-dimensional lat-
tices (denoted Y), we can apply a generalized
star-triangle ( Y-b, ) transformation and relate the
partition function Zrs'( J~, H, H') for the three-spin
interaction Hamiltonian (1) to a partition function
ZI» '(Z2, H') for a two-spin interaction among the
spins 0&, 0& on the 0 sublattice. This relation per-
mits study of the internal energy, specific heat,
magnetization, and susceptibility for the three-
spin. Hamiltonian (1). Many interesting features
are noted; in particular, the H' = 0 magnetization
is found to be nonzero for all T, because of the lack
of spin-reversal symmetry, and the diameter is
seen explicitly to have an "energy singularity" with

exponent (1 —n).
Our solutions are based upon application of a

generalized star-triangle (Y-I») transformation.
%e shall illustrate this approach by considering
in detail the diced lattice of Fig. 1(a), where the
spins on the s sublattice are represented by closed
circles and the spins on the 0 sublattice by open
circles. Figure 1(b) shows a "unit" consisting of
an s spin and its three nearest-neighbor (nn) o

spine. The Hamiltonian (1}can be written in terms
of "unit Hamiltonians"

2N/3 N/3

X"'= X,+H' 0;,
$~1 9=1

where

(2a)

4R cosh3K+ sinh3Ktanhh
coshK+ sinhE tarQxh

(4b)

Since the hvo-spin interaction parameter J2 cou-
ples only nn spine on the a sublattice (a triangular
lattice), it follows from (2) and (3) that the parti-

3C» CT3(S» (T»$ (»»2 + S» tT»g(7»3 + S» (T»BG»» ) —HS» . (2b)

where in (2b) we denote the three o spins in unit i
oj1y ot2y and 04

Taking the trace over the s spin in unit i, we
have

Z exp(-PX»}=I(J„H)
st »r. af

&&exp( pJq[o», (—r», + (»»~ o»3+ o»Q o»$]},
(3)

in analogy to the conventional F-b transformation;
here P =-1/hT. The (luantities I( J~, H) and J~( J~, H)
may be determined by substituting particular values
of the o»» in (3); thus

I(ZS, H) =2e"' '"'(coshKcoshh- sinhKsinhh),
(4a)

where K-=pJ3, R—= pJ2, h-=pH, and J2 is given in
terms of J3 and Hby means of the following ex-
pression for R= R(K, h),
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FIG. 1. {a) Diced lattice. (b) The star-triangle (Y-4) transformation which changes a three-spin interaction involv-

ing spina belonging to both the s (black circles) and 0 (open circles) sublattices into a two-spin involving spina belonging

only to the 0 sublattice. The (c) honeycomb and (d) decorated honeycomb lattices; the partition functions are given by

Eqs. (11) and (12) respectively. In the case of the decorated honeycomb lattice, one can consider the sublattice to be

the open circles and the a sublattice to be the black circles; by applying the decoration-iteration transformation, the

partition function for this altered Hamiltonian is given in terms of the two-spin honeycomb lattice fEq. (13)].

tion function Z„of the diced lattice with three-spin
interactions J, and fields H and H' is related di-
rectly to the partition function S, of the triangular
lattice with two-spin nn interactions J& and fieM H',

Zs'[Z„H, H', H]

= [I(d H)] " Z' '[2R(E, k), H', zN)] . (&)

Here the factor 2R arises from the fact that each
bond of the triangular lattice is summed over
twice, while the factors —,'N and —,'N reflect the fact
that 3 of the spina are on the s sublattice while g
of the spine are on the o sublattice [cf. Fig. 1(a)].

From (5) it follows that the Gibbs potential per
spin for the three-spin interaction,

gs&[g„H, H']= —;kTlnl--ff/', "[2R(E, «), —H'], (6)

has a singularity at H= H' = 0 at a temperature T,
given by

E, =J,/kT, =are cosh[a(3+$3)t'a] .
By differentiation of (6) we have obtained expres-

sions for various thermodymmic functions for the
tkree sPin Hamilt-onian (1) in terms of the thermo-
dynamic functions of the Aeo-sos H~~iltonian. In
zero fieM, some of these expressions are known

exactly. Thus for H=H' =0, the specific heat per

The dominant singularity is determined by the
(logarithmic} singularity in the two-spin specific
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FIG. 2. Sketch of the temperature dependence of the
zero-field magnetizatioa of the diced lattice, mg'Ã},
from Eq. (9).

spin for the diced lattice is

ce't'(E) =- ——c,(2R)-E k +[(RkT) 'e, (2R}—2]
1 ESR BR

+ 2E k sech E .
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(s) =
~5 ~ ~1$~8i~3$ r~c&a«3&

(10)

is finite for all temperature.
The susceptibility may also be related directly

to thermodynamic functions of the two-spin inter-
action model. Again the leading singularity is de-
termined by the susceptibility for the two-spin
model, but for this function the "background"
terms are also singular at the same temperature,
so that in addition to the y ( =P) divergence of the
two-spin interaction susceptibility, we find terms
that vary like the specific-heat and the temperature
derivative of the magnetization and hence contrib-
ute n (logarithmic} and I -P (=P}divergences.

The above results may be generalized in several

heat c,(2R), but the amjfihufe is altered and then.
exists an additicmcl singulcrity due to the energy
e,(2R). At high T, c,"'(K)-2/T, which is consis-
tent with the fact that —, of the spine (the s sublat-
tice) have three nn and —,

' of the spine (the a sublat-
tice} have six nn, so that the "average coordina-
tion number" is 4.

The zero-field magnetization per spin for the
three-spin interaction is

m.„"'(K)=- m', '(2R) —R ' — e, (2R)1, . eB
3 8Hgo

8B+2 — -2 tanhK
BH Ho

and is plotted in Fig. 2. Notice that the first term
is & the magnetization of the triangular lattice, as
one might expect. The remaining terms contrib-
ute a value -', at T=O (so that the phase boundary
extends from —', ——,

' to -', + -', ) and give rise to a sin-
gularity in the diameter which is linear in the
energy of the two-spin system and hence has
critical exponent (1 —a); they also contribute above
the critical temperature, and the magnetization
remains nonzero for all finite 7, with m„'3'- 0 only
when T- ~ [since spin-reversal symmetry is lack-
ing in (1) and hence g~( —H) og~(H)]. In fact, the
spin-reversal symmetry is only "partially de-
stroyed, " since (1) is still invariant if under re-
versal of all the spins on the e sublattice and
hence for T& T„(o)= 0 and the zero-field magne-
tization arises completely from the s spins. This
point is made quite clearly if one notes that even
for the single unit [Fig. 1(b)],

I = I(Z„H) =cosh R (K, h}, (14a)

tanhR(K, h) = tanhK tanhh .
Note that in the limit of H- 0, there is no coupling
among the spins on the o sublattice.

Thus, in summary, we have seen that some of
the effects of breaking of spin-reversal symmetry
can be studied by studying the behavior of three-
spin interaction Ising models whose field-depen-
dent partition function can be related to the parti-
tion function of a two-spin interaction model on a
different lattice. (Although the actual critical-
point exponents remain the same as for systems
with two-spin interaction, the three-spin interac-
tion gives rise to different amplitude and back-
ground terms. ) The latter clearly give rise to the
angular behavior in the diameter and to a zero-
field magnetization function that does not vanish
except when T- ~.

directions. Firstly, they are not limited to the
"8= g Ising model, "but can be carried through
without effort for any value of the spin quantum
number. Secondly, they apply to a large number
of lattices related by the F-5 transformation such
that the interaction after the transformation con-
nects only nearest neighbors. Thus, for example,
the honeycomb (h) lattice becomes the triangular
(t) lattice, and

zhs'(J„H, H', N) =I""z,"'[R(K, a), H', —,'NJ .
(11)

Similarly, the decorated honeycomb (dh) lattice
becomes the Kagome (K) under the y-a transfor-
mation, and

Z es, '(Zq, H, H, N) = I"' ZK
' [R (K, h ), H ', 2 N J .

(12)
Note that the above statements about the diced lat-
tice carry through the honeycomb and the decorated
honeycomb lattices, and the analysis may be car-
ried out by inspection.

Finally, we note that we may also obtain analo-
gous results for situations in which the deeoration-
iterution transformation is applied. For example,
consider the dh lattice again, but interchunge the
s and the a sublattices. Then

Z' '(K, H, H', N}=I" Z„' [R(K, h), H', NJ, —

(13)
where now
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