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Feynman-graph theory of the Kondo effect. I. Exact summation of parquet graphs without

divergencess~
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The Feynman-graph formalism is used to calculate the self-energy of conduction electrons exchange

interacting with a single S =1/2 impurity atom, and hence the Kondo contribution to the resistivity R
in dilute magnetic alloys. To eliminate the effect of spurious states that result from second quantization,

we derive a new limiting procedure which satisfies the linked-cluster expansion and maintains a fixed

impurity-spin magnitude. A novel set of diagrammatic equations is found which exactly sums the set of
non-self-consistent parquet graphs without any multiple counting. The resulting integral equations are

solved in an approximation which omits certain diagrams, but still sums the remainder exactly. The self-

energy so obtained yields the simple form 8 = 2m R„[4ln (TjT~ )+ m ]
' for the resistivity R as a function

of the temperature T, with R„the unitarity limit and T~ the Kondo temperature. Although containing the
results of various previous authors as approximations to it, this expression is free of the divergences found
by them. While we succeed in eliminating the divergences by accurate summation, we find that the observed
saturation of R at zero temperature is not given by a non-self-consistent calculation. The self-consistent
case is covered in the following paper.

I. INTRODUCTION

A variety of distinct theoretical approaches have
been applied to the Kondo effect: perturbation the-
ory first applied by Abrikosov, ' decoupled equa-
tions of motion by Nagaoka, Chew-I ow theory by
Suhl, and more recently the scaling approach re-
viewed by Anderson in Ref. 4.

Hamann found an exact solution of Nagaoka's de-
coupled equations and obtained good agreement with
experimental data for the resistivity of dilute mag-
netic alloys in the high-temperature limit. At low
temperatures, the right qualitative behavior is ob-
tained, but the resistivity does not saturate fast
enough to the unitarity limit as the temperature de-
creases. Moreover, as pointed out by Zittartz and
Muller-Hartmann, ~'7 the Nagaoka-Hamann equa-
tions do not satisfy the Mattiss singlet-ground-state
theorem.

In order to improve upon the Hamann solution, it
is desirable to replace the rather intuitive de-
coupling approach by a more explicit approxima-
tion. One candidate is diagrammatic perturbation
theory. The first application of this by Abrikosov'
yields agreement with Hamann's work in the high-
temperature region, but diverges at a Kondo tem-
perature T~. Below T~, the resistivity approaches
zero instead of saturating. Apart from this dis-
agreement with both Hamann's results and experi-
mental work, the Abrikosov treatment has been
criticized by Keiter. He points out that the pro-
jection procedure introduced by Abrikosov to get
rid of spurious states (introduced by second quanti-
zation of the spin operator in the Kondo Hamilto-
nian), violates the linked-cluster theorem. There
has been considerable discussion of this point in

the recent literature and we will return to j, t in
Sec. IIA.

These problems do not occur in the alternative
diagrammatic treatment of Cheung and Mattuck~e

(CM). Instead of the Abrikosov projection proce-
dure, CM uses a limiting procedure due to Takano
and Ogawa" (TO), to which the linked-cluster theo-
rem can be applied. First performing a sum of
ladder-type parquet diagrams only, CM finds a di-
verging behavior similar to that of TO, and, like
Abrikosov, a resistivity that vanishes at zero tem-
perature. The inclusion of self-consistently-
clothed propagators in the ladder summation re-
moves the divergence and gives saturation at low
temperatures according to essentially the same
formula as that of Hamann.

In a systematic approximation the non-ladder
parquet diagrams must also be included as their
contributions are of the same order in the di-
verging logarithm as that of the ladder diagrams.
Up to now no exact summation of the full parquet
series has been performed. The approximate pro-
cedure of Abrikosov' is claimed, however, tobe
accurate to leading order in the logarithm, and is
used subsequently by Silverstein and Duke.

Cheung and Mattuck therefore conclude their
work with an argument based on the results of Sil-
verstein and Duke, to show that the bare and clothed
versions of the full parquet approximation yield
essentially the same results as the corresponding
ladder diagram calculations —specifically the Ha-
mann formula for a self-consistent computation.
Ne see that the diagrammatic approach has con-
verged to the same result as the decoupling ap-
proach, which is gratifying. However, the above-
mentioned shortcomings of the Nagaoka-Hamann
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theory persist.
It should also be pointed out that the physical

model of the CM treatment is not exactly the same
as that of Nagaoka. Nagaoka bases his calculation
on the "pure" Kondo model in which the impurity-
spin value 8 is fixed. The TO limiting procedure
used by CM, on the other hand, allows both 8 = -,'
and 8=0 values, although the correct average oc-
cupation number of spin-up and spin-down levels
is maintained. That the twosehemesare not equiv-
alent, is illustrated by the fact that an extra di-
vergence is found (in the bare propagator expan-
sion) in both Ref s. 16 and 17, which is absent in
pure Kondo model calculations.

The present work is a diagrammatic theory based
on a new limiting technique first outlined in Ref.
15. The linked-cluster theorem remains valid and
a fixed spin value is maintained. Apart from the
fact that this simplifies the algebra considerably,
it means that our method can serve as a direct
basis of comparison with decoupling and other pure
Kondo model calculations. Our limiting procedure
is discussed more fully in See. IIB.

Tke previous mork outlined above makes it clear
that the essential physical features of the Kondo
system (at least at low temperatures) is not de-
scribed accurately by only the leading order in the
logarithm. It is therefore necessary to obtain a
more refined summation of the parquet graphs than
the Abrikosov procedure. The present mork also
attempts to do this. In fact, in Sec. IIIB we derive
a. set of diagrammatic equations mhich exactly sums
the parquet series. However, for the sake of a
simple solution of the resulting integral equation,
we introduce an approximation which eliminates
again certain parquet diagrams from the series.
Still, the remainder of the series is nevertheless
summed exactly.

The technicalities of our method are such that me

find it advantageous to devote Sec. ID to a calcu-
lation in zero-temperature formalism before we
proceed in Sec. IV to our main purpose, the com-
putation of the conduction-electron self-energy as
a function of temperature. Despite some compli-
cated algebra in intermediate stages, a very sim-
ple expression for this is found in Eq. (3. 22) (as
interpreted in Sec. IV}.

Finally, in Sec, V, we calculate in various ap-
proximations the contribution of Kondo scattering
to the resistivity. We start with third-order per-
turbation theory and progressively include larger
classes of graphs until we arrive at the full parquet
approximation for the self-energy. It is found that
the non-self-consistent formulas of Kondo, Cheung19

and Mattuck, Nagaoka, and Abrikosov' are all
approximations to our expression for the resistiv-
ity, Eq. (5. 13). By including aiso the terms of
lorn order in the logarithmic divergence, our cal-

culation is, moreover, free of divergence at the
Kondo temperature, as shown by Fig. 10.

As is mell known, it is observed that the resis-
tivity of dilute magnetic alloys saturates at zero
temperature. For any realistic order of magnitude
of the interaction, our result approaches zero in-
stead. In the following paper, we show that this
difficulty is removed by making the present cal-
culation self-consistent.

+k — [(c~s~cy~ cH~ c~~) S+
a'a

f+cl eq c~q a + c~e, c~qS~] . (2. 1)

Here c~~, creates an electron with spin-up in a con-
duction-electron state mith momentum k, etc.

We will classify all calculations (like Ref s. 2

and 4) based on the interaction of Eq. (2. 1) (which
has a fixed magnitude S for the impurity spin) as
pure Kondo model calculations.

Most diagrammatic calculations —e.g. , Refs.
1, 16, 20, and the present work-are based on a
second quantized version of Eq. (2. 1). For S =-,',
this is given by

H ——
2

~ RCpsfyCgfyCgfyCyty CyefyCg fyCg ffCyfy
k,k' ee

ck~scd acdack-a)' (2. 2)

Here the label d represents an electron state
(nondegenerate for S = ~) that is localized on the im-

purity atom. We use this notation consistently,
while the labels 0, 0', p, andq are used for con-
duction-electron (k-electron) states. The factor
1/2X (N representing the total number of atoms in

the crystal) will be absorbed into the J'for the sake

of brevity.
The idealization in Eqs. (2. 1) and (2. 2) of an in-

teraction strength J which is constant in momentum

space (corresponding to a contact interaction) leads
to a divergence when the sum over all momenta is
performed. Like previous authors, we mill avoid
this by assuming a. density of conduction states with

the constant value p in a narrow band of width 2D

centered about the Fermi energy &~, and zero else-
where.

We can now show that H~ and H' are not corn-
pletely equivalent in perturbation theory. When
H' is used as the perturbation, the applicable un-

perturbed Hamiltonian is

II. DESCRIPTION OF THE MODEL

A. Hamiltonian

The problem we study is the scattering of con-
duction electrons from a single-impurity atom with
spin S, located at the origin. The interaction Ham-
iltonian used by Kondo for this system is
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&} ~~c~e+~ ( ~ &~0} ~~cue ~

ke0 a
(2. 3)

Here e~ and c~ are single-particle energies, while
the p's are Lagrange multipliers, which can be
adjusted to give the correct number of particles.

The second sum in Eq. (2. 3) is the total un-

perturbed energy of the localized spin. In the pure
Kondo model, it is a constant that can be omitted.
However, in the diagrammatic perturbation-theory
formalism, this term must be included in Ho, and
its contribution varies according to the occupation
number of the d states. At finite temperatures,
ensemble averages are taken over the complete
set of eigenstates of H. The impurity-spin com-
ponent of this set consists of the states in~, , n~, )
= (1, 0), )0, 1), (0, 0), and )I, 1). The first, two
of these have S = —,

' and correspond to the eigen-
states in the pure Kondo model; the last two, hav-
ing S =0, are spurious and various proposals have
been made for eliminating their influence by a
choice of the extra parameters (e~ —p~,) which do
not occur in the pure Kondo model.

The TQ procedure, ' ~ mentioned in Sec. I, is
based on the fact that the states with S= 0 gives
zero contribution in the calculation of Green's
functions, etc. The p~, are chosen in such a way
that c„—p.„,= 0, ensuring that the d state has an
average occupation number (n~) =

z . It is then only
necessary to insert a numerical correction factor
to compensate for the fact that the ensemble aver-
age is taken over four states instead of two.

A more general procedure that can be applied to
any spin value was formulated by Abrikosov. ' It
makes use of the fact that we wish to keep the con-
tributions of states with exactly one d electron (or
pseudofermion for S &-,'). These give rise to dia-
grams with one d-electron hole line in the diagram-
matic expansion of, for example, the Green's
function. All diagrams with more than one hole
line are then eliminated by multiplying the expan-
sion by the factor exp9(e~ —p~} and taking the limit
(e„-p~)-+~. However, as pointed out by Keiter,
this means that unlinked diagrams are eliminated
from both the numerator and denominator of the
Green's function, so that the cancellation on which
the linked-cluster expansion is based, fails to oc-
cur.

8. New limiting procedure

For the reasons stated in Sec. I, our calculation
will be based on yet another limiting procedure.
While we discuss only the S=-,' case, generalization
to higher spin seems straightforward. We repeat
here, in somewhat more detail, the arguments
given in Ref. 14.

Consider first the zero-temperature propagator
G~,,(kt, k'f') in the pure Kondo model. This can

be expressed [Eq. (S.9}of Ref. 22] as the quotient
of two expectation values in the noninteracting
ground state )40), given by

Here )Eo) represents the ground state of the
Fermi sea and IS) the impurity-spin state. We
specify the direction of our s axis to be parallel to
o, the spin vector of the incoming particle in the
propagator, and we abbreviate the state with S,
=+-,' as ~4). Without interaction, the states (0)
and

~ 0) are degenerate and )S) is a linear com-
bination of these. The interaction Hz lifts the de-
generacy and in order to ensure a smooth transi-
tion when H~is switched on, we use the following
form for Ho ..

Ho= g (e~ —p}c~c~,+lim XH~ .
ka A~O

(2 5)

The full set of eigenstates of Eq. (2. 5) is the
set

(2. 6)

where i ranges over the ground state and all ex-
cited states of the Fermi sea. With Ho taken as
in Eq. (2. 5) the spin component of (@p) is now

uniquelydeterminedas either (0) or
~ 0), depending

on the sign of the coupling constant J. A distinct
zero-temperature propagator will be obtained for
each case, which we denote by G, and G, for J &0
and J &0, respectively.

Next we turn to the finite-temperature single-
particle propagator 9, still working in the pure
Kondo model. 8 is the quotient of two traces
[Eq. (24. 13) of Ref. 22], each performed over the
set E It is se.en from Eq. (2. 6) that the sum im-
plied by the trace operation, can be split into two

contributions. Each contribution involves a specif-
ic impurity-spin state, but is a weighted average
over all the Fermi sea states. The denominator
of 9, for example, is then given by (V, + V, } where
V, is the finite-temperature vacuum amplitude
evaluated as a thermodynamic average over the
ensemble of Fermi sea states, but assuming a
fixed [S)= ~t) state. A similar expression applies
to the numerator. Note that the temperature de-
pendence is contained in the thermodynamic weight-
ing factor, which is expressed in terms of the non-
interacting Hamiltonian Ho. From Eq. (2. 5} it is
clear that the impurity spin gives a negligible con-
tribution, so that the full temperature dependence
is furnished by the Fermi sea.

A diagrammatic series expansion of each of the
two vacuum amplitudes can now be given by the
standard procedure, provided that we discard the
pure Kondo model by substituting H' for H~. Sirn-
ilarly to the vacuum amplitude, each of the two
terms in the numerator of Bean be expressed as a
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sum of diagra, ms to which the linked-cluster theo-
rem is applicable, so that we obtain

g =(c, v, +e, v, )/(v, + v, ), (2. 7)

where C represents the sum of all linked-cluster
diagrams.

As long as the Fermi sea is isotropic, there is
no direction of preference for the impurity spin
and V, = V, . This can also be proved more ex-
plicity in terms of the diagrammatic expansion by
making use of the equality of conjugate diagrams
(see Sec. III C) which we will derive in Appendix
A.

Equation (2. 7) can consequently be reduced to

g=-,'(g, +g, ), (2. 8)

where 8, is the linked-cluster single-particle pro-
paga, tor in a system with an impurity-spin fixed in
the positive z direction. The importance of Eq.
(2. 8) is that we can formulate a simple limiting
procedure for the exact diagrammatic calculation
of 8, and 8, . The standard formalism yields the
single-particle propagator obtained from an en-
semble containing unperturbed systems with all
four possible occupations of the d states. For the
calculation of 8, , for example, the ensemble must
be restricted to systems with (n~, , n„)=

i I, 0) .
Recalling the unperturbed expectation value

(&ur) = [expp(e u
—par)+ 1]

it is clear that this can be done by the choice

(2. 9)

«q —pq, = —U, «~ —U~, =+ U (2. 10)

C. Calculation of the resistivity

In the relaxation-time approximation the resis-
tivity A of a metal is given by

and by taking the limit U-+~. Similarly 9, is cal-
culated by finding the single-particle propagator
from some linked-cluster expansion and then taking
the limit U- —~.

It will be seen in Sec. IVA that we have to modi-
fy this limiting procedure slightly when applied
to calculations in momentum space.

atoms is low enough that the contribution of each
to the-resistivity is additive, we thus find

f1=-,'&pft„(-21m T„)~. =...

R„=6cN/ve p ez.

(2. 13)

(2. 14)

Here B„is the unitarity limit resistivity and N the
total number of atoms in the crystal.

The connection with the propagator formalism
is made by noticing that the single-particle T ma-
trix is simply the reducible self-energy evaluated
on the energy shell. This is expressed by

( )
ZM, i (4&)

-7~go(& ~) a~(~)
' (2. 15)

where Z represents the self-energy, while the
Dyson equation for the propagator in momentum
space takes the form

g(k, k', (g) =go(k, ~)6~~. +go(k, (g)T,~.((u)go(k', u)).
(2. 16)

The symbol Qo represents the unperturbed propa-
gator.

Application of Eq. (2. 16) to each of the three
propagators in Eq. (2. 8) yields the result

T(~)=-'. [T&4)+T (~)] (2. 17)

As before, the arrow subscripts indicate fixed im-
purity-spin ground states. Because the interaction
strength J is independent of momentum, both the
self-energy and the T matrix are independent of
their momentum subscripts which are omitted in
Eq. (2. 17) and henceforth. Combining Eqs. (2. 13)
and (2. 17) it is found that

It /R „= ——,
'

vp Im[T, ((o) + T, ((g )]
~
„~ (2. 18)

III. SELF-ENERGY AT ZERO TEMPERATURE

Before proceeding to the finite-temperature con-
duction or k-electron self-energy, it is useful to
calculate Z in the zero-temperature formalism.
There is, of course, a close analogy between the
two calculations, and making use of this we will
be able to simplify considerably the finite tempera-
ture calculation in Sec. IV.

R = 3(8 p5~T) (2. 11)

I/r = —2ImT„, (2. 12)

with q on the Fermi surface.
Assuming that the concentration c of impurity

where p is the density of states, v the velocity,
and v' the relaxation time for conduction electrons
with energy «.

The relaxation time v can be expressed in terms
of the single-particle transition matrix T of scat-
tering theory. Making use of the fact that our scat-
tering potential H' is a contact interaction, and of
the optical theorem, we obtain

A. Conventions in diagrams

Like previous authors, we use solid lines for
k-electron propagators and a broken line for the
d-electron propagator. One of the simplest con-
tributions to the k-electron propagator is then rep-
resented by Fig. 1(a).

The diagram of Fig. 1(a) contains a continuous
solid line, connecting the incoming state k with
the outgoing state k'. All diagrams contributing to
the k-electron propagator have this property be-
cause H' conserves the number of k electrons: We
refer to this as the base line of a diagram and draw
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it as a straight horizontal line running from right
to left.

It turns out that the most important subset of
self-energy diagrams in the Kondo problem are
those which contain no solid lines other than those
appearing in the base line. W'e call these the par-
quet diagrams. It will be shown that our definition
is slightly more general than that used by previous
authors.

By our choice of the z axis, the incoming k line
has spin up. In parquet diagrams, we specify the
spin direction of d lines by using the convention
that d0 lines are drawn on the right-hand side of
the direction of the base line and dk lines on the
left. Figure 1(a) can then be redrawn as in Fig.
1(b), where the given momenta and energy parame-
ters are sufficient to determine the propagators
completely.

Apart from convenience, this convention is use-
ful because it enables us to identify uniquely the
three kinds of vertices appearing in the diagrams
with the three values that the matrix elements of
the interaction H' (Eq. 2. 2) can take, as illustrated
by third-order parquet diagrams in Figs. 1(c) and
1(d). It is clear that a broken line crossing over
a solid line represents a spin-flip interaction
for which the amplitude is (- 2 J'), according to
Eq. (2. 2). The fork-shaped vertices, on the other
hand, do not involve spin flip and the amplitude
is +J, depending on whether the participating k and
d lines have opposite or parallel spins. Figure 2
illustrates the identification for the cases occur-
ring in parquet diagrams.

8. Diagrammatic expansion of the selfwnergy

vertex a V

matrix
element

FIG. 2. Identification of vertices with matrix elements.

graphs, and the last line contain self-consistent
parquet diagrams. Note that the term "parquet
graphs", as used, for example, in Refs. 1, 16,
and 18, includes only our "ordinary parquet
graphs. "

Various contributions to the self-energy have
been neglected in Fig. 3. First, parquet diagrams
with cross vertices (spin-flip interactions) in in-
termediate states, such as Fig. 4(a), are omitted.
In Sec, III C a set of integral equations is derived
which sums the set of ordinary parquet graphs of
Fig. 3 exactly. The graphs with intermediate
cross vertices can be included in these equations,
but the formalism becomes considerably more
complicated. When solving the integral equations,
however, we restrict the sum at any rate to those
graphs in Which all intermediate conduction-elec-
tron states are on the same side of the Fermi sur-
face. Under this assumption it is seen that all in-
termediate cross-vertex diagrams are anomalous
and give no contribution. W'e therefore omit this
type of graph from the start.

Second, no graphs containing self-consistently-

%'e expand the self-energy as shown in Fig. 3 in
a series of parquet diagrams. These can be sub-
divided in three groups: the first two contributions
are the Hartree diagrams, the rest of the first
four lines in Fig. 3 are the ordinary parquet

/ + + g

/ 'll

g J

~s 0 V~l + 0 ~ 0 ~

dT

dJ

q .kT

4'IcJ ~ ps(

kl
'

P 'k
ll~ I-f

(a) g' ~
I V a J

-p 'g '% g 4 % % ) ~ ~ ~ ~

v
J

i
1 ~

P /
L ~ l
J I

e
ting 1 ~ e ~ %rL

s ~ + J
~ee

FIG. 1. Parquet graphs illustrating the conventions. FIG. 3. Expansion of the self-energy.
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t
l 1 l a
s l $

&~r 8
yl

/
+ 2X:

{c)

FIG. 4. Graphs which are omitted from the expan-
sion.

clothed d lines [e.g. , Fig. 4(b)] are included.
Clothing of the d propagator gives rise to a shift
in its energy c~. From the point of view of the
pure Kondo model c~ is an extra parameter at any
rate, and as pointed out in Secs. IIA and II 8 an
arbitrary choice is made for its value in the speci-
fication of the limiting procedure. Therefore @-
line clothing is not relevant in Kondo model cal-
culations.

Third, nonparquet graphs, such as Figs. 4(c)
and 4(d), in which the d-electron particle and hole
are coupled by the conduction-electron background,
are not taken into account. Earlier calculations,
e. g. , that of Abrikosov, were restricted to the
summation of ordinary parquet diagrams on the
grounds that they contribute the highest order in
the logarithmic divergence. As shown by the work
of CM and by the present work, the self-consis-
tent parquet graphs which are of lower order in the
logarithm, are equally important. The exclusion
of nonparquet graphs can therefore be questioned
and our excuse is one of simplicity.

C. Summation of ordinary parquet yaphs

In the present paper, we approximate the self-
energy Z as the sum of the diagrams in the first
four lines of Fig. 3 only. In the following paper
the calculation is extended to include also the self-
consistent parquet diagrams.

I.et us define, for each ordinary parquet dia-
gram X, its conjugate diagram X as the diagram
obtained by rotating X through 180 around its base
line and reversing the directions of the arrows on

all broken lines. Thus the second and third lines
in Fig. 3 are, term for term, each other's con-
jugates.

A first partial summation can be performed by
noting that X=X, as proved in Appendix A, so that
pairs of conjugate diagrams can be added. Using
this fact, we express (in Fig. 5) Z in terms of a

FIG. 5. Self-energy in terms of vertex parts P and B.

g+ w I + ~ rc ~ + q SKI& p+
v

\/w +

M

4

~r~ r«%, i
~g~

FIG. 6. Definitions of vertex parts t' and B.

four-tailed vertex function t' and a six-tailed ver-
tex function 8, as defined by Fig. 6. It is seen
that t is a ladder approximation to the particle-
particle vertex function, while 8 is composed of
all asymmetric six-tailed vertex parts which begin
with a fork-shaped vertex to the left of the base
line and end with a fork-shaped vertex on the right
of the base line.

Our expression for Z appears more cumbersome
than the corresponding one in the Abrikosov sum-
mation procedure. ' However, the latter ap-
proach leads to an integral equation (for the ver-
tex function) which is nonlinear and in addition in-
volves multiple counting of self-energy graphs.
An artificial restriction of certain energy parame-
ters to the energy shell is then introduced in order
to compensate for the multiple counting. Reference
18 (footnote 33) points out that the result is ac-
curate at best to leading order in the logarithmic
divergence, and even this is questioned for high-
order contributions.

In contrast, we now proceed to derive integral
equations for t' and 8 which are linear and which

preserves the correct counting. The resulting ex-
pression for the self-energy is correct to all or-
ders in the logarithm, within the parquet graph ap-
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malism, as in the work of CM. '6 Figures 5-V then
represent an exact summation of the complete set
of ordinary parquet graphs. For the sake of sim-
plicity, however, we will not incorporate this
general ization.

%e use the conventions of Befs. 22 and 23 to
translate Fig. 7 into algebraic equations in mo-
mentum space. Because J is a constant, it is
easily shown that t' is a function of » and &3 only
and Fig. 7(a) can be solved to give

—it'(td1, (ds) = —iJ [1+PS(td, t (ds)] ',
where s is the "pair-bubble" function

s(&d1, tds) = —Z, dy (V+td, —es+j53) '
p

x(y —
&ds

—U+i5c) '(2vi) ', (3.2)

where 5&&0 for e&&0 and g~&Q for U&Q.
In order to calculate the function s by contour

integration in Eq. (3.2), it is now necessary to
specify the unperturbed ground state of the impuri-
ty spin. For 8=), U&0 (Sec. IIB) and 5„&0, so
that the contour is closed at —i~ and we obtain

FIG. 7. Integral equations for the various vertex
parts.

proximation.
By iteration it can be shown that t' satisfies the

integral equation of Fig. 7(a). In Figs. V(b) and
7(c}we define the auxiliary six-tailed vertex func-
tion A in terms of the particle-hole ladder vertex
function f . Figure V(d) states the central integral
equation of our summation method, from which 8
is to be obtained. That 8, as defined in Fig. 6,
actually satisfies Fig. V(d) is again proved by itera-
tion. We stress that multiple counting in Fig. 7(d)
is avoided because both A and 8 have asymmetrical
structures.

It is possible to include also the type of graph of
Fig. 4(a) in the sum by a slight reinterpretation of
the same diagrammatic equations. The convention
specifying the spin of the d lines must be dropped
and the interaction represented in spin matrix for-

s t((d1+(ds+ U) Z ((d1+(ds 'Es+ U 35) . (3.3)
PCS'

At this stage we only make use of the sign of U
and postpone taking its limiting value to SeC. IVA.
Similarly for 8 = 4 we find

St((d1+tds+ U) = — Q (&d1+(ds —6P+ U+ i5)
Phky

(3.4)
Vfe define two new functions t, and t, by the equa-
tion

t...((d)=Z[l+ JS...((d)] 1.
Equation (3. I) then becomes

f t't(td1 t tds) f ~ 't(tdl +tds+U}

(3.5)

(S.6}

In a similar way the diagrammatic equation of Fig.
7(b) can be solved to give

i ' t( tt1dt Ns) ft' ~ ((d1 (ds+U)' (3.7)

With the help of Eqs. (S.6) and (S. 7), Fig. 7(c) can
be directly translated to read

At. t(cd1 t (dst (dst Vs) — ft, ~ (td1+tds+Ys+ U) f(t(1 t1 d(ds+ U) Z (tdl+Ys 4535+2)' (3.6}

while Fig. 7(d) represents the equation

I)(td1 tds tdstys)= ( Atdtdtstttds 'rs)

-Z dy4dys» ~2 ~3»4)f(~1+~s+ys+ U}i(~1 ~2+Vs+U}
(2vi) (tds+y4 U+55V)(tds Ys+ U 5U)5( 1 tYds +r +t'-55+564)(td1+Y4+vs ~tt+i5tt)

(3.9)
The first step in the solution of Eq. (3.9) is to perform the ys integral. We first consider the case where
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8 = 0, then the integrand contains a factor f, (yz+&o& - &oz+U). According to Appendix 8, this must be
handled as a contour integration along a semicircle in the upper half-plane where t, is analytic, and we ob-
tain

tg( dg '(glz+cgz+ 2U)
((8g+(oz+yz —c~+ U+z5~)((dg +(d z+y4 —cp+ U+ z5z)

t, (-(yz —yz+a, +U)

z ((op+(dz+yz 'E&+ U+z5)(y4 y z+6& tz+z5z)

f,(-vz+yz+ c,+ U)
+

~zr, e ((op+(oz+yz —cz+ U+i5)(yz -yz+c~-ez+i5~) (S. 10)

When this expression is substituted back into Eq.
(3.9), it is seen that because of the second and
third sums in Eq. (3.10}, the integrand of the y4
integral is no longer a separable function of yz and

y&. This is a major complication in the solution
of the integral equation.

The troublesome terms in Eq. (3.10) can be
traced back to the fact that the momenta p and q
can be either above or below the Fermi momentum.
In simple ladder diagrams (formed from the ver-
tex functions f' and t ) all intermediate conduction-
electron propagators occur as part of a pair bubble
and as seen from Eq. (3. 4) this restricts them to
particle states (P &kz) for 8= 4. It is seen from
Figs. 7(c) and 'I(d) that the states P and q do not
form part of pair bubbles and they are free to be
either particle or hole states. We now make the
approximation of restricting ul/ intermediate con-
duction electron propagators to particle states for
S=0 (or hole states for 8 =4) so that Eq. (8. 10) is
simplified to

f ()diaz f~(~x-~z-~z+2U)

xs, (~~+~z+yz+ U)s, (~&+&oz+y&+ U).
(S.11)

The meaning of the approximation in terms of
diagrams is best seen by considering the simplest
non-ladder parquet diagram, Fig. 8. This Feyn-
man graph is written as the sum of two Goldstone
graphs in which particle and hole lines are explicit-
ly distinguished. Similarly, each higher-order
non-ladder parquet can be expanded as a (finite}
series of Goldstone graphs, all of the same order
in the interaction and in the logarithm. Qur ap-
proximation selects only the first term, which has
no kinks in the base line, from each series.

B,(yz) -& (yz)+f (~~+ ~z+yz+ U')

xs i((0 g + 4l z +yz + U)f j f Bt

f B,= f dyz(2vi) 'B,( )yz

(3. 12)

xsi((g) g +&()z+y4+ U)(4lz+y4 —U —z5)
(S. 18)

Multiplying the integral equation (3.12) throughout

by a factor

The results of scaling theory and of Nozieres
et al, on the x-ray problem indicates the im-
portance of low-energy particle-hole excitations.
Such states are included in the present' theory in
the 8 = 0 graphs, where the base line consists en-
tirely of hole lines, but multiple particle-hole
states are excluded by the no kink approximation.
Such intermediate states do occur in the self-con-
sistent theory treated in the following paper.

Preliminary attempts to include the kinked
graphs nevertheless do suggest that the analytic
structure of our result is not drastically altered
by them. This important point deserves further
study, and work is presently in progress to in-
clude the rest of the Goldstone series in the sum-
mation. Meanwhile the approximation is justified
by the fact that it enables us to solve the integral
equation for 8 exactly, and that it leads to physical-
ly reasonable results. A similar approximation
is made in the work of Suhl and the close relation-
ship (which will be explored in Sec. V) between our
results and that of Abrikosov suggests that it is
also implicit in the Abrikosov summation proce-
dure.

It is also pointed out that while we now omit
some graphs from the parquet series, the remain-
der is still summed exactly. Making use of Eq.
(S.11) and suppressing superfluous arguments, Eq.
(8. 9}becomes

I Y l I z

s, ((g g+(g)z+yz + U)((dz+yz - U -Q}"'

FIG. 8. Simplest non-ladder parquet as sum of Gold-
stone graphs.

and integrating over yz yields an algebraic equa-
tion for JB,. When this is solved and substituted
back into Eq. (3. 12}, we find
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8 (%1,&z, &3, y2) = t (&1 —&8+ U)t, (&1 +&8+/2+ U)8, (&1++8)

+t, s, (1 —t~ s~) t~(~~ -(oz+U)s~(~q —~z+ U)t~(~~+~q+yz+ U)s~((g&q+~3+yz+ U). (3. 14)

Z = ZH+Zq+2Z2+2Z3+ 2Z4, (3. 15)

where ZH represents the Hartree graphs, Z, the
circle diagram of Fig. 1(b), Zz the ladder graphs
derived from t' and Z3 and Z4 the non-ladder par-
quets derived from B.

Each contribution is calculated by translating the
corresponding graph into mathematical form [mak-
ing use of Eqs. (3.5), (3. 6), and (3.14)] and per-
forming the integrations over intermediate energy
parameters. We obtain

In Eqs. (3. 12) and (3.14) we have abbreviated
t, (ur, —&oz+ &uz+ 2U) to t, , and similarly for s, .
The function 8, can be calculated in a similar way.
It is found that —B(to~, vz, &uz, yz) is given by an
expression similar to the right-hand side of Eq.
(3. 14), except that the S = 0 subscripts are re-
placed by S= 4.

D. Calculation of the selfwnergy

Having found the vertex functions, we can now
compute the self-energy from Fig. 5. The latter
is represented in algebraic form as

Zl. = Z„+Z, +Zz=+[J-4 J s(1+Js) ']
=+(J—4Js+4Js —4Js + ).

(3. 23)

(3. 24)

The diagrammatic expansion for Z~ is just the
first two lines of Fig. 3 and this can be identified
term by term with the series of Eq. (3. 24), on
application of the following rules: (i) Associate
with each k line a factor (-s); (ii) associate with
each vertex the magnitude of its interaction; and
(iii) multiply the result with + I for S = 0, 0.

Equation (3. 22) for the full parquet self-energy
is identical to Eq. (3.23) except for an extra fac-
tor 2 in the denominator. Its series expansion is
the same as Eq. (3. 24) except for an extra factor
2" in the (n+1)th term, not counting the Hartree
contribution. On the other hand, the (n+1}th lad-
der diagram has n forked vertices; when all par-
quet graphs are included, each fork can be either
above or below the base line so that there are 2"
parquet graphs corresponding to the single ladder
diagram. It follows that the three rules stated
above for the ladder approximation also give a
valid diagrammatic interpretation of Eq. (3.22).

Z„,., = wJ,

Zq, ., =+4J s, .,((o+2U),

(3. 16)

(3. 1 t)
IV. FINITE-TEMPERATURE SELF-ENERGY

A. Calculations in finite-temperature formalism

where (d is the energy parameter of the entering
propagator. Because of the conservation law at
each vertex, the intermediate energy parameters
(0 f Q) 2, &3 of Sec. III C is related to (d by the equa-

(l 2 + (03 (d . Consistently with the previous
abbreviation we subsequently omit the argument
(&g +2U) from t and s functions.

Straightforward contour integration gives the re-
sults

2Z2t ~ 4 %4cl tf e4S f ~ f

A 2 3 -1Z3 ~ '1 —+4«s ise.a(1 —ts.~ se i)
w23 4,Z ,4= v u4t, , e(I - t, , s, .,)

(3. 18}

(3. 19)

(3.20)

This expression is remarkably simple when the
complex structure of the vertex function 8, for
example, is considered. We will now show that
it also has a very simple graphical interpretation.

Consider first the following ladder approximation
to the self-energy, using Eq. (3.5) for t:

Substituting these values in Eq. (3.15) yields

Z=a[J —4J s(l-ts}(l+ts) '], +, —for S=4, 0.
(3.21)

Using the value of t as given by Eq. (3. 5), we iind

Z=+[J-4Js(1+2Js) '], +, —for S=g, y. (3.22)

+„=(2n+I)vp ' and y =2mvp ' (4. 1)

and a sum is taken over all positive- and negative-
integer values of the indices n& and m; in inter-
mediate states. All energies are measured from
the Fermi surface, i.e. , we take &~=0. In the
usual notation P = I/Ez T where T is the tempera-
ture.

The finite-temperature version of Z& is then
found to be

Zg= -4 J'Z [f~& p) -f(U)] [f(U)+g(&p- U)]

x(t&„-z,+2U)-';

f(z) =(e +1)-', g{z)= (e —1) '
(4. 2)

{4.3)

and we have used identities like g(ad „+z) -=—f(z),
etc.

We now turn to the calculation of the self-energy
at finite temperatures. As a first example let us
consider Zj . Energy parameters are allocated in
a similar way as in Fig. 1(b), using the symbol
(d for a fermion energy parameter andy for the
transfer of energy parameter.

The conduction-electron propagator in Fig. 1(b)
is given (in imaginary frequency formalism) by
(iu&„+ty, —t~) ', where we define
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Z „=4 O' Z f(e~) (4)„-c~)
' =- 4J s,(is „), (4. 5)

Z„=-4J'2 [f(e,) —1](~d„-~,)-'-=-4J's, (i&„) .

(4. 6)
The functions s, and s, are defined by the identi-

ties in Eqs. (4. 5) and (4. 6). We use the same
symbols as for the pair-bubble functions at zero
temperature, as it is easily seen by comparison
with Eqs. (3. 3} and (3.4) that the two sets are con-
nected by the standard analytic continuation ~
-cg +i5 and taking the zero-temperature limit of
the Fermi function f(c~). Equations (4. 5) and (4. 6)
for Z„, correspond exactly to their zero-tempera-
ture counterpart, Eq. (3. 17).

Note that while in Eq. (4. 2) the impurity spin
gives a contribution to the temperature dependence
of the self-energy, this is eliminated by the limit-
ing procedure (4.4). fn Eqs. (4. 5) and (4. 6) the
full temperature dependence is carried by the
Fermi sea of conduction electrons. As pointed out
in Sec. IIB, this is as required by the pure Kondo
model.

The self-energy for a specific impurity-spin pro-
1ection is found from Eq. (4. 2} by application of the
limiting procedure in Sec. II 8. Because we are
working in momentum space, U occurs in the de-
nominator of Eq. (4. 2) and taking the infinite limit
causes problems. However, the intention of the
infinite limit is simply to ensure a "pure" occupa-
tion of the d states, and the same result can be ob-
tained for finite U by using the zero-temperature
limit of the d-state distribution functions. Once
this is done U must be eliminated from the answer
because it is an artifical parameter which was in-
troduced in the second quantization of S and does
not appear in the pure Kondo model. . It is an un-
important additive constant in the numerator and
we simply make it zero. Our limiting procedure
can then be summarized in the following prescrip-
tion:

For S = 0, 4 let U- +0; but wherever the tem-
perature-dependent statistical factor e appears,
the limit P-~ is taken in such a way that

(4. 4)

Application of this prescription to Eq. (4. 2)
yields

ng- ~m~

~n+~m)fA I (

FIG. 9. Allocation of energy parameters in. ladder con-
tribution Z2 to self-energy.

t t;l (~+ sr + ~) = t i.& ($4) ~ +'ltd ~ + U}&

te;i(&~& i&na) = t~;i(~a —~w+U)i

t...(t(u„) = J' [1+Js, ,(~„)) ' .

(4. 7)

(4. 8)

(4. 9)

These equations are again related to their zero-
temperature counterparts, Eqs. (3. 5)-(3.7), by
an analytic continuation of their zero-temperature
limits. Using Eq. (4. 7), the ladder contribution
Z~ to the self-energy is calculated with energy pa-
rameters allocated as in Fig. 9. After performing
the sums over the m's by the standard Poisson
procedure (see below) we find

B. Ladder approximation at T& 0

%e treat the ladder approximation at finite tern-
peratures along similar lines as at T = 0. Our
calculation of the I; functions in Sec. IQC is con-
siderably simplified by the fact that all intermedi-
ate vertices in parquet graphs are taken to be non-
spin-flip. This, in turn, is valid within our pure-
particle or pure-hole intermediate state approxi-
mation because diagrams containing anomalous d
lines vanish and can be omitted a Pxion.

At finite temperatures, anomalous diagrams
must, in general, be taken into account. However,
application of the prescription (4. 4) yields the zero-
temperature limit of the d propagators. According
to the Kohn-Luttinger-Ward theorem (see Ref. 22,
p. 289}, diagrams with anomalous d lines can then
be neglected, provided that the I.agrange multi-
pliers p„, and p~, are adjusted to give the correct
occupation numbers in the unPerturbed system.
This is exactly the implication of Eqs. (2. 9),
(2. 10), and (4.4).

The integral equations of Figs. 7(a) and 7(b) can
now be solved in an exactly analogous way to the
zero temperature case, and we obtain

4J' g [f(e~) -f(U)] [f(e.) -f(U)]t(~. +&~w+U)
p p + ~ (lV~ U)(Z(dz+$4l~ f &+ U)($rd z+f(d ~ —f &

+ U)
(4. 10)

To carry out the sum over n2, we represent t
in terms of a spectral function Q:

Q(~) = -s Imt(u) +t6) . (4. 12)

t(4) „+U) = J d(g Q((g))(i(g)„+ U —(g) (4. 11)
Using Eq. (4. 11), the Poisson summation for-
mula, which states that for a suitable function F
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p 'QE(i'„) =sum of residues of E(z)f(z)

at the poles of E(z) (4. 13)

canbeapplied to Eq. (4. 10). The four terms
arising from the four poles of the summand of Eq.
(4. 10) can be divided into two groups: the single
term derived from the ~~= U pole and which con-
tains an over-all factor f(U), and the other three
terms, all containing over-all factors of the form
( "-U).

To find Zz, , we take the limit PU- —~ and the
last-mentioned group of terms vanishes, giving

Zz, =4&, s, , (4. 14)

Zzc= —4Jt, s, . (4. 15)

Comparison of the last two equations with Eq.

where t, stands for t ~ (icd„), etc.
In the opposite limit PU-+ ~, it is the single

term which vanishes and some tedious algebra is
involved in adding the three remaining terms. The
result is simple, however:

(3.18) shows that again there is exact correspon-
dence with the zero-temperature formalism.

The calculation of Zz illustrates a general fea-
ture of finite-temperature computations. In the
zero-temperature formalism, similar but sepa-
rate calculations yield the results for S = 0 and
S = 4. The finite temperature formalism treats
both cases simultaneously, but as above it turns
out that S= 0 quantities are the simplest to calcu-
late. In Sec. IVC we will therefore concentrate
on the S= 0 case. This can be done by simply
ignoring poles of the form ~„= ~ ~ ~ —U in Poisson
summations, as their residues vanish in any case
in the infinite limit. The S= 0 results are ob-
tained by comparison with the zero-temperature
results.

C. Non-ladder parquet contributions to the self-energy

The T &0 formalism is next used to translate
Figs. 7(c) and 7(d) into equations similar to Eqs.
(3.8) and (3.9), respectively. We encounter a
sum over y 5 which can be performed to give (in
the S=' case)

f(U)t(~~ —~~+i(g-+2U) f(g, )t( j-- —i-y zq+~U)
m5 pn (~nl+i~nS+'mR en+U)(~nl+i~g$+tym4 Zp+U) (AOng+t(d++ty~ —&, +U)(0'm4 —vms+&, —&,)

f(e~)t(-(u~ —iy 4+a~+ U)

(kd„+Ad +(C c
—cc+U)(EY 4

—cC c+c —cc))
(4. 16)

Once more, this agrees with the zero-temperature result, Eq. (3.10). The agreement enables us to
write the appropriate approximation (for the exact solution of the sum equation for B) namely

ff(U) -f(Zn)l [f(U) -f(&.)lt(~~ ~~+~~+2—U)

5 p, n (&(dgg+fCOpg+Zy~ —Zn+U)(Ad~+i(d~+~, y- —Zp+U)
(4. 17)

This approximation which has an artificial ap-
pearance in the present formalism, is justified
in the same way as at T=0 (section 3.3), and as
shown there it has a simple diagrammatic inter-
pretation as a "no kink" approximation.

The rest of the calculation of I3 and of the self-
energy contributions derived from it is performed
along similar lines as at T=O and Eqs. (3. 19)-
(3. 22) are all found valid with the t and s functions
now interpreted as finite temperature functions.

V. RESISTIVITY IN VARIOUS APPROXIMATIONS

Having calculated the parquet graph self-energy,
we are now in a position to find the single-particle
T matrix from Eq. (2. 15) and the resistivity from
Eq. (2. 18). Before doing so, we will explore the
relationship of our work with various other non-
self-consistent calculations of the resistivity by
considering a number of simplifiedapproximations.

The first simplification is to approximate the T
matrix by the first term in its expansion, namely

%hen only terms up to third order in the inter-
action is included, we find

Zc;c W(eT 4cTSc;c+4cTSc;c) c (5 1)

where, as before, s -=s(~„), so that Eq. (5.1)
gives the self-energy in the imaginary frequency
domain and we must make the analytic continuation

„-~++ to obtain the physical T matrix and self-
energy. According to Eq. (2. 18) we only need the
T matrix at the Fermi surface, ~ = 0, and the s
functions in this point is given according to Ap-
pendix 8 by

s, , (0+i5) = p lnPD w —,'izp c (5 2)

where p and D are defined in Sec. IIA. Combining

I

the (irreducible) self-energy. This is done by all
the previous authors referred to in this section.
Second, the self-energy can be represented by
various more-restricted graphical sums.

A. Finite-order perturbation theory
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Eqs. (2. 18), (5. 1), and (5. 2), we obtain

R /R „=2J v p (1 - 4 Jp lnPD) . (5. 3)

We first compare this with the expression found
by Kondol with ordinary perturbation theory in
the pure Kondo model. Taking into account that
J(Kondo) = 2NJ (see Sec. II A) and p(Kondo) = p/N
in our notation, Eq. (4. 13}of Ref. 26 becomes

R/R„=2J v p (1 —8JpinPD) (Kondo). (5. 4)

This is identical to our expression, Eq. (5. 3),
except for an extra factor 2 in the brackets. From
Eqs. (14.7) and (14.8) of Ref. 26, it becomes clear
that this discrepancy results from the inclusion of
irrelevant non-forward-scattering terms in the
work of Kondo.

A third-order expression is also derived by
Cheung and Mattuck' (CM). From their Eq. (1)
it follows that J(CM) = 4NJ in our notation, and

Eq. (50) of Ref. 16 becomes

14

8'

2-

R/R„= -', J v p~(1 -4 JplnPD) (CM) . (5. 5)

B. Ladder approximation

The self-energy is next approximated by a sum
of all ladder graphs, given in the notation of Sec.
IIID by

Z = ZH+Z~+2Z2 . (5. 6)

This represents the graphs in the first three lines
of Fig. 3. Making use of Eqs. (3. 16)-(3.18) and

(5. 2) we find

R/R„= 2J v p (2 [(I+JplnPD) + —,
' J vmp ] —I) .

(5. 7}
Equation (5. 7) is represented by curve (b) in Fig.
10. In the high-temperature region it approaches
the perturbation theory result; but instead of di-
verging, a smooth maximum and a decreasing
behavior near T = 0 is exhibited. Some unphysical
traits remain, however: the maximum resistivity
is 14R„ instead of 8„, and at low temperatures
negative values are attained.

This expression differs from Eq. (5. 3) by a fac-
tor —,. The origin of this difference (which we will
also find in the work of Abrikosov) is not clear,
but comparison of Eqs. (5. 3)-(5.5) appears to sup-
port the idea that our method corresponds more
closely to the pure Kondo model than the previous
approaches.

The qualitative behavior of the resistivity R
given by Eq. (5. 3) is illustrated for J&0 by curve
(a) in Fig. 10. As shown by Kondo the high-tem-
perature tail gives a reasonable account of the
depth and position of the resistivity minimum ob-
served in dilute magnetic alloys. At low tempera-
tures, however, 8 exceeds the theoretical maxi-
mum value R„and diverges at T -0.

FIG. 10. Qualitative behavior of various approxima-
tions for the Kondo resistivity as function of temperature
for J&0. {a) Third-order perturbation theory; (b) full
ladder approximation; (c) simple ladder approximation;
(d) self-energy parquet approximation; (e) T-matrix par-
quet approximation.

The approximation can actually be improved by
a simplified ladder approximation which includes
only the particle-particle (or only particle-hole)
graphs, but not both. Equation (3. 23} is used for
the self-energy, and we obtain

R/R„=2J v p [(1+J'plnPD) + —,
' J v p ] ' . (5. 8)

R, p q 2(1+3J p 1nSD)R„' (1+3Jp In8D) (1 Jp lnf}D)—
(5.9)

Equation (5.9) has obvious similarities to our ex-
pression, Eq. (5. 7), and has a, similar numerical
behavior at high temperatures, but there are two
important differences. In the first instance, for
J'&0, Eq. (5. 9) diverges at a certain critical tem-
perature, whereas Eq. (5. 7) attains a finite maxi-
mum. Second, Eq. (5. 7) decreases monotonically

The maximum value is now decreased to SR„
[see Fig. 10(c)] and no negative resistivity occurs.
Furthermore, Eq. (5. 8) resembles the full parquet
approximation result, which we derive in the next
section [Eq. (5. 11)] so closely, that we suggest
that this simple ladder approximation can be used
as a first approximation in subsequent calcula-
tions.

A full ladder approximation corresponding to
Eq. (5. 6) was also used by CM. In our notation,
Eq. (47) of Ref. 16 reads
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R/R„=2» [41n (T/T )+v ] (5. 13)

Equation (5. 11) is in a suitable form for compari-
son with Abrikosov's result'

R/R„= ~ J v p (1+2Jp lnpD) (Abrikosov).
(5. 14)

To obtain this expression from Eq. (24) of Ref.
1, we have made use of the fact that Abr ikosov's J&
= 2NJ and that our p is the density of states at the
Fermi level, p = 3Hz/2c» .

Far from the Kondo temperature (1+2J'plnPD)
is a large parameter and Eq. (5. 11) can be ex-
panded as the series

at T 0 for J&0, but Eq. (5. 9) diverges at a, sec-
ond critical temperature. This extra diver gence
is also found in Ref. 17, but not in pure Kondo
model calculations. In fact it can be traced back
to the inclusion of diagrams which would be "anom-
alous" in the pure Kondo model, by the TQ limit-
ing procedure (Sec. II A). It is a sympton of the
fact that the two approaches are not completely
equivalent.

C. Parquet approximation

We have already found the sum of parquet self-
energy graphs, Eq. (3.22). From this it follows
that

Z, +Z, =4 J [s,(1+2Js,)
i —s,(1+2Js, ) i].

(5. 10)
Combination of this result with Eqs. (2. 18) and
(5. 2) yields

R/R„= 2 J v p [(1+2Jp lnf}D) +J s p ] ' .
(5. 11)

Once again, for J&0, we find a curve [Fig.
10(d)] which in the high-temperature region rises
logarithmically as the temperature decreases,
reaches a maximum and decreases to zero at T = 0.
The temperature at which the maximum is attained
is defined as the Kondo temperature

T„= (D/Ks) e'I (5. 12)

and the maximum value is R = 2R„. Kith the help
of Eq. (5. 12) we can eliminate the three unknown
quantities J, p, and D in Eq. (5. 11) in favor of a
single unknown Tz, and find

D. T-matrix parquet approximation

Despite its success in improving on previous re-
sults and the elimination of divergences, the par-
quet-sum self-energy approximation is still un-
satisfactory because a resistivity higher than R„
still occurs, and because at T = 0 the resistivity
approaches zero instead of saturating to R„, as
observed experimentally. Within the framework
of the present calculation we can still make one
more refinement: the full T matrix is calculated
from Eq. (2. 15) and substituted in Eq. (2. 18) for
calculating the resistivity.

This approach only partially succeeds in solving
the above-mentioned problems. A complicated
expression is obtained for R, having the qualita-
tive behavior of Fig, 10(e). The resistivity at T»
is given by

R/R „= (2+J'v'p')/(3+ J'v'p') (5, 17)

order in the logarithm for a given order in J. This
is an explicit confirmation of Abrikosov's claim
that his procedure sums the parquet series cor-
rectly to leading order in the logarithm —provided
that our no-kink approximation [Eq. (3.11)] is also
implicit in Abrikosov's work.

At the Kondo temperature, the Abrikoaov resis-
tivity diverges for J&0 while Eq. (5. 11) only at-
tains a smooth maximum. This is a clear indica-
tion of the importance of the terms of lesser order
in the logarithm which are included exactly in Eq.
(5. 11).

Finally a comparison is made with the non-self-
consistent high-temperature form derived by
Nagaoka, [see also Eq. (49) of Ref. 16]:

R/R„= —,
' J v p (1+4Jp lnPD) ' (Nagaoka) .

(5. 16)
This also diverges at a critical temperature. In
fact, Eq. (5. 16) is only an approximation of the
Abrikosov form, obtained by neglecting the quadrat-
ic term in the numerator of Eq. (5. 14). It re-
produces the first two terms in a series expansion
in J correctly, but higher-order terms deviates
from the expansion of Eq. (5. 11). A similar lin-
earization of the numerator also occurs in the
self-consistent Nagaoka theory, as is shown in a
subsequent paper.

R/R„= 2 J v p (1+2Jp lnPD)

—2Jv p (I+2JplnPD) + ~ ~ (5. 15)
and is also approximately the maximum value, and
the zero-temperature value is

The first term in the expansion is the Abrikosov
expression, except for the factor 8 mentioned be-
fore. It becomes clear, therefore, that the
Abrikosov formula is an approximation (valid far
from the Kondo temperature) to the parquet sum
expression [Eq. (5. 11)]. In fact, if Eq. (5. 15) is
expanded as a power series in J, it is easily seen
that the Abrikosov term contributes the highest

R/R„= J v p (I +.8'n p ) (5. 18)

It is seen that R does not exceed R„any more,
and for

~J )
~ saturation at R = R„ is obtained.

However, a realistic order of magnitude for T~
is 10 K, so that according to Eq. (5. 12) we expect
(Jp)= -0.05 and the T=0 limit of R/R„ is virtually
zero.
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In a subsequent paper it is shown that this prob-
lem is only resolved by a fully self-consistent cal-
culation. For this reason we do not even a,tternpt
a numerical fit of the non-self-consistent theory
to experimental data.

VI. CONCLUSION

The main result of our study is Eq. (5. 13), for
R, the Kondo contribution to the resistivity, as a
function of the temperature T. This is derived by
approximating the T matrix by the self-energy and
the self-energy by a selected sum of ordinary par-
quet graphs. We have shown that finite-order per-
turbation theory, various ladder approximations,
including that of CM, ' Nagaoka's high-tempera-
ture formula, and the work of Abrikosov, ' are
successive approximations to our parquet-sum ex-
pression.

Unlike these approximations, Eq. (5. 13) shows
no divergence at the Kondo temperature. This
leads to the conclusion that the divergence pre-
viously found when working to logarithmic ac-
curacy, is cancelled when the less divergent terms
are included in the summation and is not inherent
in the ordinary (non-self-consistent) parquet sum.

In this respect we differ from the conclusion of
Nozieres et al. in connection with the x-ray prob-
lem and of Cheung and Mattuck 6 for the Kondo
problem, that a self-consistent calculation is
necessary to remove the divergence. The impor-
tance of self-consistency is clearly illustrated by
scaling theory. It is found that the effective in-
teraction with electrons near the Fermi level is
strongly renormalized by interaction of the lo-
calized moment with electrons at higher energies.
Consequently, at low temperatures, where the
low-lying states play an important role, the con-
duction-electron self-energy cannot be calculated
from the unrenormalized interaction as in the
present paper.

Both these theoretical considerations and the
fact that the ordinary parquet sum is found insuf-
ficient to give the observed saturation of the re-
sistivity at zero temperature, indicate the need
for the self-consistent calculation which is per-
formed in the subsequent paper.
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APPENDIX A: PROOF THAT X=X

We prove here that the conjugate diagram X ob-
tained by rotating a parquet diagram X through
180 around its base line, is equal to X in the
finite-temperature formalism. A similar proof

go(dt, &u„)=(iu)„—U) = —go(df, —(o„) . (Al)

It follows that X contains a factor (- 1) relative
to X, for each of its d lines. In the transformation
all the fork-shaped vertices are inverted, so that
each contributes an additional factor (- 1) accord-
ing to Fig. 2. If X has m forked vertices, it has
(m + 2) d lines, so that

X ( 1)~ (~+a&X X (A2)

APPENDIX 8: CALCULATION OF s FUNCTIONS

T= 0. Consider the function s, (~), defined as
in Eq. (3.4). We approximate the sum by an in-
tegral over energies, weighted by a block-function
density of states, as described below Eq. (2. 2).
This yields

s,((o) = -pin[((u —zr+i5)((g Di+)5']-. (Bl)

Integration of s, (&g) with respect to ~ can be per-
formed by introducing the analytic continuation
up+i5-z, where z is a complex variable. s, (z) is
analytic except for a branch line along part of the
real axis. Integration of s, (~) over all real values
of ~ is therefore equivalent to a contour integra-
tion of s, (z) along a line just off the real axis in
the upper half-plane and closed by a semicircle
at +i~.

It is clear from Eq. (3. 5) that t, (z) has the same
branch line as s, (z), and in addition a first-order
pole. Eq. (Bl) can be used to show that, this pole
is also on the real axis so that the same contour
C, as described above is used to integrate t, (&e}.

This fact is used to obtain Eq. (3. 10}.
In a similar way it follows that integration over

the arguments of s, and t, functions is performed
along a contour C, given by the mirror image (in
the real axis) of C, . It can be shown that the ana-
lytic properties derived here is independent of the
form chosen for the density of states, as long as
f Jp(e)de is finite. This is true for any realistic
interaction and density of states.

T & 0. For calculating the self-energy of a A-

electron particle in real energy space, the func-
tion s,(i&„) of Eq. (4. 5) must be analytically con-
tinued to

holds for T=0.
Starting off with X in which valid energy parame-

ters (i. e. , satisfying conservation relations at
each vertex) have been allocated to each line, it is
seen that a valid allocation in the conjugate dia-
grarn is obtained by changing the sign of the energy
parameter whenever the direction of the arrow on
a line is changed by the transformation X-X.
Therefore, for each factor go(db, ra„) in X, a factor
go(df, —v„) appears in X. Now, making use of Eq.
(2. 10), it is seen that
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s,(~+i6}=P f(e&)(~ -e~+i6)-' . (82)

%'e change the sum into an integral and use the
block density of states to obtain

s,(~+i6) = pP f f(c)((o -t') 'Ch -Arpf(u)). (83)

We approximate the function f(e) [defined by Eq.
(4. 3)] which occurs in the principal-value integral
by the inclined step function

0, Pz&2,

This deviates significantly from the exact value
only in a region of order he = I/p centered around
e =2/p. Substituting Eq. (84) in Eq. (83), we find

p f & +I np(~ +D) +-.'(p~ —2)»~go —2~

——,'(p(g —2}In(~ + 2)

= Inp(cd +D).

(86)

(86)

Numerical calculations of Eq. (83) «» r«m
temperature (p=40) shows that Eq. (86) overesti-
mates the integral by 3$~ at ~ = 0 and improves with
increasing values of ~&g (. Equation (86) which is
valid for ~ 0 underestimates the integral by 2o/(-.

Both approximations improve with decreasing tem-
perature. Our final result for the s, function at the
Fermi level (~ = 0) is found from Eqs. (83) and
(86):

s,(0+i6) = plnpD —,'Arp—.

The function s, (0+i6) can be calculated in a similar
%ay.
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