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Within mean-5eld theory, it is possible to analytically calculate the spatial and temperature dependence

of the magnetization near a surface and near a phase transition. These algebraic forms are then used in

the Landau~nzburg free energy to obtain the surface specific heat and a relaxation time for the

surface spins driven to a weak noncquilibrium. These physical quantities have been found to have a

temperature dependence .that varies continuously with the change in the surface-plane exchange constant.

Such a behavior is interpreted in tera+ of an interplay between the correlation length ( and the

extrapolation length A where A, effectively determines the range of the surface effects,

I. INTRODUCTION

This paper eRends some work, initiated by
Mills' on the analysis of the effect of a surface
on the magnetic properties of simple antiferro-
magnets and ferromagnets. The basic model
consider ed is analogous to the mean-field-theory
(MFT) approach of Ginaburg and Landau. ' While
the Ginsburg-Landau (GL) approach is phenom-
enological, in that the coefficients of the expansion
of the free energy are essentially determined by
symmetry properties, Mills has been able to show
that similar equations may be derived by con-
sidering the Brillouin function for the magnetiza-
tion. This permits us to consider the GL equation
for the free energy with known coefficients;
namely, those derived from the Brillouin function.

The subject matter, from the point of view of
scaling exponents and scaling relations, has been
exhaustively reviewed by Binder and Hohenberg. '
It is well known that the scaling exponents derived
from MFT for systems with infinite extent are
unsatisfactory. The exponents derived from
rigorous considerations of the Ising model yield
more accurate results. However, the mean-field
theory permits an easy physical interpretation
and the relationship of the Ising model with reality
is less than transparent. The only known in-
vestigation of purely surface magnetic properties,
namely, the magnetic low-energy-electron-diffrac-
tion (LEED) scattering, ~ favors the mean-field
theory.

In the foQowing we have analyzed the MFT in
some detail. Analytic expressions ax e obtained
for the temperature and sgetia1 variation of mag-
netization near or at the surface within the frame-
work of the Heisenberg model. In the ferromag-
netic phase, we study the magnetization in two
separate limits, i.e. when the exchange constant
at the surface is larger or smaller than the bulk-
exchange constant. It is found, in agreement with

some observations within the Ising model' that the

temperature dependence of the magnetization
varies continuously with the relative stiffening
or softening of the surface-exchange constant.
This might appear in apparent contradiction with
the sealing hypothesis, i.e., near the transition
temperature, the scaling exponents are indepen-
dent of the strength of interaction. We would like
to point out that scaling hypothesis, which depends
crucially on the presence of a length scale (the
correlation length t'), has to be modified to in-
clude two scaling lengths. The extra length has
been described by Binder and Hohenberg as the
extrapolation length A. which depends upon the
range and the magnitude of the surface effects.
%'e have analyzed all of our results in the two
cases when either one of them is long compared
to the other. Only when A, «$ do we find signifi-
cant change in the exponents associated with
surface properties.

The emphasis is on exact results within a some-
what approximate though physically revealing
formalism, and the form of the paper is as follows.
In Sec. II we analyze the magnetization with
several possible values of A. in both the ferro-
magnetic and paramagnetic phases. The con-
sequences of the interplay of A, and E are studied
in detail. In Sec. III we consider the GL free
energy, with the coefficients that are commensu-
rate with the differential equation in Sec. I, and
derive the thermodynamic properties of the sys-
tem. Section IV is devoted to a brief and simple
analysis of relaxation time for the surface mag-
netization driven to a weak nonequilibrium. The
summary in Sec. V gives a brief survey of the
essential results obtained in this paper. The
Appendix briefly discusses the response to a
magnetic field of a paramagnetic phase.

II. MAGNETIZATION AT THE SURFACE

The differential equation that describes the
spatial and temperature dependence of the mag-

299,8



10 MAGNETIC PHASE TRANSITION AT A SURFACE: MEAN. . .

netization has been derived by Mills. ' Taking
the external field to be zero and ignoring varia-
tions in the plane parallel to the surface, he finds
for a simple cubic ferromagnet

, +(1 —7)q(z) ——,g'(z) =0,P

where q(z) =(s'(z)) /s, a, is the lattice parameter,
z is the direction perpendicular to the (100) sur-
face, r= T/T, , and P is a numerical constant
approximately equal to 1 for s =-,'. The equation
has been derived under the assumptions that (a)
the magnetization is small and (b) its variation
over length of the order of lattice parameter is
small. Except in one case, the final results are
consistent with these assumptions. The latter
case will be discussed later in this section. If
the surface magnetization is required to feel the
same molecular field as in the bulk (except for
the missing bond and different coupling constant
in the surface plane J', J(1-n,) where J is the
bulk-coupling constant), then one has the boundary
condition'

in the sign of derivative corresponds to a higher
free energy.

Thus the stable low-free-energy solution must
correspond to a monotonic function of y. If f'(y)
at the surface is positive (i.e., X&0), we must
have f(0) smaller than in the bulk. If, on the
other hand, A. &0 [f'(0) &0], the surface mag-
netization must be larger. The latter corresponds
to the surface magnetic moment' which survives
above the Curie temperature T„andvanishes
at a temperature larger than T, .

Hence for A. &0, we have

—= ~ [1-f'(y)]df 1

Equation (7) can be further integrated [using
the boundary condition, Eq. (4)] and we find for
X&0,

(2g'+4k')' ' —( W2+2Xtanhy/M2
2X+[(2f, '+4X')'" —&(2)'"]tanhy/v 2

(2)
(2~ '+4&2)" —gv 2

2A.
(9)

and

f(o) = ——
&» .=o

The solutions are obtained by multiplying Eq.
(3) by df/dy and integrating with respect to y
from y to ~:

d 2

+f '(y) zf '(y) =-z
dy

(4)

where X =a,/(1+46). Note that A. may be positive
or negative depending on whether d is greater
or less than --,'. Furthermore, it can be large
before changing signs and it is this regime that
produces some of the surprising results.

Following Mills, we shall rewrite Eqs. (1) and

(2) in terms of f(y) = q(y)/g, where 0„=r(1 —r)'~'/
P' ' is the bulk magnetization, and areduced length

y=z/$, where g =a,/[6(1 —r)]' '; i.e., the corre-
lation length. Thus

82

, .+f(y) -f'(y) =o

These expressions are not as formidable as
they look. The extreme behavior of f(0) especially
can be seen as

f(0) =1 for X»g, (10a)

f(0) —XM2/(, for A, « $ . (10b)

f(y) = coth(y/M2 +A),
(2g'+41')'~'+ )M2

(12)

It is the latter behavior [q~(T, —T)] that has
been widely quoted as a surface property. This
is also the temperature dependence that has been
observed in the magnetic LEED scattering. The
above is the first illustration of the interplay
between the extrapolation length X and the correla-
tion length t'. '

Similarly if X&0, Eq. (7) correctly describes
the behavior of f(y) Now, howev. er, the spatial
dependence of magnetization is given by a different
function' ' b since f(y) ~ 1. In particular,

or

(6)

The limiting temperature dependences are

f(o) =g/l&1~2 I» &»l~l, (13a)

We have used the boundary conditions at y =~;
i.e., f(y =~) =1 and sf/Byl „=0.In taking the
square root, caution is needed. In particular,
we shall see later that the solution with change

f(0)=l f» 4«l~l ~ (13b)

Thus in the region close to 4= —~, the surface
magnetization has the same temperature depen-
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dence as the bulk magnetization. If 4 is positive
and large we have the "surface" behavior and for
4«--,', the surface magnetization is actually
temperature independent. This is the aforemen-
tioned surface magnetic moment. Figure 1
describes the different regions in the (],P) plane.
Region I corresponds to the bulk temperature
dependence. Region II represents the behavior
according to surface temperature dependence,
and region III where d, is negative and less than
--,' corresponds to the surface magnetic moment
that is temperature independent for x&1. The
arrow around the A axis represents the variation
in A. as 4 varies from large-positive values to
large negative ones.

The behavior of this surface moment for v. &1
may be calculated easily. Now Eq. (1) has to be
written in terms of q(z) = af(z) where a' = r2(T
—1)/P and y =z/$, $ =a,/[6(T —1)]' '. With the
usual integration [as for Eq. (5)], using the
boundary conditions that now are f =f' = 0 for
y=~; we find

of a small and negative A. corresponds to a tem-
perature-independent magnetization as has been
discussed above.

III. THERMODYNAMICS

an '
F(q, T) =F2(T)+ dz /iq2(z) +gq'(z)+C

az

+ —„q'(0).C
(16)

Here E,(T) is the free energy for the paramag-
netic phase. The last term introduced by Kaganov
and Omel'yanchuk' represents extra contribution
due to surface magnetization. In equilibrium, E
is a minimum as a function of q. The functional
differential of Eq. (16) yields an equation similar
to (1) if we identify

The thermodynamic quantities can all be derived
from the free energy. The free energy that we
use in this section is given by Landau'

q(y) =1t2 a/sinh(A+y),

where

W=coth-'g/)~( .

Also,

1)1/2 g
2 1/2

q(0)= /, —,—1

(14)
2 =(r 1), B=-p/2r2, C=+a2, .

The differentiation with respect to q(0) yields
the boundary condition (2).

For T», q(z) = 0 for A &0, and the magnetization
does not contribute to the free energy. For 7 & 1,
we shall write the magnetic part of the free en-
ergy in terms of y and f(y):

T' 1+46,,'
( 8 )1/2 8 c 1 + (15)C rg

C

a reasonably well-known result, The y depen-
dence, however, is new (in its analyt'ic form).
Figure 2 shows the spatial dependence of the
magnetization in several cases considered. The
transition from A. &0 to A. &0 passes through an
infinity in X (as a function of b).'i Near this
transition X can be larger than t'. We find f(y)
to be independent of y in that regime. ' The case

&"(q, T) =&(q, T) —&.(T)

dy f'(S)+ 2 f'-(y)+

( ) ( f 2(0)
p

If we substitute the solution obtained earlier

iX&0, v&1

g~c2O T& Igeo aksaeao awegg

X)0, t'& I

FIG. 1. Different regions in ($, A) plane for the tem-
perature dependence of ~~etization.

FIG. 2. Spatial dependence of the reduced magnetiza-
tion f(y). , paramagnetic phase A, & 0 —.—~ —,
ferrom~~etic phase A, & 0; ———,ferromagnetic phase
but very large ~ and ————,ferromagnetic bulk with
A. & 0.
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for r & 1, we find (the integration can be carried
out easily) for the part that is independent of the
thickness of the sample

for A«$;

for &&. »(, f(0) = 1 and

~„(T) r'(1 —r)'
s

p

The surface specific heat is defined as

Cs -T

and we find

C, ~(1-r) '~' for X«t'

and

C,=(nonsingular) for X» g .
Thus we see that Eq. (18) for the free energy

(an exact expression within the present framework)
yields the exponents for both the free energy and
the specific heat that depend upon the interplay
between A, and g or, in other words, depend con-
tinuously on the variation in 4, . It is also in-
teresting to note that for the case X» g the mag-
netic surface free energy behaves exactly as the
bulk case; namely, the specific heat has a dis-
continuity and is nonsingular at the transition
temperature. A similar situation holds for A. &0.
For A. » g, the physical quantities are identical
to X&0; for A. «F„wefind that again, the specific
heat is nonsingular at the transition temperature.
The leading term in the surface free energy E",
is, in fact, temperature independent. It acquires
weak temperature dependence close to the surface
transition temperature T~ discussed in Sec. II.

For the paramagnetic phase, if A, &0, no surface
magnetic moment occurs. Therefore there is no
contribution to the surface free energy. For A, &0,
however, the surface moment is finite. The con-
tribution of this surface moment to the free en-
ergy can be calculated by substituting the appro-
priate solution [Eq. (14)] obtained in Sec. II into
Eq. (IV). We find

The specific heat again is discontinuous at the
transition temperature T; (not T, ) but has no
singularity. This might be construed as the ex-
pected two-dimensional-like behavior.

Thus aside from the A. «E and A. &0 case where
the specific heat has a singularity, its behavior
is quite conventional: i.e., it is discontinuous
at the appropriate transition temperature. To
ascribe that to a two-dimensional characteristic,
at least from the mean-field theory point of view,
is difficult. Even in three dimensions, in MFT,
the specific heat has the discontinuity. Ising-
model calculations' seem to indicate that the
behavior of the surface moment for 7 &1 is two
dimensional rather than three dimensional, as
expected.

IV. RELAXATION TIMES

s &I(0) s Z", 8&I(0)

"s&I(0) (20)

where &I(0) = &I,(0) + 5&I(0), with g,(0) being the order
parameter in equilibrium, and y is a constant.
Note that the relaxation of &I(0) is governed only
by the surface free energy since the bulk free
energy is independent of the surface moment. In

A large number of transport properties can be
described in terms of the relaxation time of the
weakly perturbed (from equilibrium) order pa-
rameter. If an external perturbation is imposed
upon the system, which couples only to the surface
magnetization, then the energy dissipation would
be governed by the relaxation (to equilibrium) of
the driven surface moment. The appropriate
transport property would be determined by this
relaxation time. Such would be the case, for
example, for the surface conductivity if the pre-
dominant resistive mechanism was spin scattering
or for the attenuation of sound waves if phonons
were scattered by the magnetic moment. For the
latter case it would be necessary to consider
short-wavelength-surface sound waves, so as to
minimize the penetration depth into the bulk of
the sample. This is necessary since the relaxa-
tion behavior of surface spins is likely to be dif-
ferent from the bulk spins. In this section we
shall concentrate mainly on the relaxation of
surface spins.

In particular we shall calculate the temperature
dependence of the relaxation time near the transi-
tion temperature. Landau and Khalatnikov' have
calculated the relaxation time for bulk spins within
the framework of MFT and we shall adopt the
same procedure. For completeness, we shall
outline the procedure. If q(0) represents the
surface moment in nonequilibrium, then
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the Landau-Ihalatnikov procedure, the SE",/
Bq(0) is expanded around equilibrium and for r, '

we find

g2 yN
S ~ 2an(0) p(p) p (p)

(21)

We can now separate the problem into two parts.
If the perturbing field is uniform, the mode driven
from equilibrium would also be uniform in the
plane parallel to the surface; then we can calcu-
late the temperature dependence of its relaxation
due to surface effects. This involves simply
using the expressions for free energy obtained
in Sec. III. In the ferromagnetic phase, we find
for A, «$,

I/r, =( y2)/ T)[T;—T], (22)

+ —rP(0) +CPKji)I (0) . (24)

Using the Mills equation (now rewritten to in-
clude the surface-plane inhomogeneity) we find
that the effects of inhomogeneous q can be easily
accounted for by shifts in the transition tem-
perature and the scaling length, i.e.,

(1 —7) - (1 —+~ a pa K,( —7 ),

where T,' is the surface transition temperature
mentioned previously. The bulk behavior has the
same exponent but the singular temperature is
T, . The behavior of v is nonsingular for both
A. +&g and also in the A. &0 regimes.

On the other hand, the paramagnetic phase with
the finite surface moment offers an interesting
situation. One might expect the relaxation time
to be singular at the transition temperature T,'.
The temperature range of interest here is T,
&T& T,'. We find that

=—(T,'- T), (23)
s Tc

where Tp= T, [1+~(i+46)'], namely T, &T,'. Thus
the relaxation time is never singular.

This is indeed not the complete story. It is easy
(within MFT) to consider the behavior (relaxation)
of a single mode characterized by )I, (e)e'r~~sii

where Kll and All are the projections of momentum
and coordinate parallel to the surface plane. We
have ignored here the mode-mode coupling that
arises out of l)ll' term. In the presence of this
surface inhomogeneity, it is necessary to include
a term proportional to l

v',
~ g(z = 0) l' in the surface

part of Eq. (16). The free energy can now be
written as

&(q, T) =Fp(T)

t aq
+ dz (A+ CE'ii))I'(z) +By'(z)+ C

~Z

x= a a 0
1+46 1+42 ~a20K2]l

These shifts may bring the singularity tem-
peratures closer to the transition temperatures
T, or T,' as the case may be for large values of
Kll, for small Kll the effect is negligible. Similar
changes occur in the regimes of Fig. 2, i.e., X

is no longer singular at n = —~ but at —1/
(4 —a pIPg~), again these effects would be observable
only for very large K,l.

The role of fluctuations is another important
aspect heretofore ignored in the present calcula-
tions. The dynamics have been shown, at least
for the bulk systems to be strongly dependent on
the fluctuations. " The treatment of static

fluctuat-

ionss" in the semi-infinite case has been found to
be exceedingly difficult in other model calculations.
If the MFT is found to be satisfactory for the de-
scription of surface phenomena (by more experi-
mental measurements) it will be easy to incorpo-
rate dynamic fluctuations. This would naturally
have to wait until the basic validity of MFT is
decided upon by experiments.

V. CONCLUSIONS

To conclude, we would like to summarize the
results obtained in this paper.

(a) Exact solutions are obtained for the mag-
netization as a function of both the temperature
and distance from the surface. The scale of rise
and the magnitude at the surface of the mag-
netization is determined by the interplay between
the correlation length t' and the extrapolation
length X. The length X depends on the change in
the surface-plane exchange constant. Even though
it has been claimed that the extrapolation length
is an artifact of the MFT, we believe, based on
the fact that the surface-related properties have
been found to vary almost continuously with the
change in surface exchange in other model cal-
culations, that such an effect is model indepen-
dent and that A, may be a useful quantity to invoke
to understand these effects.

(b) Surface free energy is evaluated using the
solutions for magnetization obtained earlier.
Temperature-dependent properties of the surface
free energy and its derivative (namely, the
specific heat), are analyzed near the bulk critical
temperature and have been found to be singular
only when X«E, A. & 0. All other cases have dis-
continuities at the appropriate transition tem-
perature (at T, for X&0 and at T,'for )). &0).

(c) The relaxation time r for the magnetization
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driven weakly from equilibrium is studied and
we find it is nonsingular in all cases. In the
ferromagnetic case r~1/(T; —T), where T;&T„
and in the intermediate regime (T,«T«T; } when
the bulk is paramagnetic but a finite surface
moment exists, rat:1/(To —T) where T,'& T;.
There is no singularity associated with surface
spin relaxation if A.» $.

These calculations offer an insight into a variety
of phenomenon as yet unexplored. The calculation
of relaxation time will of necessity have to be
done with fluctuations. However, at the present
moment when no experiments exist to test the
validity of any theory, the complexity of advanced
calculations is unwarranted.
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APPENDIX

To further exemplify the interplay between A.

and 8, we will calculate the response to an ex-
ternal, static, and uniform magnetic field. The
corresponding magnetization for weak fields is

( )
s+1 ho 1 ( gg~

3 v'-1 )+A, (A2)

Since h, is uniform, g(z) =Q, g(z, z')h, =hog(z)
where g(z) =Q, g(z, z'); g(z, z') being the response
function:

s+1
X =3( —1)

1-- e '~~
A. »g8+1

3(7-1)
1 —e ' (x«t} .

s +1

(A3a)

(A3c)

Similarly, the temperature dependence of the
impressed magnetization at the surface is

s+1 A.

3( —1) t.

(s +1)h, for X» (

=(s+1)h /[3(r- I)' '(I+4a)] for Xw g.

small and if we restrict ourselves to the linear
response, we find for the magnetization

g 2 Q 2', —(7 —1}7l(z)= ——,'(s +1)h,

Here h, is measured in reduced units namely
h, =glJsH/hs T, where H is the applied field. Deep
in the bulk g(z}=—,'(s+1)[h,/(r 1)-j=g„the usual
behavior. If we solve (A1} now we find
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