
PHYSICAL RE VIEW B VOLUM E 10, NUMBER 7 1 OC TOBER 1974

Electron-interaction effects on the soft x-ray emission spectra of metals.
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Details of a renormalized theory of the soft x-ray emission spectrum of a light metal are presented.
The resulting spectrum shows structure in the plasmon satellite band and the parent band which did
not appear in the first-order theory. The structure in the plasmon satellite band arises from the
excitation of the plasmaron mode as suggested by Hedin. In addition there is a peak of intensity near
the high-energy edge of the parent band, which is related to the threshold effect discussed by Nozieres
and others. The calculated spectrum difFers considerably from what would be expected for
noninteracting electrons. It also departs considerably from what could be considered a generalized
density of states of the interacting conduction electrons. The transient effect of the disappearance of the
core hole makes it impossible to relate the spectrum to the density of states in any simple way. Careful
study of the experimental spectra of light metals could serve as a check of the approximations made
here; and provide important information about electron correlations in metals.

I. INTRODUCTION

In a previous article' we employed many-body
perturbation theory to study the effects of electron
interactions on the soft x-ray emission spectrum
of metals. The emission process is associated
with the decay of an electron from a state in the
conduction band into a previously created hole in
a state of lower energy which is localized around
one of the ionic cores. Applying the theory to the
I.. .emission of sodium and going to first order
in the effective interaction between particles, the
spectrum was found to have a low-energy tail and
a plasmon satellite band. In agreement with the
experimental results of Rooke, 2 the maximum in-
tensity of the sate11ite band was found to reach 2%
of that of the parent band. The intensity of the low-
energy tail also was found to be of this magnitude
in the region of the satellite band. However, the
comparison of intensities had to be made with the
parent band calculated from the one-electron
model without interactions. The first-order theory
could not be used for the parent band because of
the appearance of divergent terms. Here we pre-
sent the results obtained using h renormalized
theory which is free of this difficulty.

It is found that the plasmon satellite band and
the parent band have structures which did no&

appear in first order. Hedin' suggested that there
shoul. d be a peak in the emission spectrum due to
a collective mode called the plasmaron. 4 The
structure we find in the plasmon satellite band
appears to be associated with this effect though

the presence of the hole in the core state makes
it weaker than originally predicted. In addition,
there is a peak of intensity near the high-energy
edge of the spectrum. Such a peak has already
been observed in the spectrum of sodium and per-
haps other metals. ' Here we trace its origin to
an instability of the electron gas around the tran-
sient hole in the localized core state. This peak is
related to the one recently discussed by Nozieres
and others'~ using a simplified model of the radia-
tion process.

In Sec. II we study the nature and origin of the
divergences of the first-order theory and con-
sider the modifications of the theory required to
account for the strong interactions of the particles
or holes with the charge clouds which surround
them. We shall see that the calculation can still
be represented by Feynman-type diagrams anal-
ogous to those shown in Fig. I, but now the con-
duction and core particle lines must be renor-
malized to include the cloud effects. We sketch
the calculation in Sec. III and in Sec. IV we sum-
marize our results and compare the theory with
several other treatments of the x-ray emission
spectra which have recently appeared.

II. DIVERGENCES AND RENORMALIZATIONS

In I the x-ray emission intensity was found from
the transition rate for the interacting many-elec-
tron system to undergo radiative decay from its
initial state with a deep-lying hole localized about
one ionic core. The transition rate was then re-
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not give an adequate representation of the self-
energy processes once we leave the tailing region
of the spectrum and enter the main band. The
energy shifts can, however, be introduced con-
sistently into the theory by replacing in 0, the
bare conduction electron by a dressed particle in
the familiar way. Then the propagator Sr(k, , +)
defined in Eq. (82) of I is replaced by a renormal-
ized form, Sz(k, , &u), as indicated in Fig. 2. Ex-
plicitly one has

Oi B)

FIG. 1. Zero-order and first-order diagrams contri-
buting to x-ray emission.

a 1

8Eg, (gp +Eg Ep —f A,
(2)

lated to a series of Feynman-type diagrams. To
first order in the effective interaction between
particles the important diagrams which contributed
are those reproduced in Fig. 1. Diagram 0, is the
zero-order contribution which is equivalent to the
one-electron model. All three first-order graphs,
A„By and C„present difficulties when one ex-
tends the calculation to frequencies for which Oy

does not vanish, namely, the region

IE.I=»-« IE.I+EF,

where E~ is the energy of the initial hole below
the bottom of the conduction band, and E„ is the
Fermi energy. The contribution of graph A, will
be seen to be meaningless in this region, 8, di-
verges logarithmically everywhere within this
frequency range, and C, diverges at the high-
energy edge of the emission spectrum.

The contribution from A., contains an integral
whose integrand is of the form Isee Eq. (24a) of I]

(2)
Eg ~kg ) (d

where Z(k, , &u) is the complex frequency and wave-
number-dependent self-energy, which here is
taken in the random-phase approximation (RPA).

The contribution 8, was studied in I and shown
to diverge logarithmically throughout the main-
band region. The physical origin of this divergence
is quite interesting. The hole in the core state
which is formed prior to the x-ray emission, acts
as a localized impurity to the conduction electrons
of the metal and thus destroys the translational
symmetry of the problem. The impurity potential
can then scatter electrons unrestricted by mo-
mentum conservation. Among these scatterings
are those in which electrons from occupied states
very close to the Fermi surface are transferred
to unoccupied states which are also very close to
the Fermi surface. The energy of such excitations
is arbitrarily small though the momentum change
of electrons can be as large as 2k~. Thus it ap-
pears that a large number of very low-energy
electron-hole pairs can be created without much
loss of energy. This effect gives rise to an infra-
red type of divergence in the x-ray emission pro-
cess. Of course, it is different from an ordinary
infrared divergence in that the low-energy parti-
cles are not photons, but rather fermion particle-

where 6 is a factor which depends on the electron-
electron interaction, E~ is a conduction-electron
energy, and A, -O. Note that A, differs from 0,
only by an interaction "self-energy" part inserted
into the conduction-electron line. Higher-order
graphs in which there are more self-energy parts
inserted into this conduction-electron line are
even more singular at this point. The origin of
the difficulty can be understood by noting that the
interparticle interaction introduces shifts in the
energy of the single-particle states, and A, can
be identified as the first-order term in a Taylor-
series expansion. of a denominator assuming that
the shifts are small. However, the expansion is
meaningless near poles of the denominator. Since
the poles occur within the region of integration
whenever &o satisfies Eq. (1), we see that A, can-

(o)

(b)

FIG. 2. Diagrammatic representation of the integral
equation satisfied by the interacting conduction-electron
propagator. Self-energy calculated in the RPA with an
electron or hole in the intermediate state.
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hole pairs. Actually, this process of pair forma-
tion should be self-limiting. As the pairs are
formed, they should form a screening cloud which
would inhibit further pair excitation. This means
that the noninteracting propagator for the core-
hole state which has been used in I is not the
proper one to use. The state must always be con-
sidered together with its interaction self-energy.
We incorporate the effect of the presence of the
screening cloud into the theory by introducing a
renormalized core-state propagator. The renor-
malization procedure is shown diagrammatiCally in
Fig. 3. Figure 3(a) is the graphical representation
of the Dyson's equation satisfied by the renormal-
ized bound-state propagator. Then the propagator
of Eq. (BS) in I is replaced by

(4)

The self-energy Zs(&u) is calculated to first order
in the effective electron-electron interaction as
indicated in the first two graphs on the right-hand
side of Fig. 3(b). The effective interaction ac-
counts for conduction-electron-hole excitations as
described in I. The self-energy thus contains the
effect of Auger excitation as well as virtual scat-
tering off the localized hole. The third contribu-
tion in Fig. 3(b) is a radiative correction to the
self-energy, but it will be shown in the Appendix
to be much weaker than the electron-electron con-
tribution. For consistency, the initial-hole state
is also considered along with its cloud of particle-
hole pairs. The observed energy E of this state
then includes the real part of the self-energy
evaluated on the energy sheB

Eq = Es +ReZ s(Es),

and a width I' =ImZ~. Since, as we will see be-
low, I'~ is quite small, we will be able to neglect

its effect on the initial. state, "while the energy
shift ReZs(Es) will play an important role in par-
tially cancelling the off-energy shell shift coming
from Zs(ru).

In a recent study of the x-ray emission and ab-
sorption problems with a two-Hamiltonian model' '
Bergersen et al."claim that the 8, term is not
divergent in their modified first-order theory.
They find an extra term arising from the mixed
normalization of the many-body states with two
Hamiltonians, and this term cancels the diver-
gence. In our approach, we use a single, though
more complicated, Hamiltonian in which case the
formalism automatically accounts for normaliza-
tion. However, a term of the type found in Ref. ll
could be inferred~' "as coming from other highly
divergent graphs, those with initial- or final-state
self-energies [Figs. 4(D) and V(D) of I]. These
graphs were perhaps erroneously argued away in
I. The exact form of this additional term, how-
ever, is ambiguous and depends on the limiting
procedure used to obtain it. In the "first-order"
renormalized theory used here, there remain some
ambiguities on this point as will be discussed
elsewhere. " However, it appears that the renor-
malized correction terms are small and, which-
ever form is used or even if these terms are ne-
glected, there will be little change in the final
spectrum.

Finally we must consider the "interference
graphs" C,. These terms are also affected by the
infrared process, though in a different way. The
singular terms are associated with the particular
time ordering shown in Fig. 4. When the differ-
ence in energy between the conduction hole and
the conduction electron becomes vanishingly small
the x-ray intensity diverges logarithmically.
Since this can only happen for electrons and holes
at the Fermi surface, the divergence occurs at
the high-energy threshold of the spectrum

I
f

+ &, & +

{b)

FIG. 3. (a) Integral equation for the interacting bound-
state propagator. Q) The self-energy has a radiative
part ard an electron interaction part with the intermediate
hole in either the core or the conduction band.

FIG. 4. Particular time ordering of the interference
graph causing logarithmic divergence of the x-ray
intensity.
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(d =
~ Es ~

+E, . However, if the bound state is shielded

by a cloud of particle-hole pairs the divergence is
eliminated (though we will see that it leaves a
residual observable effect).

In I we say that in the tailing and plasmon satel-
lite regions C, tends to cancel the contributions
A, and 8,. %'hen these terms are renormalized,
care must be taken to include a consistent set of
processes, otherwise these delicate cancellations
can be lost. Figure 5 shows the renormalized
graphs which we consider in this paper, and which
will preserve this cancellation. It will be noticed
that some unrenormalized electron lines still ap-
pear in contributions 8, C„and C, . %'hile it
would, in principle, be desirable to correct these
lines also, the calculations would become much
more difficult. The omitted corrections would be
needed to describe the double-plasmon satellite
band. However, this band is expected to be very
weak and its detection would be difficult. Also it
occurs at low energies —down from the main band

by at least twice the plasmon energy. In the re-
gion of present interest the omitted terms are not
expected to have significant quantitative or quali-
tative effect.

%'hile the graphs of Fig. 5 preserve the cancel-
lation between terms found in the first-order
theory, there may be other contributions which
are needed to preserve other consistency require-
ments. The importance of choosing consistent
sets of graphs has been pointed out by Baym and
Kadanoff'4 and others. For the x-ray emission
problem Rystephanick and Carbotte" and Nozihres
et al.'"have stressed the importance of some
additional terms which w'e do not include in the
present calculation. These enter in the form of
higher-order vertex corrections to Fig. 5, C, and

C, . These additional corrections play an im-
portant role in determining the analytic structure
of the emission intensity near the high-energy
threshold of the spectrum. At lower energies
their main effect is as an over-all multiplieative

I'IG. 5. Henormalized diagrams contributing to the
x-ray emission intensity.

factor which sets the absolute value of the inten-
sity. Since the experiments measure only relative
intensities, these terms will have little practical
effect except near the threshold. We will return
to this point in Sec. IV.

III. CALCULATION

We saw in I that the x-ray emission intensity
can be obtained from [Eq. (13)j

f(&u} =—ReF(&u},
ml

where [Eq. (15)j

&( ) = p f d( &~, l
(('-'("('(e(o) I@,&,

0

with

e(f ) e&Ht Q n~. p e-i/It

We can now proceed to the calculation of the
correlation function E(&o) from the diagrams of
Fig. 5 obtained by using the renormalized theory
of See. II. The rules for writing down the contri-
butions of these diagrams have been discussed in
Appendix A of I. Following these rules, we ob-
tain the following contributions to F(u) from the
graphs A, B,C„and C, of Fig. 5,

(s)

dr, ( ) =(2 (,„f," ...f u „g g ((k„, .([s,(E, + .(]*

x S~(k, , Ef(+u'+&a„) P P g„(k„)h-„,(k,)

F ( (= —
(2 I,z f, , f d „g g Q v$„, „(( (z' —,(

k„k~ kg

x S~(k, , E (s' +(gd„)8+~(k„,E s)5+(dk,((-, Q g„(k„)h„((k,}h„,(k~-) . -
$.e

(10}
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Term Ec((d) contains an extra factor of 2 to ac-
count for the presence of both C, and C,. The
dynamic Coulomb interaction between electrons
(the line of bubbles} is represented by V(k„, (d„);
the matrix element for interaction m'ith the radia-
tion field (the wavy line) is I(;,(k,) where k, is
the wave number of the incoming or outgoing con-
duction electron; g«(k, ) wiih momentum k„occurs
for the vertex in which a line of electron inter-
action joins an incoming and an outgoing bound-
state hole. Sr(k, (u} is the noninteracting con-
duction- electron-hole propagator. All of these
quantities have been explicitly defined in I. In
addition Sr(k, (d) and Se((u) are the renormalised
conduction-electron and core-state propagators,
respectively, and they can be conveniently ex-
pressed in terms of spectral functioris:

d(d i8{(d —EF) i8(EF (d }-
s (u —(u'+iX (u —(d'- iA.

Zm(k, (u')
[(u'- E,—Z,(k, (d') ]'+Z,{f,(u 'p '

where Z, (k, (u) and Z, (k, (u) are the real and imag-
inary parts of the conduction-electron self-energy
as defined in Fig. 2 and they satisfy the following
dis persion relation:

Z, (k, (u) =Z,„(k)+P

where Z,„(k) is pure real and frequency indepen-
dent,

Similarly

@~0 2k%» A,'- k»

~

~

de
Se((d}=

47- (4 $ A.

I'e((d')
[~'- Ee- Ze(~'}]'+I'e{~') '

where Ze((d) is the real part and I"s((u) is the imag-
inary part of the bound-state self-energy. Noir
using these definitions we can carry out the inte-
grations over u' and w„. After integrating and
substituting into Eq. (6) we obtain for the intensity
of' emission:

S k (d+E'
i„(~(=z"Z gz, -~-s,')aa( ' ",. ' I&;..(&.(I'

ke es:1
(15a)

Is((u) =- Q Q qk ImV (k„,(uE+eE,)[R Se(Ee, -()/ui]'-—,ImV (k„,Es-(d')(d 21' " d+'
3%A ~ ~ e& g „E,—cv —v'

ky ke

S (d
3 S

e ~ Im 8 +' i g„hgek,
jeg eel

j (a(= Z Z Z q„- tmv (k„u+z~ —E,)Rs ". )k„k
8 E -w 8 E~-e S»k e+E~

i

(15b)

x [ReV (k„,0)+q& ReV( „k(dE+e —E~}—q„- ReV (k„, (u+Eei-E(}]

x 5( 1 +k, P g g«(k )A; i(k,)&;„Ora},
e=l

(15c}

(
Sr(k„(d+Es) Z,(k., (u+ Ee)

[(d +Ed -E,—Z,{k„(d+Es)]~+ Z,(k„(d+Eij)2

Re I
~~

~ ~
~

B

Ss((u) (d —Ee- Zd((d)
i [(u - Ee Zs((d)]'+ I'e((u-)* '

I'u((d)
Im [Se((d)/i]

[ ( )]2 ( }I
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Equation (15a) replaces Eqs. (I2S} and (124a) of I,
and Eqs. (15b) and (15c) replace Eqs. (I24b) and
(I24c), respectively. The second term of Eq. (15b)
does not contribute significantly to the emission
process compared to the first term and hence can
be neglected. Its smallness is a consequence of
the fact that I' s(cu')/4EF -10~, as demonstrated
in Appendix A. Hence the second term, which
contains a factor of I'~ in the numerator, is ex-
pected to be negligible unless the denominator
vanishes. Indeed, Eq. (15b) includes the process
shown in Fig. 18, which led ta the. troublesome
infrared divergence in the energy band (Es( & R&u

& (Es(+ E„, i.e. , in the region of the parent band.
However, after renormalization (i.e., the inclu-
sion of an infinite set of higher-order terms} Eq.
(15b} no longer is divergent. The quasiparticle
core state has a finite lifetime so that even when
e+E~=E, , the denominator does not become zero
because the real part Zs(E, —&u) does not go to
zero at the same frequency as does I's(E, —~}.
Hence, renormalization of the bound-state prop-
agator eliminates the troublesome infrared di-
vergence from our problem. Note that even at
the high-energy threshold, the spectrum will not
be singular since, although I's=0 at EF (see Table
III}, for computing the behavior at the threshold
w'e only need I'~ at E~ where it is not zero.

I„(cu) passes smoothly through k&u = (EJ( (, the
zero-order emission edge. Thus by including a
renormalized conduction-electron propagator we
have been able to remove the unphysical discon-
tinuity in slope at the threshold of the so-called
parent emission band. Also we note that intro-
duction of renormalization in our problem has re-
moved all the 5-function restrictions in energy
that were present in Eq. (I24) and in this case all
the terms in Eqs. (15a)- (15c) will contribute
everywhere in the spectrum, i.e., in the parent
band, tailing region, and the plasmon satellite
band.

Ne have carried out the integrations over the
angles of the moments in Eqs. (15a)-(15c) analytic-
ally. In order to proceed further one needs the real
and imaginary parts of conduction-electron self-
energies and also the bound-state self-energies.

The numerical calculation of the imaginary part
of the conduction-electron self-energy has already
been carried out. '~ We have neglected Z,(k, &u} for
the calculation of the spectrum in the main-band
region, since Z, does not have any important
structure in this frequency region and is not ex-
pected to change the shape of the spectrum by any
appreciable amount. For the calculation of the
plasmon satellite band and the tailing, however,
the real part of the self-energy must be retained.
Hedin, Lundqvist, and Lundqvist~' "were the

first to point out the important role of this term
in modifying the low-energy portion of the spec-
trum. As a consequence of Eq. (12) the rapid
variation in Z, (k, &u) is associated with corre-
sponding variation in Z,(k, &u). This behavior is
indicated in Fig. 1 of Ref. 18 for a particular value
of momentum k. Note that there are denominators
in Eqs. (15a) and (15c) which tend to be small and
would vanish at certain points if not for Z,(k„&u
+Es}. These points correspond to those marked
on Fig. 1 of Ref. 18 as the intersections of the
straight line ~ -Ez with Z,(k, &u). The high-fre-
quency intersection is only weakly shifted from
the free-particle pole at u =E~. The central inter-
section is not too important because it occurs
where Z, (k, ~) is large. The low-frequency cross-
ing leads to an additional peak in the spectral func-
tion of the renormalized single-particle Green's
function. This peak is the "plasmaran" of Hedin,
Lundqvist, and Lundqvist, ' which they interpret
as a coupled plasmon-hole mode. For the x-ray
emission spectrum one must integrate aver dif-
ferent values of the momentum k„and the effect
of this peak is partially smeared out. However,
a residual peak does persist in the spectrum and
we will see that it occurs near the low-energy side
of the plasmon satellite band.

The real and imaginary parts of the core-state
self-energy are obtained from Eqs. (Al), (A2),
and (AS) of the Appendix. However, we note that
I'» (E, &u) will n—ot contribute to Is(&o). From
Eq. (A2) it is clear that I'»(E, —v) will be zero
unless E, «o+Es. But the factor ImV (k„, co+E~
—E,) in Eq. (15b) requires up+Es'& E,. The radia-
tion contribution I'»(E, —&u) is not zero, but, as
shown in the Appendix, it is weaker by a factor
10' than the main Auger term I'»(E, —&u), and
can be neglected. Again we shall be interested
in frequencies less than the Fermi energy, hence
the term containing ImV, (k„, up —E,) in I'»(E, ~)
will nat contribute.

Using the numerical values of real and imaginary
parts of the self-energy of the canduction electron
and core-state propagators, we have carried out
the final single integral of I„(&u), double integral
of Is(&y), and the three and four-dimensional inte-
grals of Ic(&u) numerically with the aid of an IBM
7094 computer. Contributions to the emission
intensity by I„(&u},Is(~), and Ic(~) in the main-
band region are shown in Table I, and the total
contribution for the plasmon satellite region in
Table II. The total contributions for the main
band and satellite band are then plotted in Fig. 6.
The dashed line in this figure is the experimental
result of Skinner'9 and the solid lines represent
the results of our calculations both in the main-
band and the satellite-band regions.
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TABLE I. Contributions to the main emission band
and tail from the graphs of the renormalized theory.

-0.10
-0.05

0.
0.025
0.05
0.075
0.10
0.125
0.15
0.175
0.20
0.225
0.24
0.245

0.0115
0.0166
0.0359
0.0530
0.0757
0.0955
0.1131
0.1248
0 ~ 1358
0.1448
0.1524
0.1583
0.1618
0.1627

0.0102
0.0126
0.0208
0.0284
0.0325
0.0353
0.0375
0.0390
0.0401
0.0408
0.0405
0.0369
0.0268
0.0230

0.0068
0.0129
0.0440
0.0772
0.1304
0.1854
0.2185
0.2524
0.2784
0.3049
0.3501
0.3949
0.4411
0.4608

0.0285
0.0421
0.1007
0.1586
0.2386
0.3162
0.3691
0.4162
0.4543
0.4905
0.5430
0.5901
0.6297
0.6465

IV. SUMMARY AND CONCLUSIONS

TABLE II. Plasmon satellite band obtained from the
renormalized theory.

The renormalization of the particle and hole
propagators, as carried out in the previous sec-
tions, removes fundamental shortcomings of the
first-order theory and introduces interesting new
structures into the emission spectrum. Replace-
ment of the basic electron and the core-hole states
by quasiparticles considered along with their
clouds of interacting particles removes the log-
arithmic divergences in the main-band region.
However, a residual effect seems to persist,
giving structure to the high-energy threshold. %'e

observe from Fig. 6 that our results agree quite
well with the aq)erimental observation of Skinner. "
The calculated curve follows the experimental
curve very closely over most of the tailing and
the parabolic region of the main emission band,
though our calculation indicates a stronger peak

PLASMON SATELL)TK

-0.6

near the high-energy edge. This peak occurs due
to the infrared effect which has been discussed in
Sec. II. In fact, if we did not include the lifetime
of the core-hole state we would obtain a singularity
at this edge of the spectrum, not unlike that in
the Kondo effect. ' Our calculation of this effect
is limited in that other higher-order graphs can
be important in this region. However the present
calculation includes the finite lifetime of the core
hole which other calculations neglected. To ob-
tain the correct analytic structure at the edge,
both factors, i.e., the higher-order graphs and
the lifetime effects must be accounted for. With-
out lifetime, the theory would imply a singular
behavior (E EF) -near the threshold. An un-
renormalized theory would give a ln (E EF) a-s a
first-order approximation to this term. However,
in the renormalized theory where the lifetime of
the core propagators are included, the threshold
behavior should be something like —,a 1nl (E —E~)'
+ f"s(Es}']'~'. Thus at the threshold although our
spectrum shows a sharp peak, it is not strictly
singular because of finite lifetime of the core
propagator. The spectrum obtained by Cady and
Tomboulian~' has no rise at this energy, though
there is some evidence of a peak in both Skin-
ner's' and Crisp and William's' result. Recent
calculations by Nozieres et al. ,

'8 Mahan, ' and
others with a model Hamiltonian which only in-
cludes the scattering of conduction electron by
the transient core potential (neglecting conduction-
electron-conduction-electron interactions} have
suggested that there should indeed be a Kondo-like
singularity at these energies for the L, , emis-
sion spectrum, and the divergence remains as
long as the Fermi surface is sharp. For tem-
peratures above absolute zero the divergence
is removed, "with kT playing a role similar to
that of I ~ in the present theory. Since the emis-

-0.215
-0.225
-0.25
-0.30
-0.35
—0.40
-0.45
-0.50
-0.52
-0.55
-0.60
-0.625
-0.65
-0.70

0
0.0133
0.0230
0.0322
0.0342
0.0303
0.0254
0.0132
0.0120
0 ~ 0094
0.0102
0.0009
0.0001
0.

EAI-
Z

I

0.04—

'-0 3

.02-

-8 -6

I

-2
ENERGY (eV)

I"IG. 6. Main emission band and plasmon satellite
band from the renormalized theory. The dashed curve
represents Skinner's experimental result. The plasmon
satellite shows some residual plasmaron structure.
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sion intensity near the high-energy edge would
be strongly affected by self-absorption and the
resolving power of the detector, a peak should
become more apparent in more careful experi-
ments elimanating these effects. The width of
this high-energy peak can give a measure of the
internal Auger broadening, and the effective tem-
perature in the neighborhood of the localized core
state.

We observe that the calculated spectrum differs
considerably from what would be expected from
the Sommerfeld theory of noninteracting electrons.
The E' ' behavior coming from the density of
states of noninteracting electrons seems to per-
sist only in a small region at the middle of the
emission band. It has been proposed that the
spectrum gives a direct reflection of a general-
ized interaction density of states of the electrons
However, such an interpretation is subject to
question and must be used with care. The density
of states of the conduction electrons is different
in the initial and final states due to the disappear-
ance of the bound-state hole. It is not obvious
which generalized density of states is the one to
be introduced into the soft x-ray spectrum. In
fact, the spectrum includes features related to
the time evolution of the density of states from
its initial to its final form. The peak at the high-
energy threshold can be interpreted as being one
such effect. It enters the present calculations
via the dynamic scattering of conduction electrons
by the bound-hole potential [such as in Fig. 5(c)].
Terms of this type are not adequately treated in
Ref. 3. Indeed, they neglect all dynamical cor-
relations between the hole and the conduction
electrons. It may not be a simple matter to sepa-
rate these "anomalous" effects in the observed
spectra from those of the generalized density of
states.

These terms also have a strong effect on the
absolute magnitude of the emission intensity. The
contribution of the various interaction diagrams is
larger than the zero-order result of the Sommer-
feld model. There is a considerable readjustment
of electron density in the vicinity of the positively
charged core hole, the density becoming larger
than the average electron density in other parts of
the metal. Thus, it is not surprising that these
terms will give rise to an emission intensity which
exceeds the Sommerfeld or the zero-order result.
The same effect has been observed in the calcu-
lation of the positron annihilation in metals. The
problem of positron annihilation has many features
in common with the soft x-ray emission process.
The positron in an electron gas plays essentially
the same role as the initial hole in the core state
and the total positron annihilation rate is found

to be greatly enhanced over the Sommerfeld values
due to a distortion of the conduction-electron con-
figurations by the positron. "

As in the first-order theory the plasmon satel-
lite band has its high-energy edge shifted by an
energy S&~ below the high-energy edge of the
parent band. Because of the presence of dispersion
in the plasmon frequency and the cancellation be-
tween different terms, the main peak in the plas-
mon band becomes broad and gets shifted to lower
energies. Very close to the high-energy thresh-
old of the plasmon band the intensity should be-
have as (Eo- E)3~ as pointed out by Ferrell, "
where E, = ~Es'~+EF —Ra&~ is the threshold energy.
This behavior is not obvious in Fig. 6, but should
be apparent when the numerical calculations are
carried out on a finer mesh and plotted using an
expanded scale. ' Apart from this broad peak the
renormalized theory introduces an additional
structure to the satellite band. A secondary peak
of lower intensity is found to occur towards the
lower-energy edge of the satellite band, which
was definitely not present in the first-order theory.
The existence of such a structure in the satellite
band has been predicted by Hedin et al. ,'4 and is
due to structure in the real part of the electron
self-energy as discussed in Sec. III. Hedin sug-
gests that such a secondary peak is obtained be-
cause of the existence of a new elementary excita-
tion in an electron gas, occurring due to the
resonant interaction of a plasmon-type oscillation
with a hole in the conduction band. This new ex-
citation is called a plasmaron and has a larger
energy than a free plasmon. Attempts by Cuthill
et al.' to observe this structure experimentally
in aluminum have not yet been able to definitely
resolve it from background noise.

Since the experiments only provide relative
intensities it is interesting to compare the magni-
tude of the intensity of the main band and of the
plasmon satellite band. As mentioned before, one
of the important effects of the presence of a hole
in the core state is to increase the magnitude of
the intensity over the Sommerfeld value in the
main-band region. Our numerical results show
that the total intensity is enhanced by about a fac-
tor of 4. However, as observed in I, the hole in
the core state introduces very strong cancellation
among contributions for the satellite band and re-
duces the maximum intensity by a factor of about
20. This cancellation is somewhat lost in the re-
normalized theory. The intensity of the satellite
band is found to increase by a factor of about 6.
The peak of the plasmon satellite band thus be-
comes roughly 5/0 of the maximum intensity of the
main emission band. Hedin' has pointed out that
when Rooke's raw experimental data are expressed
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in our units it gives the ratio as 4%. So the re-
sult of the renormalized theory seems to be in
better agreement with experiment tom the first-
order theory as to this feature of the spectrum.

After this work was initially reported, "some
related work was published by Morita and Watabe. 2'

They also use a Green's function method to study
the x-ray emission spectra of bght metals, and

in principle, they discuss the same processes
considered here. However, their actual numerical
calculations appear to be more limited. Devoting
their primary attention to the main band they car-
ried out detailed calculations only for the term in

Fig. 5(a). This calculation thus corresponds to
the generalization of I andsberg's calculation. '
They use extrapolation formulas for the real and

imaginary parts of the self-energy of the con-
duction electrons and obtain results which are
also qualitatively very similar to Landsberg's.
While leaving out the equally large numerical con-
tributions of Figs. 5(b) and 5(c) they appear to go
beyond the present calculation in their considera-
tion of the hump near the high-energy threshold
Using a statically screened Coulomb interaction
they have considered a whole set of vertex cor-
rections in addition to Fig. 5(c). These enter as
a set of diagrams containing ladder interactions
and crossed ladders. FoBowing Mahane they find
that near the high-energy edge the spectrum should
indeed rise. However, no actual numerical re-
sults are performed with this model. Also,
Nozieres and co-workers" '6 have now shown

that a whole class of additional terms must be
included (analogous to, and beyond Fig. 5(b}] in
order to give an ade(luate treatment to this feature
of the spectrum. ' Thus the approximation of Ref.
29 even at the high-energy edge may not be much

better than the one reported here and contains an

unspecified cut-off parameter. In either calcu-
lation the shape of the high-energy peak has pri-
marily qualitative significance.

In conclusion, we find that many-body processes
have a strong yffect on the absolute intensity of
soft x-ray emission and also introduce new struc-
tures into the spectrum which cannot be attributed
to a one-electron density of states. Careful study
of the experimental spectra of light metals can
thus provide an important means of gaining infor-
mation about electron correlations in metals as
well as a check on theoretical approximation meth-
ods. In particular, it mould be interesting to have

more information about the following features of
the spectrum of sodium.

(i) The shape of the main band. How strong is
the peak at the high-energy edge ? What is its
width? And how does it depend on temperature,
electron density, and impurities 7

(ii) The strength and extent of the low-energy
tail of the main band. Can one separate off the

purely experimental background from the tail due

to electron-electron interactions?
(iii} The shape of the plasmon satellite band.

What is the relative magnitude and position of the
satellite band as compared to the main band?
Does the satellite band show the characteristic
(Eo- E)'+ behavior close to its high-energy edge'?
Is there any structure due to the plasmaron?
Where is it located and how strong? How do these
features depend on electron density and temper-
ature?
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APPENDIX

In this Appendix we calculate the self-energy
of the renormalized bound-state propagator.

As seen in Sec. II, there are three distinct
processes, shown in Fig. 3(b), which contribute
to the self-energy. The first two are electron-
electron self-energy and the third is a radiative
self-energy. The contribution of the first pro-
cess can be written as

k~ k~

x S (k., cu —ap„) g ( f (k, +k„)('.

We can carry out the co„ integral very simply
and obtain
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where V, and V are those parts of the dynamic
Coulomb interaction V(k, (()), which are analytic
in the upper and lamer half of the complex fre-
quency plane, respectively.

Similarly we get for the second process given
by Fig. 3(b),

Q) /4@p ~g (u)/4EF Zg (ta)/4EF

TABLE IV. Frequency dependence of the real part of
the bound-state self-energy.

Zz2(&u) =
& g V (k„, ((}—Es) g Ig„(k,) I',

1c~ f~e=l

(A2)

and the third process gives

e'h'Q
Zz, (a)) =

l2 ~ z dk, k, dk,

~katy
ck, —Kcd+E, +iX ek, +5'ar —E,—i A.

-2.1707
-2.15
-2.125
-2.10
-2.075
-2.05
-2.025
-2.00
-1.975
-1.95
-1.925

-0.736 395
-0.761 307
-0.780 218
-0.S02 178
-0.818 532
-0.833 145
-0.846 363
-0.858 423
-0.869 500
-0.879 727
-0.S89 213

-1.90
-1.85
-1.80
-1.75
-1.65
-1.60
-1.55
-1.50
-1.45
-1.40
-1.35

-0.898 042
-0.914 012
-0.928 094
-0.940 626
-0.962 004
-0.971208
-0.979 604
-0.987 290
-0.994 375
-1.000 912
-1.006 988

(A3)
As in I we can carry out the angular integrations
and get

The vertex functions f,(k), k~,(k), and g„(k) ap-
pearing in these equations were defined in I.

First we consider the electron-electron self-
energy. As noted in Sec. III, for the purpose of
our calculation of the emission intensity the only
significant contribution to the imaginary part of
the self-energy I'z((()) comes from the second
term of E(I. (Al), thus we write

1 ~j
$0 -Q

I'|)((())=- — z'dz dalmV z,
Q 0 z

xkf„(a,z).

~+, is given by

Mz, (a, z) = E'a'[(a'+z') J', + 2J,],

(A5)

}' (~)=-(~ ), f dk. f dk|}P }mv f, ,(r.a,-z.}. where

x g If,(k. +k„)I . (A4)

2 5(a'+ z'+ }3')'+Io(a'+ z'+ p')'(2az)'+ (2az)'
0 [V'+z'+P')' (2~)']'-

TABLE IH. Frequency dependence of the imaginary
part of the bound-sta, te self-energy.

2 (a'+z'+P')(2az)'[5(a'+ z'+ P')'+ 3(2az)']
I [(a'+z'+P')*- (2~)']'

-2.17
-0.40
-0.25
-0.15
-0.10
-0.05

0.
0.05
0.10
0.15
0.20
0.25

r~ (~)/4ZP

2.157x 10 4

6.154x 10-'
4.430 x 10
3.354x10 '
2.806x 10 4

2.249x10 4

1.685x10 4

1.441x 10
1.555x 10 4

0.819x10 4

0.434x10 4

0.

ReZs(&o) can be obtained from the real Parts of
E(ls. (AI) and (A2). However, it was shown in I
that contributions from diagrams of type (Al),
containing vertices where a core-hole line, a
conduction-band hole line and an interaction line
appear, are negligibly small compared to contri-
butions from diagrams of type (A2) containing
vertices where two hole lines meet an interaction
line. This is physically reasonable because the
very large energy involved in the transition of a
core hole to a conduction-band hole or vice versa,
can hardly be taken into account by the effective
Coulomb interaction. Thus ReZ s,((()) takes the
form
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(A6)

where u, =m(ru —Es)/k„kz.
The final two-dimensional integrals over a and

z in (A5) and the one-dimensional integral over z
in (A6) are carried out numerically for different
values of the frequency. The results are shown
in Tables III and IV. Table III shows that the imag-
inary part: of the bound-state self-energy goes
through a broad peak as a function of frequency
and vanishes at the Fermi energy. The real part
of Zz(v) is negative in the frequency range of our
interest. Also observe that both the real and
imaginary parts of Zz(&u) are very slowly varying
functions of co.

Finally we consider the radiative self-energy

giiven by Eq. (A3). For our purposes it suffices
to calculate the width Fz (cg) =ImZs (~) on the

3
energy shell g&u =Ez Us. |ng k„,(k) as given in I
and the parameters appropriate to sodium (Ap-
pendix A of I) one finds

As seen above the analogous calculation for the
Auger width gave

I'~„„=2.4x 10 ' eV=4000 1 ~ d.

Thus we can neglect the radiative width in com-
parison with the Auger width as stated above in the
text.
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