
PHYSICAL RE VIE% B VOLUME 10, NUMBER 7 1 OC TO 8 ER 1974

P~m transitions in systems with coupled order parameters
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The properties of one-dimensional systems with coupled order parameters are investigated. Mean-field

results are reviewed, and some essentially exact results, including fluctuations, are obtained numerically.
Our results show the possibility of mixed phases and pseudo-first-order transitions.
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with

V(x, y) =a,x'+ ,'b, ' xa+, ' y—'+b,y'+ ~'y'. (2)

Here p = 1/b T, a, = [(T—T,)/T ~ 1 n „u&
= f (T —T2)/

T2] a2, where T, &T2, ' and a, , ai, b, , b2, and
& are positive constants. The choice of a positive
coupling constant X implies a competition between
the two ordering parameters.

The statistical mechanics of this system' '" are
obtained by averaging the quantities of interest
over all possible configurations of the x and y

A variety of physical systems exhibit properties
which depend upon the interplay of two order pa-
rameters. Some examples which have been dis-
cussed are ferromagnetic-antiferromagnetic, '
ferroelectric-ferromagnetic, and ferroelectric-
piezoelectric crystals: crystalline-superfluid'; and
orientation-position ordering in molecular and
liquid crystals. The coexistence and interaction
of two order parameters appears particularly in-
teresting in nearly-one-dimensional systems where
fluctuations broaden the region over which ordering
occurs. Here, for example, recent work on or-
ganic charge-transfer salts raises questions con-
cerning the interplay of the Peierls distortion and
the Hubbard correlations, ' or the Peierls distortion
and the BCS pairing. ~ Another closely related
problem is that of intensities and correlations in
a two-mode laser near threshold. ' Here we in-
vestigate the properties of one-dimensional sys-
tems with coupled order parameters. After for-
mulating the problem, the mean-field properties
are reviewed, and then some essentially exact re-
sults are given, including fluctuation effects. ' '"

We consider, for simplicity, a system with two
scalar order parameters x(l) and y(l). The coor
dinate I, measures the position along a sample of
length I.. For a given spatial configuration of the
fields, x(l) and y(l), the effective free energy of
the system is assumed to be given by the function-
al

fields. For example, the partition function is given
by the functional integral

Z= exay E '"~"
and the intensity of the x field is given by

(x') = bxby e ~r""x~(i)/Z

which is clearly independent of position in the
large-I. limit. In the usual way, the functional in-
tegrations can be expressed in terms of the eigen-
states of a particle of mass in = 1 (5= 1) moving in
a potential field V(x, y). The free energy per unit
length in units of O'T is given by the ground-state
eigenvalue Eo, and the intensity (x ) is given by
the ground-state expectation value of x'.

In this approach, mean-field theory corresponds
to the classical approximation in which the particle
rests at the absolute minimum of the potential en-
ergy V(x, y). Before discussing the results ob-
tained from a numerical solution of the quantum-
mechanical problem, it is useful to review the
mean-field theory predictions. For a given set
of parameters (n „a2,b „b„1),the positions of
the minima (xo, yo) of V(x, y) depend upon T For.
T &T„Vhas only a single minimum at the origin.
As T decreases below T„ the origin of the xy plane
becomes a saddle point with two minima moving
symmetrically out along the +x axis to xo=+ ( —a,/
b,)'". When T decreases below T„ the structure
of V depends upon whether the coupling is weak,
& &b, b~, or strong, X'&b, b2. " In the weak-cou-
pling case, provided that a, &/a2b, & 1, there will
be a temperature TA & T, given by

A ] 1 ] 1

below which the minima along the x axis branch
out into the x-y plane:
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As T is lowered further, the minima move away
from the x axis. Finally, if (am'/Z, b2) & I, there
will exist a temperature Ta& T„given by

~T aqb2 1 I,b2 ~T

the minima along the y axis become the points of
lowest potential energy. Thus, in the strong cou-
pling case, mean-field theory predicts a first-or-
der phase transition at To from an x-ordered to a
y-ordered system. The condition for the existence
of T, is sgb I & agb „which also implies the exis-
tence of T~. The condition for the existence of T„
is a P/Ã, b, & l.

For one-dimensional systems, one knows that
the first-order' and second-order'~ ' transitions
predicted by mean-field theory are broadened by
Quctuations. The effect of Quctuations is repre-
sented in the quantum-mechanical problem by the
spread of the wave function around the potential
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FIG. 1. Intensities (x2), |',y2), and the specific heat
C are plotted vs T for the weak coupling case (b~b2 & X ).
MF denotes mean-field theory. The parameters: a
=1.75, am=4, b&=0. 25, 52=0. 5, X=0.25, T&=1.5, T2
=1. Note the broadened transitions at Tz and Tz. All
temperatures are measured in units of units of T2.

where the minima are on they axis. Then for T & T~,
the minima move out along the y axis at yo

——+ ( —ag
bm).

' In mean-field theory, second-order phase
transitions occur at T„and T~ when the system
goes from a pure x state to a mixed state, and from
a mixed state to a pure y state, respectively.

In the strong coupling case, where»b, b&, we
have T~ &T» so that for T &T~ thexe are minima
along both the x andy axes, at x=w(-s Jb,)' and
y=+(-ae/b2)' ~, respectively Fo.r T near Ts, the
lower absolute minima lie along the x axis, but as
T is decreased below a temperature To (Ts &To
& T„)given hy

~T 1 ~b a~ b~ ~a ~T
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FIG. 2. Same as Fig. 1, for the strong coupling case
(5~52&A). The parameters: a&=2. 5, a2=3, 5&=0.25,
52=0.5, &=0.5, T~=1.2, T2=1. Note the pseudo-first-
order transition at To and the broadened transition at Tq.

minimum, and its penetration by tunneling to clas-
sically forbidden regions. The Hamiltonian for a
particle moving in the potential V(x, y), Eq. (2),
was xepresented in a basis composed of products
of harmonic oscillator wave functions depending on
x and y. This matrix was then diagonalized to ob-
tain the eigenvalues and eigenstates. '

Typical results for the order-parameter inten-
sities (x~), (yz), and the specific heat are plotted
versus 7 in Figs. 1 and 2. The mean-field re-
sults for (x ) and (y') are shown as the dashed
lines labeled MF. Figure 1 represents the weak
coupling case, and one sees that the plot of the
mean-field results, Eq. (5), shows @ ) decreasing
from its peak value at T„ to zero at Ts as (y')
grows. The effect of the fluctuations is to smooth
this behavior out.

Figure 2 shows a strong coupling case in which
mean-field theory predicts a first-order transition
at To. Here, while the fluctuations remove the
discontinuity, one sees that the change from x to
y ordering occurs over a narrow temperature re-
gion. This behavior is evident in the specific heat.
The first broad maximum in C arises from the
smeared second-order transition associated with
x ordering; the narrow peak at lower temperatures
reflects the pseudo-first-order transition near
Zo

xe A common qualitative feat@re of these two
examples is that the weaker ordering (which even-
tually, at low temperatures, is overcome by the
competing type of ordering} shows an interesting
temperature dependence, developing a peak whose
structure depends on the details of the model.
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This peaking of the intensity of the weaker order
parameter can also occur in the strong coupling
case, even when the parameters are such that the
absolute minima always remain along the x axis.
In this case, the existence of secondary minima
along the y axis, even though they lie higher than
the minima along the x axis, can lead to enhance-
ment of (y }over the limited temperature region.
The intensities then are typically more slowly
varying functions of temperature than those for the
pseudo-first-order transition shown in Fig. 2.

Finally, it is important to remember'~ that in the
systems of experimental interest, there is always
some interchain coupling which may lead to three-
dimensional ordering at some lower temperature.
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