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Spin correlations in an electron liquid at metallic densitiese
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A nonlinear integral equation for the ground-state magnetic structure factor S(k) of an electron liquid
has been obtained by using a method originally due to Mihara and Puff. This equation is solved
self-consistently to get the values of S(k) which are used to estimate the pair correlation functions of
electrons with parallel and antiparallel spins. The results obtained compare favorably with that of
earlier sophisticated calculations.

I. INTRODUCTION

The study of the effect of electron-electron in-
teractions on metallic properties is quite an old
problem, but still it remains to be solved. An in-
teresting and quite successful, approach to investi-
gate this problem has been to study the system of
a uniform electron gas immersed in a uniform
compensating background of positive charge and to
apply the results directly to calculations in real
metals, particularly free-electron-like metals.
Recently, Mihara and Puff' (MP) derived a non-
linear integral equation for the ground-state struc-
ture factor of interacting bosons by using an in-
equality and the sum rules, obeyed by the spectral
function of the density response function. They
found reasonably good results for some ground-
state properties of liquid He4. Based on that work,
Kugler' obtained an integral equation for the static
structure factor of an electron liquid. Very re-
cently we have numerically solved3 the above inte-
gral equation and found, that it gives quite reason-
able results for the static structure factor and pair
correlation function at metallic densities.

In this paper we derive a nonlinear integral equa-
tion for the magnetic structure factor S(k) of an
electron liquid by using the approach of MP. ' This
integral equation is then solved self-consistently
to get the values of S(k). These values are used to
calculate the spin pair correlation function g(r).
Knowledge of this function when combined with the
spin-symmetric pair correlation function g(r) ob-
tained by us earlier, 3 yields separately the corre-
lation functions for the two types of spin pairs.
Our results for the pair correlation function of
electrons with opposite spins satisfy the positive-
definiteness requirement over the whole range of
metallic densities. The pair correlation function
for electrons of parallel spins is negative through-
out, like in most of the other available theories.
However, the results of Lobo et al. are compara-
tively less negative. The results for the pair cor-
relation functions are compared with other available
theories. ' ~

In Sec. II relevant quantities are introduced
which are to be used in future discussion. The
nonlinear integral equation for the magnetic struc-
ture factor is set up in Sec. III and the small- and
large-wave-vector limit of S(k) is then discussed.
In Sec. IV we solve the integral equation self-con-
sistently and present and discuss the numerical
results for the magnetic structure factor and vari-
ous spin pair correlation functions. Section V con-
tains our concluding remarks. In Appendix A we
present a brief derivation of the third moment of
the spin-density response function and the potential
contribution to this is worked out in the Hartree-
Fock approximation in Appendix B.

II. SPIN-DENSITY RESPONSE FUNCTION AND THE SUM
RULES

The spin susceptibility of an electron liquid is a
quantity of fundamental interest for discussing the
spin correlations in an electron liquid. The Fou-
rier transform of the z component of the spin-
density fluctuation operator is defined as

l~S (k)= —~q~; a;,f,

where a~, and a~, are the electron creation and an-
nihilation operators, respectively. The spin sus-
ceptibility is determined by the linear response of
the electron liquid to an infinitesimal external
magnetic field. %e define the spin susceptibility
(in units of g'pe, where g is the electron Lande
factor and p.s is the Bohr magneton) as the retarded
spin-density response function~'8

y(f, t) =is(t)([S (k, t), S',(k, 0)]),
where 8(t) is the Heaviside unit step function. The
angular brackets denote the equilibrium ensemble
average with respect to familiar electron liquid
Hamiltonian

H =Ho+H, = Pro(g)ate, a;,
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and n is the uniform electron density. p(q)
=gg, pgq) is the Fourier transform of the electron
density fluctuation operator.

The spectral function of the spin-density response
function is defined as8

x"(&, )= f.«-*' &[S.(k, f), S'.(&, o)]&""'. (4)

This function satisfies f-sum rule9

Another useful and exact relation satisfied by
X"(R, &o) is the third-frequency-moment sum rule:

where

&u', (f) = &o1(k) + 4(d(k) &Exs&/K+ f1(k) .

Here &E~& denotes the exact kinetic energy per
electron and

f,(k) =—gy(q)(k q}'[S(k —q) —S(q}1
SE ggo

d(I(P [g(q) —I] ——
g +— —1 ln8 3 JP k (P I)+q

PS% 0 2q' 4(f k-q
—1[S((f)—1]

where

S(I)) = „- [ & p(f1&)p'(kt)& —&p(»)p'(»)& ]

is the magnetic structure factor and

S(I[)= „- [&p(I1t)p'(») &+ & p(11&)p'(I1&) &] (10)

is the usual structure factor in the paramagnetic
state. It may be noted that the third moment of the
spin-density response function is not expressible
in terms of B(k) alone. Our derivation of Eq. (6)
is given in Appendix A. I The result for the third
moment [i.e. , Eq. (6)] for the electron liquid was
obtained by Goodman, "and its physical content
has recently been analyzed in detail by Goodman
and Sjolander. ~ A discussion of the third moment
of the spin, -density response function for Fermi
liquid with short-range interaction has also been
given by Safir and %idom. '3

%e now give the small- and large-k behavior of
the third moment which shall be used in Sec. ID.
It can be obtained by noting that

f,(k- o) =1~,'(I -g„(o)) (11}

and

I,(k-~}= 3&o()(1+g„(0)—2g„(0)) (12)

where &u~ = (4)[v1e /m)'~ is the plasma frequency;
g„(0) and g„(0) are the values at the origin of the
pair correlation functions for electrons with paral-
lel and antiparallel spina, respectively. It can now

be seen from Eq. (7) that ur, (k) behaves as 1uP~(1

-g„(0)) and (() (/1) in the small- and Iarge-k limit,
respectively. Thus in the limiting cases of small
and large k, the third moments of the spectral
functions of spin-density and density response func-

I

tion behave in the same way. '4

It can be seen from Eq. (4), together with the
translational and rotational invariance of the sys-
tem that X"(R, (d) satisfies the following relations"

x"(k, ~) = -x"(k —~) =x"(&, (d); ~x"(&, (d) - o.
(13)

Further by using the fluctuation dissipation theo-
rem1e it can be shown that X"(0, &o) is related to
S(k) through the exact relation

S(k) =— dk&X" (k, (d) coth(& Blur),
SS

where

8 = (ks T) ' .

III. INTEGRAL EQUATION FOR S(k)

(14)

The results given in Sec. II shaD be used here to
set up a nonlinear integral equation for S(k). We
closely follow MP' in deriving an inequality for
S(k). Thus we get from Eqs. (6) and (14)

S(I )
2 1/8 ~ 1/1

«f (« „=f «(t« t«'f. ((«, ««)
)««

40 2/8
du& f,(k, (()) coth(1 Bk(d), (15)

QQ

where f,(/1, ~) =(2/vt1)X "(0, (d)/&o(k), is a real posi-
tive-definite function on the positive ~ axis. The
application of Holder's inequality1~ to Eq. (15) gives

r 1/8

&o(k)
(o'(I1) ~ d(u [(d'f (u (o}]1/'

g )

x[f («, )«««)«(-,'BNt«)]««'I

d&a (()f,(k, (d) = 1, (16)
& 00
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where the last equality follows from the f-sum
rule. Thus we obtain an exact inequality

[S(k)/~(k) ]' - I/~3(k) (17)

This can be written' as

[(u(k)/S(k)]3 =(o,(k) —t(k), (18)

where t(k)) 0 for all k.
As we are considering a fermion system, so

S(k) in Eq. (18) must reduce to So(k) in the case of
free-fermion gas where

g k/k~-*k /kj~. , 0(k(2k|.

is the static structure factor of the noninteracting
fermions in the ground state. Thus from Eq. (18),
we obtain

t&(k) = uPf(k) —uP(k)/So(k} (20}

where t&(k) is the value of t(k) for the noninteracting
electron gas and

uPB&(k) = em(k) + 4&@(k)(E„z)& /g. (21)

Here (E«)z is the kinetic energy per electron for
a free-electron gas. Using Eq. (20), one can write
Eq. (18) as

[&o(k)/ S(k) ]~ = [v(k)/So(k)P + f,(k)

+ 4u&(k}&(E«)/PE —k(k), (22)

where ~(E«) (EKE) —(EKE)y and

k(k} = t(k} —t~(k} .

The integral Eq. (22) now gives the structure factor
for the noninteracting case in the appropriate limit.
It can be seen from the integral equation that in
order to have a finite spin pair correlation function
at the origin, the leading term of the function k(k)

'~ eP
B(k) =

1 -g„(0) 2m~~
(25)

which is similar to the corresponding exact result
for S(k}. It is to be noted that this result is not
valid in the Hartree-Pock approximation. In this
case our S(k) = So(k), by the very construction of
the integral equation. Equation (24) together with
Eq. (12) predicts the large-k behavior of S(k) to be
of the form

S(k) —1 = 5/k4, (28)

where k is measured in units of Fermi wave vector
k~ and

& = —2(4/8s)'" ~.(1+g, (o) —2g, (0)) . (27)

Here r, in the electron-density parameter. The
similar asymptotic limit was also found for S(k). '

IU. SELF-CONSISTENT SOLUTION OF THE INTEGRAL
EQUATION

In order to solve the integral Eq. (24) numerical-
ly, we write it in the dimensionless form

must have the value 4&v(k}6(E«)/g for large k. In
view of this we assume k(k) =4&v(k}d,(E«)/8 for all
k. So the nonlinear integral equation for the
ground-state magnetic structure factor in the final
form is given as

[~(k)/S(k)]' =[~(k}/S,(k}]'if,(k). (24)

It may be noted that this integral equation is similar
to the integral equation for S(k}, obtained by
Kugler.

The interesting features of this integral equation
are that it is consistent with the frequency moment
sum rules and gives a finite value of g(r). It can
be seen from Eqs. (24) and (11) that for small k,
S(k) behave as

I 00
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FIG. 1. Self-consistent
values of the ground-state
magnetic structure factor
S(k) of the electron liquid
versus k for ~, = 1 to 6.
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FIG. 2. The pair correlation function gt f{r)versus
k~ for r, =4 Curve 1 is the present result; curve 2 is
from Lobo et al. ; curve 3 is from Singwi et al. ; curve
4 is from Hubbard; curve 5 is from Hubbard as modi-
fied by Sham; curve 6 is from HPA.

self -consistently. %e have already solved' the
integral equation for S(k) self-consistently. The
self-consistent values of S(k) obtained there are
used in Eq. (30). One can now solve the integral
equation (28) self-consistently by making use of
Eq. (30) . After six iterations we find that the
values of S(k} are self-consistent within 0. 05% for
small r, and within 0.5'Pt) for large r, values.

In Fig. 1 are plotted the self-consistent values
of S((t) for r, =1 to 6. It behaves the same way as
S(k) except that the values of S(k) for small (1, are
larger than the corresponding values of S(k). This
is also expected from Eq. (25}. The values of the
magnetic structure factor are used to estimate the
spin pair correlation function, g(r) which is defined

g(r}=— dq q sin(qr)[S(q) —1], (31)2g 0

where q and r are expressed in units of k~ and k~,
respectively. Knowledge of this function when
combined with the knowledge of the spin-symmetric
pair correlation function g(r), which was calculated
by us earlier, enables us to determine g„(r) and

g„(r) separately We ha. ve estimated these pair
correlation functions for the whole range of metallic
densities, but the results for g„(r) and g„(r) are
presented only for r, = 4 in Figs. 2 and 3, respec-
tively. As usual the curves for other &, values fol-
lows a similar pattern, so that for r, & 4, they are
better, and for r, &4 they are worse in quality as

4

S(k) =
[ca'/so(x)]'+ f,(x)

' (23)

) 0

c =$v( ,' v}4"r, — (29)

0.5

(,(('(=- aqq'I(s(q)-'(3

3 q P q k+qx —— ++—
@

—1 ln
2 2 4q k-q

—l I&(e) —((I .

Obviously S(k) is a function of f,(k) and I,(k} is a
functional of S((t,) and S(k); so in order to calculate
S(k) from this integral equation, we must know the
values for S(k). To remain consistent with our
present formulism, we make use of [in order to
know the values of S(k)] an integral equation for
S(k) which was derived earlier by Kugler. ' So we

have, in fact, two coupled nonlinear integral equa-
tions-first the present one for S(k) and S(k), and

the second for S(k} alone —which are to be solved

0.0

-1.0

-l, 5

FIG. 3. The pair correlation function g»{r) versus
k~r for r~=4. The curves are labeled as in Fig. 2.
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0.5; g„(r) is positive up to r, = 4, after which it seems
to become negative.

V. CONCLUDING REMARKS

0.0

FIG. 4. The values of the pair correlation function
gf f {0)versus r~. The curves are labeled as in Fig. 2 ~

compared to the curves for r, =4. The results are
compared with those based on, earlier theories,
which includes the random-phase approximation
(RPA), Hubbard's approximation~~ and its modifi-
cation by Sham, 5 the generalized-random-phase
approximation (GRPA) of Lobo ef al. and the GRPA
including screening of Coulomb potential as put
forward by Singwi et al. Our g„(r) does depend
on r, values as in all the said theoxies except that
of I obo et a/. , where it is almost constant for
whole of the metallic density range, thus reflecting
a Hartree -Fock-like behavior.

To give an idea about the quality of these pair
correlation functions over the range of metallic
densities, we have plotted g„(0) and g„(0) as func-
tion of r, in Figs. 4 and 5, respectively. Et can be
seen that like most of the available theories, g„(0)
is negative for all r, values. It is clear from Fig.
5 that aU. the available theories, except that of
Lobo et n/, violate strongly the requj. rement of
positive definiteness on g„(0). Even in their theory
g„(0) becomes slightly negative at r, = 6. Our

g„(0) is positive even well beyond r, =6. During
the last stage of writing this paper we saw a paper
by Hasegawa and Shimzu, 8 who have also estimated
similar things. Their approach is very similar to
that of Vashishta and Singwiao except that they have
not introduced any adjustable parameter while con-
sidering the effect of local density fluctuations of
electrons on the pair correlation function. Their
g„(r) behaves the same way as in the theory of
Lobo et al. , except for small r, where it is about
twice as negative as that of Lobo et a/. Their

The main results of the present paper are the
inequality [Eq. (1V)] and the nonlinear integral
equation (24) for the ground-state static magnetic
structure factor, which are obtained by using the
sum rules. The important features of this integral
equation are that it gives finite spin pair correla-
tion function at the origin and is consistent with the
frequency moment sum rules. Et also predicts the
small- and large-k behavior of S(k). The integral
equation is solved self-consistently and the values
of S(k) thus obtained are used to study the spin cor-
relations in the paramagnetic stage of an electron
liquid. The results obtained are in agreement with
other recent theories.

The starting equation [i.e. , Eq. (18)] in deriving
the integral equation is free from any approxima-
tions. But thereafter enters some nonuniqueness
in the derivation, because there may be more than
one way of obtaining the functions f(k) and h(A).
%'e have obtained these by demanding that our inte-
gral equation must give some well-established re-
sults in certain limiting cases. The limitation of
the integral equation is that it does not tell us any-
thing about the dynamical properties of the electron
liquid.

].0

0-5

00

FIG. 5. The values of the pair correlation function
g»{0) versus r~. The curves are labeled as in Fig. 2.



10 SPIN CORRE LATIONS IN AN E LECTRON LIQUID AT ~ ~ ~

ACKNOWLEDGMENTS

We are thankful to Dr. P. Vashishta for some
discussions. %e are also grateful to Professor
K. S. Singwi for his interest in this work. The
use of computer facility provided by the Delhi Uni-
versity computer center is gratefully acknowledged.

APPENDIX A: DERIVATION OF THE THIRD MOMENT OF
THE SPIN-DENSITY RESPONSE FUNCTION

APPENDIX 8: EVALUATION OF I3(It'} IN HARTREE-FOCK
APPROXIMATION

lt can be seen from Eq. (8) that the potential con-
tribution to the third moment of the spin-density
response function in the Hartree-Fock (HF) ap-
proximation is given as

=0. (A3)

Then the last term in Eq. (A2) becomes zero and

we get

X k, =- n. q

(([[[p-(lt), H ], H ], S(k)1
—[[p;.(k). H, ],[C(k), Hl][&. (A4)

It can be seen that the third moment is given by

—(o X" k, co = 8 k, H., H, 0, S~ k
(A1)

As the second frequency moment of y" (k, v) is
zero, the above expression can be rewritten as

—(d

(Q[[p;.(k), H, ] H], S.'(k)]

+ [[[+.(a), H, l, H, l, S'.(k)l

+[[[p;,(k), H ], H, ],S'(k)]}&. (A2)

Now making use of the stationarity property' "of
the correlation function and the fact that S,(R) com-
mutes with H&, it can be shown that

([[p;A), H ], S'(k)]&=&[[S'(k), Ho], p.(&)]&

-([[p,.(k), H, ], S.'(R)]&

x — + -1 ln . (81,)
5 q k q k+q
6 2 4q k-q

2

+k ——9 ln1-k'
4

3
1

35k 36 80 k+2
k 4 V 3k4 k 2

where k is measured in units of k~. For k-0,
Eq. (82) yields

limI3(k) =-z'&o:k .
00

(83)

The k dependence of this result is quite different
from the result given in Eq. (11). On the other
hand, for large k, we obtain

It is thus the same as the potential contribution to
the third moment of the density response function
in the HF approximation. Sometimes it is useful
to know these moments in this approximation.
Therefore we present here its calculation for all k.
The analytic evaluation of the integral is quite
lengthy but it can be worked out exactly. The re-
sult is

It is now straightforward to evaluate these commu-
tators and after a brief simplification we arrive at
the result (6) quoted in the text.

limI, (k) = —3&v~2,

which behaves the same way as the result (12).

(84)
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