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Feynman-graph theory of the Kondo effect. H. Self-consistent clothing of parquet graphse~
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The calculation of the resistivity R of a Kondo system with a S =1/2 impurity in the previous paper
is extended to include also parquet graphs with self-consistently-clothed conduction-electron propagators.
The formalism used preserves a close contact with the non-self-consistent treatment, and can be used to
understand the radical difference betweeen the results. The main result of this paper is a numerical

relation between the normalized resistivity R/R „and ln{T/T~), where R „ is the unitarity limit and

T~ the Kondo temperature. A comparison with experimental values and with the Hamann formula is

carried out. Our results fit the data better at high temperatures, but neither theory saturates fast

enough to R „as the temperature approaches zero. Finally it is shown by which approximations
Hamann's integral equation can be derived from our self-consistent equations.

I. INTRODUCTION

In the previous paper (hereafter referred to as
paper I) the self-energy of a conduction-electron
exchange interacting with a single 8 =

& impurity
atom mas calculated by an improved summation of
ordinary parquet graphs. From this the Kondo
contribution to the resistivity 8 was calculated.
The divergence at the Kondo temperature occurring
in previous work was found to be replaced by a
smooth maximum, but at T = 0 the resistivity still
approached zero. It is mell known that this is un-
physical and that R should instead saturate at the
unitarity limit value R„.

In paper I it was shown that the non-self-consis-
tent form of the Nagaoka decoupled equation-of-
motion theory leads to an expression for R v)I hich
is an approximation to our parquet-sum expression.
Nevertheless, in its self-consistent form, the
Nagaoka-Hamann-Bloomfield theory yields the
required saturation at low temperatures. Essen-
tially the same result is also obtained by Cheung
and Mattuck in a self-consistent perturbation-the-
ory calculation.

In this paper we therefore address ourselves to
the task of finding the Kondo resistivity by includ-
ing also the clothed or self-consistent parquet
graphs in our self-energy calculation. Section II
is devoted to the derivation of a series of self-con-
sistent equations which connect the self-energy Z

to the pair bubble or s functions, the s functions
to the T matrix, and the T matrix to the self-ener-
gy.

Approximating T = Z, me solve these equations
in Sec. III for the s functions evaluated at the
Fermi surface. Our final result is a numerical
relation between R and ln(T/Tr) where Tr is the
Kondo temperature defined in paper I. Saturation
to R„at T=0 is obtained, as illustrated in Fig. 5,

and numerical values are given in Table I. Quali-
tatively there is a close resemblance between our
results and the Hamann formula [Eq. (4. I)]. When
drawn as functions of ln(T/Tr), both represent
rounded off step functions having a width of about
ti decades in the temperature (compared to a typi-
cal experimental width of 1-3 decades).

Section IV discusses the fitting of both theoreti-
cal results to experimental data fox CMCr. We
find (see Fig. 6) that our theory gives a better fit
than the Hamann formula in the high-temperature
region, but because of the discrepancy between
theoretical and experimental midths neither theory
can reproduce the fast rise to the unitarity limit
below Tg.

Apart from the improved fit, our treatment has
the advantage that a close contact between the or-
dinary and self-consistent versions of the theory is
maintained. As a result, added insight is gained
into the perhaps puzzling question why self-consis-
tency drastically alters the behavior of the system
at zero temperature, although the self -consistent
terms are of lesser order in the logarithmic di-
vergence and could be expected to be of importance
only near the Kondo temperature. This matter is
investigated in Sec. IG.

It was stated in paper I that one purpose of our
work is to develop a systematic pertuxbation the-
ory of the Kondo effect which can serve as a basis
of comparison with pure Kondo model calculations.
The numerical comparison with the Nagaoka-
Hamann-BloomfieM theory is supplemented in Ap-
pendix A by a derivation of Hamann's integral equa-
tion from our self -consistent equations. The ap-
proximations made in the process lead us to sus-
pect that the Nagaoka decoupling implies a lorn-in-
teraction strength J, and that the T matrix obtained
from Hamann's equation is accurate only on the
Fermi surface.
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TABLE I. Normalized resistivity as a function of
normalized temperature.

where the interaction strength of the Kondo inter-
action J(Kondo) = 2tqd, and
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s(i~++i&„z)= p Z 90(dt ~ (dnz ymi)
P,q, ml

x g(p, q; ~„+y ~),

&u„=(2n+1) vP and y =2mvP

(2. 2)

(2. 3)

A(p, q; (u) = - v
'
imp(p, q; (o + i6) .

(2. 4)
(2. 6)

Substituting Eq. (2. 4) into Eq. (2. 2) and per-
forming the sum, we find

s(i~„+i(o„z)=f d(u'Z A( p, q; (u') [f((u ') -f(U}]

x (i&g~+ia~a ~ + U) (2. 6)

The summation over ml in Eq. (2. 2) can be per-
formed by writing g in its Lehmann representation

~(p q ~ } f d+ A(p 'q )(t~ + )

where f(z) is defined by

f(z ) = (1+e ') '. (2. 7)

II. SELF-CONSISTENT RELATIONS BETH(KEN Z, s, AND T

Self energy in te-rms of s functions. The expan-
sion of the self-energy Z in a series of parquet
diagrams is discussed in detail in paper I, Sec.
III, where various terms used here are defined.

The summation performed in payer I included
only the ordinary parquet graph contributions to
the self-energy. It can be seen that all the self-
consistent parquet graphs (simple examples of
which are given in the last line of Fig. 3 of paper
I) can be included in the sum by clothing the con-
duction electron (k-electron) propagators in each
ordinary parquet graph with the ordinary parquet
graph self-energy. This means that we must re-
peat the summation of ordinary parquet graphs,
but with the k-electron propagators (solid lines)
reinterpreted as the interacting Green's function

g instead of the unperturbed Green's function go.
As a first example, consider the simplest par-

quet graph, Z& of Fig. 1. Note that we leave the
localized or d-electron propagators (broken lines)
bare as explained in paper I, Sec. III8. Using the
conventions of Ref. 6 and 7, Fig. 1 is translated
into an algebraic form. We use the same notation
as in paper I, e. g. , k, k', p and q are used to label
conduction-electron momentum states with energy

etc. , all measured from the Fermi level (i.e. ,
zz=O). The two localized states are represented
by d4 and d0, having opposite spin projections and

energies (adjusted by Lagrange multipliers} of + U,

respectively. It is then found that

Z~ = —(4J /P) Q (i(u z
—U„) s(i(g„+is)„z), (2. I)

When the spectral function Aa(p, q; &o')

= 6(u' —e~)6~, of the unperturbed Green's function
is substituted in Eq. (2. 6), Eq. (2. I) is reduced to
its bare propagator counterpart, Eq. (4. 2) of paper
I. This shows that s is simply the clothed version
of the bare propagator s functions used in paper I.

As made clear in paper I (sec. II B) we make use
of the s function in the two opposite limits of a pure
S= 0 or 8 = 0 state for the unperturbed spin state of
the impurity atom relative to the spin of the enter-
ing k line. These s functions are denoted by s, and
s, , respectively, and found by letting U-+0 ex-
cept that wherever the temperature dependent sta-
tistical factor e appears, the limit )8-~ is taken
in such a way that I PUl -~ [see Eq. (4. 4) of paper
I]. The result is

s, (t~„)= fdw'Z A(p, q; v')f(~')
Ps 4(

n &) (2. 8)

& (t~.) = fd~'»(p, q; ~') [f(~') I]—
x (i(o„—(o') '. (2. 9)

Substituting A0 for A reduces Eqs, (2. 8) and

(2. 9) to the definitions of the corresponding bare
s functions, Eqs. (4. 6) and (4. 6) of paper I. More-
over, comparison of Eqs. (2. 8) and (2. 9) with their
bare counterparts shows that the clothed s functions
depend on their arguments in a similar way as the
bare s functions. Consequently, Poisson summa-
tions over the arguments of s functions can be per-
formed in the same way for both eases, and the re-
sults obtained in paper I for the various contribu-
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The sum of unperturbed Green's functions can be

evaluated as an integral over energies, weighted
by a square density of states with value p in a re-
gion of width 2D centered at the Fermi level, and
zero elsewhere. %e find

Z Qo(p ) (() + i5) —imp (2. 13)

FIG. 1. Self-consistent clothing in a simple parquet
grayh.

tions to the self-energy E in terms of s functions
are found to remain valid when these are reinter-
preted as clothed functions. A simple example is
Z& in Eq. (2. 1), which can be reduced with the help
of Eq. (2. 8) to the same form as Eq. (4. 6) of paper
I.

In particular, the parquet-sum self-energy is
again given by [compare Eq. (3. 22) of paper I]

Z...=+ [1—4I s...(I +his. ..) ']. (2. 10)

The s functions in terms of self-energy. The in-
teracting propagator can be expressed in terms of
noninteracting propagators and the Single-particle
transition or T matrix as indicated in Fig. 2. As
is clear from the figure, the T matrix is inter-
preted diagrammatically as the reducible seU-en-
ergyy i e,

y

(2. 11}

This equation applies for both 8= 0 and S= 4 sub-
scripts, but one must be careful which of T, and T,
is used to clothe the intermediate k line. %hen
considering s, , for example, the unperturbed im-
purity spin is parallel to the spin of the incoming
k line (which, per definition, has spin up).
Throughout I the approximation is used that all in-
termediate k lines are on the same side of the
Fermi surface (see Secs. IIIB, IIIC, and IV C of
paper I) which also implies that they all have spin
down. In other words, the reference direction in
intermediate states is reversed and the intermedi-
ate 0 line in s, must be clothed with T, and vice
versa.

According to Eq. (2. 6) the unknown sum of spec-
tral amplitudes A in Eq. (2. 8) is related to the fol-
lowing sum of Green's functions, evaluated from
Fzg 2

Z& ((() + i5) = —Za, *(- (() +i5},
T, ((()+i5)= —T, ( —(()+i5}.

(3.2)

(3.3)

In Eq. (2. 13) we have neglected the real part of the
sum, which is zero at the Fermi level (&o = 0) and
varies slowly elsewhere. This approximation was
also used by previous authors and is discussed in
detail by Hamann. '

Making use of Eqs. (2. 5}, (2. 12), and (2. 13) and
analytically continuing it to the real axis, we reduce
Eq. (2. 8) to the form

s, (~+f5)= p f d&o'((o -(o' +i 5) 'f((d')

x [1+vpimT, (&'+ i5}]. (2. 1.4)

Similarly, from Eq. (2. 9) it follows that

s, ((d+i5)= p f d(d'{(o -(o'+i5) '[f{(o')—1]

x [1+apl mT((o'+ i5}]. (2. 15)

Finally the T matrices in Eqs. (2. 14) and (2. 16)
are obtained from Eqs. (2.11) and (2. 13):

T...(()'+(i5)=Z& ~, (()'+(i5) [I+in'pZ. ..((d'+i5)]
(2. 16)

Equations (2. 10) and (2, 14)-(2.16) form a set of
six coupled equations which we must now solve
self -consistently.

III. SOLUTION OF THE COUPLED EQUATIONS

The equations for spin-up and spin-down quan-
tities are coupled through Eqs. (2. 14) and (2. 15),
but can be decoupled by using certain symmetry
relations which we will now derive. The zeroth
iteration, s, , of Eq. (2. 14) is obtained by taking
T = 0 on the right-hand side (and simply defines the
bare s function}. By changing the sign of the inte-
gration parameter &' and making use of the identity
f( —(d) =1-f(u)) it is easily proved that

s', ((d+t5)=s', (-(o-i5)= s', ( —(u+i5). (3.1)

Substituting this in Eqs. (2. 10) and (2. 16) yields
the results

Z Q( p, (I ' (() + t5) =2 Qo(i) '
(() + i5)

+ (uT& i5+)Z Q()(P; &o+i5)

xQ Qo(q; (() + i5) . (2. 12) FIG. 2. Clothing of propagator expressed in terms of
T matrix.
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s, (0+H)+s, (0+i5) = 2Re s, (0+i5},
s, (0+i5) -s, (0+M)=2iIms, (0+H),

(S. 5)

where we have found the right-hand sides from Eq.
(3. I). We now decouple the 5'= 0 and 8 = 4 equations
by applying Eq. (3. 1) to Eq. (2. 15), and use of the
identity (z+i5) '= P(z -') -iw5(z) (where P is the
principal part) yields

Re s, (0+ i5) = Re sa(0+ H)+ wpz

xP dip co -~ Im

(3.6)

Ims, (0+ i5}= ——,
'

wp [1+wpImT, (0+ i5)] . (3.7)

As a result of the decoupling of the S = 0 and S = 0
equations, we are left with three complex equations
to be solved simultaneously. One of these, Eq.
(2. 18), we eliminate by taking only the first term
in its series expansion:

T, (cu+ i5) = E, (cu+ i5) . (S.8)
Arguments to justify this approximation are given
in Appendix B.

The factor ImZ, now needed in Eq. (3.V} is found
from Eq, (2. 10):

wplmZ, (0+i5) =y(x +yz) (3. 9)

where we have introduced two new variables x and
y defined by

wpy = Ims, (0+i5),
2wJpz = 1+2J'Res, (0+ i5) .

(3. 10)

The zeroth-order approximation to these quan-
tities are their bare values [see Eq. (B7) of paper
I]

2= (1/w) ln(T, /T). (3. 11)

By combining Eqs. (3.7}-(3.9}we find that z and y
must satisfy the equation

2y'+y'+y (2z + I)+z'= 0. (3. 12)

This relation will be used later to calculate y, once

By using Eq. (3.3) in Eq. (2. 14), one can prove
that Eq. (3. 1) also holds for the first iteration of
8,. In this way a cyclic procedure is generated by
which Eqs. (3. 1)-(3.3) can be proved for the nth-
order iteration and these symmetry relations are
therefore also satisfied by the exact self-consis-
tent quantities.

The main purpose of this paper is a calculation
of the resistivity B. According to Sec. IIC of
paper I, this is given by

8/R„= --,'wpIm[T, (0+i5)+T,(0+i5)]. (3.4}

By using Eqs. (2. 10}and (2. 18) it can be shown
that the right-hand side of Eq. (3.4) depends only
on the quantities

x is known. At present we only state an approxi-
mate solution, obtained by use of Eq. (3. 11}and
Newton's iteration method:

y~ ——,'[I-(-,'+2z ) ']. (3. 13)

Res, (0+i5) = Reso(0+i5)

+pPr -4J'w'p'f( )f(- cu) dcu/cu
I+2JRes, (cu+H) J+4J w'pzfz(cu) '

(3.15)
The approximation in Eq. (3. 14) can now be justi-

fied as follows. First, the behavior of the inte-
grand in Eq. (3. 15}is dominated by the factor
f(cu)f( —cu}, which at low temperatures is very
sharply peaked near = 0 and zero elsewhere.
This factor arises because Ims, is proportional to
f(cu) —according to Eq. (3.14), a property of both
the exact and approximate expressions.

Second, because of the peak mentioned above and
which is enhanced by the {d in the denominator of
the integrand, only the behavior of the integrand
near & = 0 is important and as pointed out below
Eq. (S. 13), the approximation can be expected to
be good for & = 0, at least far from T».

The peak in the integrand also justifies the ap-
proximation 0

Res, (cu+ i5) = Res, (0+ i5) (3. 16)

in Eq. (3. 15), which can then be rewritten by using
Eqs. (3.10) and (S. 11)as

"dz EzE -z
z zz+F (z) T

E(z) = (1+e') '.
From Eq. (3. 11) it is clear that the principal-

value integral, which we denote henceforth by P(z),
defines the correction to the non-self-consistent
theory. In its corrected form, Eq. (3. 1V) is not
amenable to a simple analytic solution any more.
Note however, that its left-hand side is independent
of temperature and the parameters of the physical
system, so that x can still be expressed as a func-
tion of ln(Tz/T) only.

In Appendix C we use a contour integration to
show that P(x) can be expressed analytically in

It follows from Eq. (3. 13) that we can expect
Imst(0+ i5) ~ Ims, (0+ i5) to be a good approximation
for large x, i.e. , T»T» or T«T», a fact which
we use later on.

We now turn to the solution of Eq. (3.6). Here
we make the approximation [see Eq. (2. 14)]

imsc (cu+ i5) = —wpf(cu) [I+ wp ImT, (cu+i5)]

~ —wpf(cu) = Ims, (cu+ i5) . (S. 14)

Using Eqs. (2. 10), (3.8), and (3. 14), Eq. (3. 6)
is then reduced to
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, p dz F(z}F(-&)
x i F (z)

"2

r

FIG. 3. Left-hand side of Eq. (3.17) as a function of
x. The dashed line is the bare value.

terms of digamma functions. Its qualitative be-
havior, however, can be deduced directly from its
integral representation in Eq. (3. 1V). Clearly it
is an even function and P(x)-0 as I xl -~. Even
for Ix) = 1 the principal value is small because the
function in square brackets represents a nearly
symmetric peak around z = 0. For x- 0 however
thehe function in square brackets approaches E(-z)/
E(z) and tends to infinity as z —~. One can expect,
therefore, that P(x)-~ as Ixl -0 but P(x)=0 else-
where. This is borne out by the numerical plot of
the left-hand side of Eq. (3. 1V), given in Fig. 3.

f
We can solve Eq. (3. 1V) graphics, lly by findiin ng,

or each value of (T„/T), the intersection of the
horizontal line h = In(Tx/T) with the curve in Fig.
3. At large values of T (i. e. , h«0) it is seen that
this value of x coincides with the bare value x
found from the intersection with the dashed line.
As the Kondo temperature T& is approached, x de-
viates from x and the value x= 0 is reached only
when T-O. The importance of this fact 's li d
when it is recalled that in the hare version of the
theory (see paper I) the resistivity reached a maxi-
mum at the Kondo temperature, i.e. , for x = 0.
Consequently, even at this stage one can expect that
the self -consistent resistivity will saturate at
T=0.

At a temperature below T~, two additional solu-
tions of Eq. (3. 1V) appear. One of these also tends
to zero as T-O, and the other approaches the bare
value.

Figure 4 represents a plot of values for x obtained
hy a numerical method similar to the graphical
met(. od outlined above. These values can then be
sub=';ituted in Eq. (3.12) and a corresponding set
of values obtained for y, also shown in Fig. 4.

Calculation of the resistivity. Having found x

-2
ln T/TK

: -ln T/ TK

,

-05

FIG. 4 Numerical results for x and y as functions of
ln(Tz/T). Bare values x and y are indicated by dashed
lines.

and y, w'hich are essentially the real and imaginar
pa s of s, (0+t5), we are now in a position to cal-

aginary

culate the Kondo resistivity R from Eq. (3.4). The
full T matrix can be used here, but numerically
the result is very similar to the much simpler one
derived by using its self-energy approximation
[Eq. (3.8)]:

R/Ru-— —y(x +y ) (3. 18)

This is essentially the same formula as the main
result of paper I [Eq. (5. 11)]but instead of their
bare values, the self -consistently-calculated values
for x and y are used, The resulting behavior of
R as a function of T is illustrated by Fig. 5, while
numerical values for use in fitting experimental
data are given in Table I.

Comparison of Fig. 5 and Fig. 10 of paper I
shows a marked difference between the clothed and
bare versions of the theory. As predicted above,
instead of vanishing the resistivity now saturates
to a finite limit as T-0; and from Eqs. (3. 12) and
(3. 18) it is easy to show that this limiting value
(when both x 0 and y-0) is just the unitarity lim-
it, R„. This behavior corresponds at least quali-
tatively with experimental observations and with
the Nagaoka-Hamann-Bloomfield theory (also
shown in Fig. 5). In Sec. IV we present a more
detailed comparison with both of these. As shown
in Fig. 5, a second branch appears on the resis-
tivity graph at a temperature well below T&. With-
out further investigation, we assume here that this
branch has no physical significance because it can-

movingnot be reached in a continuous fashion when movi
from high to low temperatures.
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2
)n T/ TK

FIG. 5. Our selfconsistently calculated resistivitJJ as
a function of the reduced temperature, compared with
the Hamann formula for S=+2 (dashed line).

As a final remark we can now discuss the problem
raised in Sec. I—how the inclusion of clothed dia-
grams in the self-ener+ sum can drastically alter
the predicted behavior at T=0, even though they
are of lower order in the logarithmic divergence
at this point than the bare graphs. Referring to
Fig. 3, we see that it is true that Eq. (3. 1V) which
is satisfied by x is only significantly altered in the
vicinity of x=O (i.e. , in "bare language, " near Tr)
and specificaQy, the bare solution remains valid
for x ~ (i. e. , T-O). However, the structure of
Eq. (3.17) is such that the deviation from the bare
value at x= 0 separates its solutions into two
branches. %'hile the bare solution which gives rise
to a vanishing resistivity at T =0 remains valid
mathematically, it is now located on a branch which
can be ruled out on physical grounds.

IV. COMPARISON WITH EXPERIMENT

pure-Cu resistivity has been subtracted. It still
includes a background R, due to the impurity po-
tential, distortion of the crystal lattice, etc. which
must be subtracted to leave the Kondo contribution
due to spin-spin scattering. As a first approxi-
mation B~ is usually taken as a temperature-inde-
pendent parameter, adjusted to give a good fit of
the theory.

Even when taking the background into account,
it is found that the experimental resistivity satu-
rates to a considerably higher value than R„[de-
fined in Eq. (2. 14) of paper I]. As pointed out by
Heeger the reason for this is that A„also depends
on S, and for S=-,' the correct value is obtained.
This problem is usually avoided by finding R„ from
the data, i.e. , after subtraction of R~ all values
are divided by the zero-temperature value R(0).

A much more serious discrepancy is the fact
that (as seen from Fig. 5) for both the Hamann
formula and our theory the saturation of R takes
place over a range of = 6 decades in the tempera-
ture, while typical experimental values range be-
tween 1 and 3 decades. Even if the high-tempera-
ture tail of the data is well fitted, the rise in re-
sistivity will for this reason inevitably be too slow
as T-0. This fact is illustrated by Fig. 6.

The parameters for fitting the Hamann formula
are obtained as follows. From Eq. (4. 1) it follows
that T = T& defines the inflection point of the resis-
tivity curve, and can be read off directly from Day-
bell and Steyert's plot of their data. The relation
R(Tr) =0. 5 can then be used to calculate R~. For
the CuCr system, Heeger' finds T&=2. 2 K and
R~ = 3 gA cm/at. '/lz which gives the curve indicated
in Fig. 6.

In our theory T& has no such simple interpreta-

, RIR
As a basis of comparison we choose the experi-

mental data on CuCr(12 ppm) of Daybell and Stey-
ert, also used by Heeger for comparison with
the Hamann formula (see below).

In the work of Befs. 2-4, which leads to the
Hamann formula, the magnitude S of the impurity
spin is a free parameter. For a fair comparison
with our results it must be restricted to S = —,', and
the Hamann formula [Eq. (16.2) of Ref. 12] be-
comes

09'

08

07

06

0 5'

01'

0 3.

EXPERI MENT

T~ = 2. 2

T = 12

—————OUR 'vv' 0RK

—- —- —.—HAMANN

o HAMANN

R/R„= —,'(1 —ln(T/Tr) [ln (T/Tr)+ ~ v ]
(4 1)

In both theories T& is now the only free param-
eter, and when 8 is plotted as a function of lnT we
can interpret lnT~ simply as a shift along the hori-
zontal axis.

The data presented by Daybell and Steyert are
the resistivity values of the CuCr alloy after the

02

01-
10 20 30

FIG. 6. Comparison of theoretical resistivity cu..' ves
with the experimental values for CgCr (12 ppm) from
Ref. 11.
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tion, which complicates the determination of R~.
As its choice is regarded as rather arbitrary, we
simply adopt Heeger's value and find T& by shifting
the theoretical curve along the horizontal axis to
obtain the best fit. This yields the broken line in
Fig. 6 which has T~=0. 125 K.

It might be argued that our theory fits the data
better than the Hamann formula because of the dif-
ferent procedure used. To test this, we have also
fitted the Hamann formula without making use of
the inflection point and find the curve indicated by
the circles in Fig, 6, with T&=1.2 K. Comparison
of the various curves in Fig. 6 justifies the con-
clusion that our theory gives a slightly better fit
than the Hamann formula in the high-temperature
region, while neither theory is adequate to explain
the fast rise of the resistivity at low temperatures.

Despite their widely different appearances, it
seems that numerically there is a close resem-
blance between our theory and the Nagaoka-Hamann-
Bloomfield theory. In Appendix A we investigate
this further by showing that Hamann's integral
equation can be derived from our self-consistent
equations by introducing a number of approxima-
tions.
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APPENMX A: DERIVATION OF HAMANN'S INTEGRAL
EQUATION

We investigate here the connection between our
work and the Nagaoka-Hamann-Bloomfield the-
ory by indicating briefly how Hamann's integral
equation (in the form given by Kondo ~) can be de-
rived from our results. The approximations that
we make are labeled (AI)-(AV).

By comparing Eq. (2. 16) of paper I with Eq.
(18.16) of Ref. 14, it is seen that the function t(v)
in Hamann's work is essentially the same as our
T(&u) obtained from Eq. (2. 17) of paper I:

T(~) =k[T ((o)+T (~)]

The following steps are involved in the deriva-
tion:

(i} Equation (2. 16) is used to express T as a
function of the sum (Z, + Z, ) and the product (Z,Z, ).

(ii) By means of Eq. (2. 10) we find

Z, + Z, = 4d (s, —s, ) [1+2J'(s, + s, ) + 48 s,s,]
=4d~(s, -s, ) [1+&(s,+8,)] . (AI)

This is exactly the same approximation that was
used in paper I to derive the non-self-consistent
Nagaoka result. We can also express Z, Z, in a
quotient form, with the same denominator to which

aeT(~'+f5) = O, (A6)

which is exact for +'=0.
(vii) Combining Eq. (A4) with these results, we

find

4(&a&'+ i5)

1 —5+ 2Jp I [f((g') ——,']4((, ' - i5) d(u'/((o (u'+ f5)-
1+ 5+ 2' j[f(&g') —~]4(+' —i5) dv'/(&u —u&'+i5)

which is essentially Hamann's integral equation
[Eq. (18.26) of Ref. 14] if we make the final ap-
proximation

4((g ' —i5) = 1

in the numerator.

(Al) is also applied, and a numerator in which simi-
larly only the term of lowest order in J is retained.

(iii) In the resulting expression for T(up+ i5) we
use

s, (&o+i5) —s, (&u+ i5) = s, (0+i5}—s, (0+ i5) (A2)

(AS}

Equation (AS) is derived from Eqs. (S. 6) and (S.'I)
by neglecting correction terms of order J and
higher.

(iv) In terms of Kondo's" parameter b= SZ v'p~

(in our notation) we find

ivpT = b[1+2J(s, +s,)+f 5] '

= b[I+2Z(s, +s, )+bl

In paper I it was seen that various approximations
for the self-energy yield the same functional form
for T, but that the coefficient of the additive con-
stant b in the numerator is very sensitive to which
subset of graphs is included. Consequently, we in-
terpret approximation (A4) as an indication that the
Nagaoka decoupling is equivalent to a sum, slightly
different from our sum of parquet graphs.

(v) The sum s, +s, is obtained from Eqs. (2. 14)
and (2. 15):

s, (s)+i5}+s,((u+ib) = p f du)'((u —(u'+&5) '[f(a)') —k]

x [1+2' ImT((g'+ i5)].
Here we have used the approximation

jd~'(~ —~'+ i5) [1mT,(~'+ i5) - ImT, (+'+ i5)]= O.

(A6)

(vi) Following Kondo, ' we define

4((u+i5) =1+2vipT((o+i5};

then

1+2vp imT((g'+ i5) = 4'((o' —i5),
where we have used the identity ImT(ur'+5)
= -ImT(~' —i5) and the approximation
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We have shown that approximations (Al}-(A'?) s,re
sufficient for deriving the Hamann equation.
Whether they are also necessary, and if so what
the detailed justifications are, is not yet clear.
Depending on this, two tentative conclusions can be
made: (i) The Nagaoka decoupling is valid only for
a weak interaction J [see (Al), (AS)]; (ii}the T ma-
trix obtained from Hamann's equation is correct
only for &o = 0 [see (A2), (A6)].

APPENDIX B: JUSTIFICATION OF EQ. (3.8}

The approximation T~& of Eq. (3.8) is used
twice in our work. In the first case, it is used to
simplify the derivation of Eq. (3.12). If the full T
matrix is used here, we find instead an equation of
fifth order in y, but the final relation between y and
temperature shows a behavior very similar to Fig.
4. As y does not make an important contribution
in any case to the temperature dependence of R, the
self-energy approximation is sufficiently accurate.

Equation (S.8) is also used to reduce Eq. (3.6)
to Eq. (3. 15). Our solution of Eq. (3. 15}relies on
the peaked behavior of the factor f(jd)f( —&jj) in the
integrand, where f(&o) is contributed by the Z ap-
proximation of T in Eq. (3.6). As seen from Eq.
(2. 16) the full T matrix is a power series in Z, so
that each term in its expansion is proportional to
a power of f(&u). At low temperatures f(&jj) is nearly
a step function and f"{&u)~f(&g). Consequently, a
similar peaked behavior can be expected when the
full T matrix is used in the integrand. This is
confirmed by numerically calculating the integrand
using the full non-self-consistent T matrix.

APPENDIX C: CALCULATION OF P(x}

Here we calculate the principaj, -value integral
P(z) defined in Eq. (3. I'?). Rewritten in terms of
( = I/z it is given by

P(f }= &'P f„z'[(I+e )'+ &']-'dz/z

For complex z, the integrand vanishes every-
where (except at the isolated point e =f) on the in-
finite half-circle in the upper half-plane. Conse-
quently P($) can be evaluated by contour integration
and we find

series of poles

z„=f+ (2n+ 1) vij z„'= t'»+ (2n+ 1) wij

m=0, 1, 2, ...
and p is defined by the principal root of e~ = 1+i$.
The residues are given by

r„=(—2i) [i:+(2n+1) vi]} ',
r„'=(2ig [f»+ (2n+1) jji]] '.

(C4)

After substituting the values of the residues, we
reduce Eq. (C2) to

P 4+$ $ l'» +(2n+1) v

+j jmZ j„ i i, , ) ~ (Cjj(2n+1)
„g*+2~+1 &

The standard result

tan(-,'z) = 4Zz [zz+ {2n+1)'z'] ' (C6)

j?j(z + g/2v) - j?j(4j+ i in]/2s),
(C8)

j?j(-,
' it'/2v) — j?j(,' i-in f -/2—v) .

The asymptotic formula [Eq. (6.3. 18) of Ref. 15]
(z)- lnz —1/2z and an addition formula for arctan
Eq. (4.4. 34}of Ref. 15] is applied to Eqs. (Cp}

and (C8) to obtain the result

P(~)--,z +, +... .
in) sin $

(CS)

Finally, we transform back to our original vari-
ables to obtain

is now used to cancel the first term in Eq. (C5)
against the first sum, and the second sum is sepa-
rated in partial fractions so that the final result is

P([)= —,'~ Im [y(-,'+ i~/2v)+ y(-.' —a/2v}]. (CV)

Here j}j(z) is the digamma function, defined for ex-
ample in Abramowitz and Stegun. '

AsymPtotic behavior Ns $-0. When $-0 it is
seen that f-0. By performing a Taylor expansion
of the j?j functions in Eq. (C'?) around z = -,' it can be
shown that P(f)-c$ as $-0, where c is a con-
stant.

The limit $-~. Now g-1nl )I +is/2, and we
have

j'ii)= j ij ($r+Z r„+r'))j, (C2)
P(z) 0. 2131z as x-~,
P(z)---,'v(zi )-' asz-O. (C10)

where r= (4+ hz) ' is the residue of the integrand at
z = 0, while r„and r„' are the residues at the double

This is, in quantitative form, the behavior discussed
below Eq. (3. I'?).
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