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Spectrum of superconducting films with quantized resistances
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The lowest-lying quasiparticle states in a superconducting-normal-superconducting layer structure are
calculated in the presence of a ground-state current flow parallel to the phase boundaries and an

applied magnetic field H parallel to the film surface. Particle-hole scattering at the phase boundaries as
well as ordinary reflection processes at the outer film surfaces and at the pair-potential walls are taken
into account. Quasiparticle energy and momentum normal to the phase boundaries are obtained as
linear functions of a field-dependent parameter a(H), 0 g a(H) & 1/2, which has been found

previously in the experiments on quantized resistances. The relevance of the results with respect to the

hypothesis that the bound quasiparticle states are involved in the formation of the observed quantized

resistances is discussed.

I. INTRODUCTION

Recently, Chen, Hayler, and Kim (CHK} de-
tected linear current branches corresponding to
quantized resistances in the current-voltage cha,r-
acteristics of current-driven films with a laminar
superconducting-normal-superconducting (SNS)
layer structure. ' This structure was either pro-
duced by an external magnetic field parallel to the
surface of a 4000-A-thick lead film or by sand-
wiching a normal silver layer (4000 A) between two
superconducting lead films (each 1500 A thick}. ~

The authors suggest that the quantized resistances
are due to current conduction through individual
phase-coherent bound quasiparticle states in the
normal region and show that good agreement with
experiment is obtained, if one assumes that the
resistances of the current branches are propor-
tional to the quantized parts of quasiparticle mo-
menta normal to the SNS phase boundaries.

An attempt has been made to explain why the two
superconducting sheaths bordering the normal re-
gion do not act as shorts between the voltage-bi-
ased film ends. It was pointed out3 that the quasi-
particle countercurrent which is being produced by
quasiparticle relmration with the lattice, ' above a
certain critical value may induce a space and time
variation in the phase of the superconducting order
parameter. Consequently, a voltage proportional
to the time variation of phase difference between
the film ends may develop in the presence of a dc
supercurrent. Voltage (or resistance) quantization
would then be a consequence of the single-valued-
ness of the complex order parameter in the pres-
ence of superfluid vorticity created by momentum
transfer from the bound quasiparticles decaying in
the superconducting regions.

These considerations, however, are not very con-
vincing because one has not yet been able to draw
the complementary picture of how the quantized
resistances originate in the normal region. Be-
sides, step-like structures in the current-voltage

characteristics of superconducting microbridges
have been observed by several authors. 6~ Al-
though their experimental conditions and the re-
sults obtained differ in a number of important de-
tails from those of CHK, one can not yet rule out
with certainty Huebener's vortex channel mecha-
nisme and ~nkham's phase-slip centerss as alter
native explanations of the observations of Chen,
Hayler, and Kim.

Therefore, it is important to obtain a thorough
understanding of the bound quasiparticle states in
the systems investigated by CHK in order to see
if they indeed can be responsible for the quantized
resistances. The well known Andreev states, "
upon which CHK base the interpretation of their
experiments, do not describe very well the exci-
tation spectrum of the films under consideration.
They are adequate for normal layers bordered by
superconducting regions of a thickness several
times larger than the BCS coherence length $,.
Only in such systems the bound excitations con-
sist of a linear combination of electrons and holes
of nearly equal momentum which completely decay
in the superconducting regions via transformation
into Cooper pairs. " If, on the other hand, the
bordering superconducting regions are narrow with
a thickness less than $0, and this seems to be the
case in the samples with the most clearly pro-
nounced quantized resistances, ' the quasiparti-
cles with a finite probability will penetrate the S
region and suffer reflection from the outer film
surfaces. The excitations will consist of a super-
position of electron waves with opposite momenta
and corresponding hole waves. Furthermore, the
energetically lowest bound quasiparticle states
with momenta nearly parallel to the phase bound-
aries are not Andreev states at all. The Andreev
approximation of matching only the wave ampli-
tudes at the phase boundaries and not al.so the de-
rivatives, or, equivalently, the WEBJ approxima-
tion of neglecting second-order dexivatives of the
solutions of the Bogoliubov equations' is valid only
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when the qnaeiparticle Fermi momentum normal
to the phase boundary, k,» is much larger than
(2m')'~; n is the maximum value of the super-
conducting pair potential (order parameter), and
m is the electron mass. If this condition is not
satisfied, the small pair potential 6 is able to in-
vert the small perpendicular quasiparticle momen-
tum as an ordinary potential wall does. Then, with
a finite probability, electrons are reflected as
electrons and holes as holes at the phase bound-
aries, instead of being scattered into holes and
electrons, respectively. The lowest-lying states
with k,z ~ (2m')'~ are expected to be the first to
play a role in transport phenomena parallel to the
phase boundaries.

In Sec. II we investigate the spectrum of a vacu-
um-SNS-vacuum system for states with k,~» (2m')'~, and in Sec. III we look into the states
with k,z ~ (2mb. )'I'. We will discuss in Sec. IV to
what extent the characteristic features of the bound
q~~~siparticles' spectrum support the view that
these states are responsible for the quantized re-
sistances.

II. SPECTRUM OF STATES VfITH k,F» (2mhjI& ~ 2

Let us look into a vacuum-SNS-vacuum system,
realized in a pure film of thickness 2T as shown
in Fig. 1. The film has macroscopic dimensions
in the x and y directions. A magnetic fieM is ap-
plied in the y direction parallel to the film surface.
It penetrates the film in the central normal region
—a~z~+c, where it has the value H. For the
corresponding vector potential X we make the same
approximations as in the first paper of Ref. 10 by
assuming the form A(z) =e„Hz8(a- I z I) and keep-
ing only linear terms in A. More accurate treat-
ments of the vector potential show that no essential
corrections to these approximations are to be ex-
pected as long as one can neglect all effects due to
Landau orbit quantization. ~ We consider a situa-
tion when the film carries a uniform ground-state
flow in y direction with an average momentum per
electron e~.

The Bogoliubov equations for the quasiparticle
excitations of this system are

to „
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varies independently from that of go as one goes
from one solution (2. 2) to the other. For the
treatment of the magnetic field we have assumed
that

~ =- (2m/k', z) E,« I,
where

E, = E —k~q/m

and that

(2. 7)

FIG. 1. Model for the spatial variation of surface and

pair potentials across a superconducting film vrith central
normal layer.

1 V e-
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+ n(z) e'z'" v(r),
1 V e

Ev(r) = — —. +- A(z) —zz v(r)
2@i f C

+ b(z) e 'z'"u(r) .
b,(z) is real and has the form shown in Fig. I;
z~= k~/2m is-the Fermi energy and E the guasi-
particle energy; A=1.

These equations have four linearly independent

(2. 8}

In Eg. (2. 7) a term q /2m has been neglected. The
last ine|luality is well satisfied in most of the
states for magnetic fieMs up to some kilogauss and
normal region thickness 2a of some thousand ang-
stroms.

When the superconducting regions on each side
of the normal layer have a thickness of several
coherence lengths, the quasiparticle wave functions
are simply the solutions with positive or negative
sign in the exponents of Eq. (2. 3) and the exponen-
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tially decreasing waves with + k,~ or —k,~ in Eq.
(2.2). ~0 However, if the superconducting walls
are thin so that particle-particle scattering at the
film surface is possible (besides particle-hole
scattering at the phase boundaries), all four possi-
ble solutions are mixed together in each of the
three regions and we have twelve unknown integra-
tion constants. The matching conditions of the
wave functions and their derivatives at the phase
boundaries at z= + a, and the requirement that u(r)
and v(r) vanish at the outer film surfaces at z =+ T
provide us with 12 independent linear homogeneous
equations; a 13th condition is that of normalization.
The energy eigenvalues of the system are deter-
mined from the usual condition, that the deter-
minant of the coefficients in the equations must
vanish. Evaluation of this 12x 12 determinant
means straightforward but boring work. It has to
be done anyway and is simplified considerably, by
assuming that

(2 8)

Then, aQ derivatives produce only a factor + k,~ in
front of the wave functions, and the determinant
with originally 80 null elements can be brought in-
to a form with 106 zeroes. While our wave func-
tions (2. 2) and (2. 3) are exact except for the not
very restrictive approximation (2. 8), we are now
limited to states with large momenta k,& perpen-
dicular to the phase and film boundaries. The de-
terminant for the bound states with 6 & E, is found
to be

D=16sin ~ exp (& —E,) (T-s)~

xs)o E,a —44 ~ sso — (4 —)(,) ()'- a))
~ 2 2' 2 2 1l2

kg~ kg~

csin — E a+go -2sin Ea~ 2 2m 2 2m

-2 sin qocos4k, ~T (2. 10)

The eigenvalue equation is D =0. For large thick-
ness of the superconducting regions, (T —a)» $,
= kr/vms, the first term in the square brackets
dominates, and the requirement that it vanishes
reproduces the mell-known Andreev spectrum9'0
from

arc cos(E,/A) =(2m/k, r)E,a —nv, n= integer .
(2. 11)

When (T-a) ~(0, analytical solutions of D=0 can
be found for the low-lying states with E,«4 and
rio=s/2. Their eigenvalue equation is

. z 2m cosh[(4m/k, z)4(T —a)] —cos4k, rT
k,r ' cosh[(4m/k, z)a(T —a)]+ 1

It has the solution

E= ' —(n e-),k,y
pl 2a

where

1
(). = c((k,z, a) -=— arc sin

k,z n'v k',z TcE g

m 2a m a (2. 15a)

and for a- T,

cosa((4 la, )4()' —a)] —cos44, S')'~'
cosh[(4m/k, z)h(T —a)] + 1

(2. 14)
n~i is a positive integer and 0» a» &.

The spectrum of Eq. (2. 13) is very similar to
the Andreev spectrum one obtains from Eq. (2. 11)
in the limit E,«6 with n = 0, 1, 2, .... Applying
the labeling system of CHK, ' used in Eq. (2. 13),
to the Andreev states, their energy eigenvalues
can be written as E, =k,zv(n ——,)/2ma,
n=1, 2, 3, .... We see that ordinary reflection
from the film surfaces raises the energy of a given
state with respect to the corresponding Andreev
level by changing the term —, to n& —,. The physi-
cal explanation of this effect is quite simple. When
infinite potential walls back the superconducting
layers at a distance (T a) from the—phase bound-
aries that is less than the penetration depth of a
bound quasiparticle in S regions of an extension
much larger than the coherence length (Andreev
case}, then the quasiparticle wave functions spread
over a distance that is smaller than in the Andreev
case and consequently, the energy levels are shift-
ed upward. One has the same situation in an or-
dinary potential well backed by infinitely high po-
tential walls. [There is a second set of unphysi-
cal negative-energy eigenvalues proportional to
(n+ n} with n = —1, —2, —3, ... which always show
up in the solutions of the Bogoliubov equations. '~]

Note that the P terms of Eq. (2. 8), which explicit-
ly depend upon the magnetic field, have exactly
canceled in Eq. (2. 10). The physical reason for
this was discussed in Ref. 10.

For larger values of E,/6 the Andreev spectrum
remains the same except for a change of the nor-
mal thickness 2a into a somewhat larger effective
thickness 2a4' =2[a+k,z/(2mB)]; from Eq. (2. 10)
we do not expect that the higher energies will be
substantially different from those of Eq. (2. 13).

In the limit (4m/k, z)A(T —a) «1 the solution of
Eq. (2. 12) is
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kg» s'v k,»
t(

1 (s'vl('-* ~ 2~-~]"2~ (2r)' " ~

(2. 15b}
where n' is a positive integer. As was to be ex-
pected, the excitation spectrum becomes that of
an ordinary square well potential with mf initely
high walls in the limit of vanishingly thin super-
conducting layers. The last, approximate equality
in Eq. (2.15b) is vaM because k,»~n'v/RT for
small E,. The plus sign holds for excitations
above and the minus sign for excitations below the
Fermi surface.

III. SPECTRUM OF STATES VGTH k, p & (2mb, ) i'

The states with the lowest energies should have
a small k,» & {Rmd)~~ . Because of approximation
(2.9), they are not part of the energy spectrum
(2.13). According to Eq,. (2. 5), 521 in these
states and the damped wave functions of Eq. (2.2)
decrease as e, where x is essentially (Rmn)~~~.

For typical values of n this quantity is of the order
of magnitude of (100 ]I,) '. Therefore, in super-
conducting layers not thinner than some hundred
angstroms, the portion of a quasiparticle with
small k,&, which penetrates the phase boundaries,
will have decayed with high probability before
reaching the outer film surfaces. For this reason
we may neglect reflection from the film surfaces
against reflection from the phase boundaries. The
appropriate wave functions in the normal region
consist of a superposition of all possible solutions
given in Eq. (2. 3), whereas in each superconduct-
ing region we take only the two exponentially de-

E, = (k,»/m) (v/Ra} (n —e'}, (3.1)

where n=1, 2, 3. ..~ and

caying solutions from Eq. (2. 2}. We match these
solutions and their derivatives at the two phase
boundaries and ignore the outer film surfaces. %e
also disregard the magnetic field. From Eqs.
(2. 13) and (2. 14) we see that the energy eigenval-
ues depend upon the magnetic field only via the
thickness 2a of the normal region. 0 However, the
approximation made for the states with k,~» (RmhP~I is no longer valid, because in kG fields
Eq. (2. 8) fails for a number of states with k,»
S(Rmn}'I'. Nevertheless, since we are mainly
interested in momentum and energy quantization
and their possible relation to the quantized resis-
tances, which have also been found in SNS sand-
wiches [where the magnetic field is of secondary
importaxee only, serving mainly for suppression of
the proximity effect], one should be justified in
avoiding the more elaborate mathematics which an
adequate treatment of the magnetic field in the
present case would require.

The matching conditions provide eight linear
homogeneous equations for as many free constants.
The equation for the energy eigenvalues which
make the determinant of the coefficients vanish,
in its full generality is too long to be written here.
Again, limitation to E,/5, « I (go= v/2} and s «I
simplifies the affair considerably and is justified
for the low-lying states in which we are interested.

%e obtain the energy eigenvalues,

e' = e'(k,», a)

(5~(I+ eos4k, »a) —RWR[(I + 5 )' ~ - 1]'I sin4k, »a —4[(1+5 )' —1]cos4k~aP ~

=-- arc cos (2[5'+ 2 (1+5*)"'+2]P"

0~ e' ~ ~; Ct' is always real, because the minimum
value of the function under the square root is zero,
as may be seen from differentiation with respect
to 4kgga.

In the limit 5 = (Rm/k, »)&» 1, ve' becomes
+ (Rk,»a —rx), where the positive integer r has to
be chosen so that 0~+ (Rk,»a —r v) ~ v/2. Again,
as in Eq. {2.ISb) we obtain an ordinary potential-
well spectrum with energies above and below the
Fermi surface given by

E, =+ (I/Rm) [(Iv/Ra) + k„+kS„-k"„], I integer .
(3.3)

As discussed in the Introduction, this result was
to be expected for small k,~.

IV. MSCUSSION

The quasiparticle spectrum of a vacuum-8%-
vacuum system has the following characteristic
features. Quasiparticles which practically move
parallel to the phase boundaries in the x and y di-
rections form ordinary standing waves between
the pair-potential walls with energy eigenvalues
like those of Eq. (3.3), which are typical for a
truly normal region. However, the number of
these ordinary potential-well states (OPWS) with
k,» «(Rmn)'~3 is very small. As soon as 5 = Rmh/
k,» is no longer large enough so that terms with 6~

dominate the other ones in Eq. (3.2), the spectrum
is that of Eq. (3.1) for k,»&(Rmb}~~, and with fur-
ther increasing k,» to values larger than (Rm&)'I
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—k„q~ —,
' [(Iv/2a) +k„+k„—kz]~0 . (4 2)

If condition (4. 2) were valid for all values of k„
and k, instead of being limited to k,r «(2m')'»',
it would in momentum space define a volume be-
tween the ground-state Fermi sphere and the Fer-
mi sphere whose center has been shifted to k, = —q.
The negative current density carried by the excited
quasiparticles in these states with k, &0 would

exactly cancel the ground-state flow in the N re-
gion, which is just another way of saying that in a
truly normal region no current flows without volt-
age. However, in our SNS-layer structure, con-
dition (4.2) applies to a tiny fraction of states only.
For the overwhelming majority of states, relation
(4.1}defines the number of excited quasiparticles
with negative k„, and this number is far less than
it would be in a truly normal metal. Therefore,
the relaxation countercurrent of excited quasipar-
ticles is not sufficient to cancel the ground-state
flow in the N region and a current flow without

the energies are given by Eq. (2. 13). The only

change in a transition from spectrum (3.1)to spec-
trum (2.13}occurs in the definition of the parameters
e and 0, ', which also make the only difference from a
true Andreev spectrum. %e may say that these
states form a generalized Andreev spectrum (GAS).
The remarkable fact is that in the investigated
complex situation where, in addition to particle-
hole scattering at the pair-potential walls, ordi-
nary reflections from the outer film surfaces and
the phase boundaries are important, the structure
of the spectrum still has the simple form of the

pure Andreev case with only particle-hole scatter-
ing present. The cooperation of the two different
scattering processes only produces the field de-
pendent terms e and &' in the energy spectrum.
This a Posterf'om justifies the consideration of
Andreev states by CHK' in situations where the
Andreev approximations are not valid.

The right-hand sides of Eqs. (2. 13), (3.1), and

(3.3) give the quasiparticle energies E, in a refer-
ence frame which moves with the velocity q/m of
the ground-state flow. The energies E in the rest-
ing frame of the lattice ions are E= E, + k,q/m, ac-
cording to Eq. (2. 7). In a stationary situation,
the quasiparticles are in equilibrium with the lat-
tice, and the occupation probability of the quasi-
particle states is given by the Fermi function f(E)
=(I+a»' } '. Therefore, at temperature 7'=0 K
all states with k, &0 and E&0 are occupied. They
are defined by the inequalities

—k~ ~ (k~ —k, —k„)'» (v/2a) (n —n) ~ 0 (4. 1)

in a GAS, where n for k,r» (2mb)'»~ must be re-
placed by n', if k,~ «(2mb, )'»'; for OPWS the con-
dition for occupation is

applied voltage is possible. Consequently, the ob-
served zero voltage current I, in the returning sec-
tion of the current-voltage characteristic of CHK'

may be a ground-state flow which extends through-
out the entire SNS system. (Discussing the ther-
modynamical properties of SNS junctions, Ishii"
has already pointed out that "the electronic state
of the 'normal' metal. . . is more like a gapless
superconducting state than the usual normal
state. ")

Based on the calculated SNS quasiparticle spec-
trum and the excitation conditions (4. 1) and (4. 2),
the following comments on some aspects of CHK's

current-voltage characteristic' may sketch the
lines along which further theoretical work on the
electrodynamics of the system can be oriented.
For sufficiently large values of the homogeneous
ground-state current density -

q, a number of
states of the GAS are populated according to Eq.
(4. 1). The quasiparticles of the GAS spectrum
suffer particle hole (and hole - particle) scatter-
ing at the phase boundaries. Formation (and de-
struction} of a Cooper pair in an S region via
transfer of two electrons from the N to an S re-
gion (and an S to the N region) is associated with
these processes. "'6 In general, a net electrical
quasiparticle current incident on an N-S interface
changes into a supercurrent when the quasiparti-
cles decay and merge into the condensate, trans-
ferring their momentum to the Cooper pairs and
shifting the phase of the order parameter. ." Based
on this effect Bardeen and Johnson recently ex-
plained Josephson current flow through SNS junc-
tions. 4 A study of charge and momentum exchange
between the N and the S regions of the system dealt
with in this paper, and of the related possible volt-
age between the film ends, is presently being car-
ried out by the author.

The bound quasiparticle states excited by the
ground-state flow in the normal region carry a
current opposite to the ground-state current. This
aspect differs markedly from CHK's hypothesis
about conduction of the current itself through the
bound states. Nevertheless, the basic idea that
the bound quasiparticles are in some way responsi-
ble for the observed current-volta ge characteris-
tic deserves further consideration; first, because
of the experimental fieM dependence of the quan-
tized resistances, and secondly, for the theoreti-
cal reason that the total quasiparticle momentum
normal to the phase boundaries according to Eqs.
(2.3), (2. 7), (2. 13), and (3. 1) is

k; = k,r + (m/2a) (n —n"'), P term neglected. (4. 3)

n and a' as given by Eqs. (2. 14) and (3. 2) depend
upon k,& and the field-dependent normal-region
thickness 2a. This field dependent 0. is not pres-
ent in a true Andreev spectrum. It was, however,
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found in the quantized resistances x„=ro(n —n) of
CHK. ' The range of values 0~ a., a™

& of the
calculated n, e' compares reasonably well with
the range 5 & n& & of the experimentally found e.

Any quasiparticle-based attempt to explain
CHK's observations, which identifies n —o."'of Eq.
(4. 3) with n —a in r„, leads to the conclusion that
only states within a narrow range of k,z should
participate in the events that produce the quantized
resistances in order to have an e independent of
current. As mentioned above, when current-ex-
cited quasiparticles with E, &4 decay in the S re-
gions, they transfer their momentum to the con-
densate and induce space and time variations in the

phase of the order parameter with the associated
finite voltage between the film ends. The probabil-
ity that this occurs for a quasiparticle in a given
state is proportional to the probability of particle-
hole scattering in the S regions. '~ It has been
shown'~ for the case of an electron incident from a
normal region onto a superconducting layer backed
by an infinite normal surface potential, that the
particle-hole scattering probability has a relatively
narrow maximum around a k,~ value of the order
of magnitude of the inverse thickness of the super-
conducting layer. The physical reason for this is
obvious. If k,~ is too small, we have OP%S with
particle-particle scattering at the pair-potential
walls. If k,r is too large, the electron (hole) pene-

trates the S region, gets reflected at the outer sur-
face, and returns into the normal region (without
having been scattered into its "antiparticle" ) with

an appreciable probability. Only for an intermedi-
ate range of k,r can the electron (hole) wave be
damped nearly completely along the path (phase-
boundary surface phase-boundary) so that parti-
cle-hole scattering and all the related processes
occur with high probability.

It is hoped that the results obtained in this paper
provide a basis from which further investigation
might determine if and in which way the quasipar-
ticles are involved in the formation of the quantized
resistances. The agreement between the experi-
mental o. and the theoretical o, 0," may be taken as
a hint that the quantized quasiparticle states and
their momenta k,' normal to the film surface, play
a role in this phenomenon. Nevertheless, the
quantized resistances still remain a puzzling problem.
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