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Effect of correlated self-diffusion on the low-field nuclear-spin relaxation in the rotating
reference frame
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The S1ichter-Ailion {SA) theory for low-field rotating-frame relaxation by atomic diffusion in crystals is
applied to a monovacancy mechanism of selfMiffusion under the condition that a spin temperature is
established between successive jumps of a nucleus but not between successive jumps of a vacancy
{so-called high-temperature region). By means of a computer simulation of the random migration of a
vacancy both the existence of a "trail of hot spins" left behind the vacancy and the correlated jumps
of neighboring nuclei are taken into account. As special cases the theory includes low-temperature
relaxation, where a spin temperature is established even between two successive vacancy jumps, and
uncorrelated random-walk di6usion. The extrapolation to high relaxation fields shows the identity of the
high-field case as predicted from the SA theory with the results obtained from a perturbation-theory
treatment of relaxation due to vacancy-induced selfQifFusion by the present author. From the numerical
results for the fcc and bcc lattices considerable variations of the orientation dependence of the
rotating-frame spin-lattice relaxation time are predicted for both the transition from 1ow temperatures to
high temperatures and for the transition from the low-field to the high-field region.

I. INTRODUCTION

Nuclear -magnetic -relaxation experiments for
studying atomic motions in crystals may roughly
be classified into two groups: (i} studies of the
laboratory-frame spin-lattice relaxation time T,
and the spin-spin relaxation time Tp in the vicinity
of the T, minimum; (ii) application of "ultraslow
motion" techniques to the measurement of the spin-
lattice relaxation time T„ in the rotating coordi-
nate system in the vicinity of the T» minimum.

%bile the T, minimam occurs whenever the
mean time of stay ~ of a nucleus at a lattice site is
comparable with a precession period (do' of the
spine in the strong constant external field Ilp (i.e. ,
whenever ~ps= I), the T„minimum occurs when
&&7'=1, where (d& is the I armor precession fre-
quency associated with the rotating field H&. Since
Id, is much smaller than (dp (typically by about
three to four orders of magnitude) the temperature
range over which atomic motions may be detected
is considerably extended to low temperatures by
the application of the so-called Slichter-Ailion (SA)
technique for the measurement of T». '

In most monoatomic crystals diffusion results
from randomly migrating point defects (e.g. , va-
cancies, interstitials) by which the directions and
the time sequence of successive jumps of an atom
may be correlated, so that they are not indepen-
dent of one another. While the activation energy
of the diffusion mechanism may be simply de-
termined from a logarithmic plot of the relaxation
times versus reciprocal temperature, considerable
theoretical effort is necessary to relate the mea-
sured relaxation time to the diffusion coefficient
as obtained, e.g. , from measurements with radio-
active tracers.

Two different theoretical approaches are used
to relate the mean time 7 (characteristic for a
given diffusion mechanism) to the relaxation times
in high fields or low fields: (i) In the high-field
region (i.e. , for Hp» Hz, in the laboratory frame,
or Hi ~~ Hl p in the rotating frame, where Bl and
Hf p are the local fields in the coordinate systems
involved) the splitting of the Zeeman levels is
large compared with the dipolar coupling of the
spins. Hence between successive nuclear jumps
no cross relaxation between the dipolar and Zee-
man Hamiltonian occurs and the dipolar Hamil-
tonian may be treated as a small time-dependent
perturbation on the Zeeman Hamiltonian. This
procedure, comprehensively described by Abra-
gam, was recently applied to correlated and un-
correlated diffusion mechanisms in crystals by the
present author. ' (ii) In the low-field region (i.e. ,
for H, -H»}, the spins are strongly coupled, and
the perturbation method fails. The communication
between the dipolar and Zeeman Hamiltonian is
now rather fast, so that cross relaxation may oc-
cur between successive nuclear jumps. There-
fore, SA' suggested to characterize the nuclear
spin system by a common spin temperature of the
two spin Hamiltonians in the rotating frame. This
spin temperature relaxes towards the lattice tem-
perature as thermal equilibrium is established.
After a perturbation (e.g. , a jump of an atom or a
point defect} the spin temperature is established
within a time of the order of T2', the spin-spin
relaxation time in a "rigid" lattice, i.e. , in the
absence of atomic jumps. The SA theory (see,
e.g. , Ref. 5) is applicable if between successive
nuclear jumps the spin system may be character-
ized by a common spin temperature of the Zeeman

10 2?24



10 EF FECT OF CGRRE LA TED SE LF -DIF F USION ON THE. . .
and dipolar HamQtoniaas, i.e. , if T&'&v.

As yointed out earlier the jmnps of a given nu-
cleus are bunched into groups if they are caused by
a defect mechanism. In addition, the jumps of
neighboring atoms are correlated with the jumps
of that nucleus. For typical vacancy concentra-
tions (C,= IO~-IO 1}, we have r„«v, where 1'„ is
the mean time of stay of a vacancy at a lattice site.
Then, within the frameworlt; of the SA theory we
have the two regions r, » T and r„«T,"' (but
still 7& Tll).

If 7'„» Tl' (low-temperature region of the SA

theory), a spin temperature is established be-
tween successive jumps of the vacancy, and the
bunching effect mentioned above does not influence
the relaxation process. This situation was treated
in detail for different diffusion mechmusms by
Ailion and Ho. At temperatures, however, where
the condition v, » T",' holds, the diffusion contri-
bution to the relaxation rate is very often domi-
nated by motion-independent relaxation mechan-
isms (e.g. , the conduction electron contribution
in metals), so that no information on diffusion may
be obtained from the measured rehection times.

For v„«T1"'«v (high-temperature region), a
spin temperature is not established between suc-
cessive vacancy jumps nor between those jumps of
the nuclei which are caused by the same vacancy.
The rel:uution process is governed by the corre-
lated motions of the nuclei. QmL&tatively, this
situation was described by SA in terms of a trail
of "hot" spine (which are not at the common spin
temperature) left behind by the vacancy.

The present paper deals with a quantitative
treatment of the rehlxation process by correlated
self-diffusion via monovacancies for the case

II. APPLICATION OF ENCOUNTER MODEL

In a previous paper~ the effect of correlated
relative motions of the nuclei on high-fieM re-
laxation was described in terms of the so-caQed
encounter model. In the following this model will
be applied to low-fieM relaxation due to a random-
ly migrating vacancy.

We consider a spin i located at the origin of
the coordinate system. We assume that the
orientations of spin i and of the neighboring
spine may be characterised by a spin temperature.
%hen a vacancy causes atomic jumps in the sur-
roundings of spin i it destroys the corn~on spin
temperature. By definition, ~ in an encounter with
the vacancy spin i jumps on the average Z(0) times,
while a nelghborlng spill Ill perfoI'1ns Z(1' ) jumps
(averaged over many individual encounters). When
the vacancy leaves the neighborhood of spin i all
spin positions have been rearranged relative to
each other, and a new syin temperature is estab-

2.55
Oo

23$ I a ~ ~ ~ ~ s

0 20o CO SPo

I l I I I I I I

804 r00. Qoe woo t50o 8.ta0

FIG. 1. Orientation dependence of T~~ in zero field in
units of v/2 for 0 && &180' and ft) between 0' and 45' [see
Eqs. (8.1) and (8.2) and Table Ij.

ZNMa = Z(0)+ Q Z(1„) . (2 I)

Since Z„„gn denotes the mean number of jumps
per spin in one encounter, on the average the time

St„„„=7Z„„g~ (2. 2)

elapses before a different vacancy becoxnes active
in the surroundings of syin i. Numerically it is~

p

found that Z&„„is about 40-50 for the first n= 140
spine. Thus, we obtain from Eq. (2. 2) the esti-
mate

1
&&NMR= 3 ~ ~ (2. 3)

ng to the SA theory the sp~n-laic
laxation time in the rotating frame T&, is related
to the rate of change of the mean dipolar interac-
tion energy T,~ by

lished within a time of order Tl'. (Because of the
condition 7', «T', the spin orientations are as-
sumed not to be changed during the actual rear
ranging procedure. )

If AtNMR denotes the mean time between two dif-
ferent rearrangements, the SA theory may be ap-
plied to calculate the relaxation rate, if ht„„R
» Tz . An estimate of htNMR may be obtained in
the following way.

From numerical calculations it is found that with
an accuracy of about 2% the energy of the dipolar
interactions of spin i with all other spina of the
sample (i.e. , the orientation of spin i}is given by
its interaction with the first n= 130 to 150 nearest-
neighboring spins only. Therefore, we assume
that the orientation of spin i can change only if the
position of one of these n neighboring spins is
changed relative io spin i, and that jumps of nu-
clei outside the "surroundings" of spin i (defined
in this way by the number s) do not contribute to
the relaxation of syin i. The number of relative
jumps caused by the vacancy during its encounter
with spin i is given by4
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1 Hl~
2 2 0

Tgf Hf+ Hl f Tc
(2.4)

1 1 g («NMR(&. m))
& Eg& ) &NMa(m)

where

(2.5)

(Eo) =Q (Eo(i, m}} (2. 7}

denotes the mean dipolar energy per spin.

III. CALCULATION OF THE ENERGY CHANGE PER
ENCOUNTER

As pointed out in Ref. 4, an encounter of spin i
with a vacancy is looked upon as representative
for the vacancy-induced motions of all spins of
the sample. Hence it is sufficient to calculate the
energy change resulting from one encounter of spin
i to describe the relaxation behavior of the entire
sample.

The secular part K,o of the dipolar Hamiltonian
of spin i in the rotating frame, X,„, may be writ-
ten (see, e.g. , Ref. 5)

From the encounter model described above T, may
be calculated as follows. I et ( dEzM„(i, m) ) be the
mean change of the mean dipolar interaction energy
(Eo(i, m) ) between spin i and an arbitrary spin m

of the crystal, resulting from an encounter of i.
Since the number of relative jumps of i and m is
Z(0)+ Z(r ) [if spin m is not located in the "sur-
roundings" of spin i, pair correlation is neglected
(see Ref. 4), and Z(r~) =0], the rate of change of
Eo(i, m) is (nE„„a(i, m))/T„„„(m), where

v'„„„(m)= —' 7 [Z(0)+ Z(r )] . (2. 5)

The factor of 2 arises from the fact that (Eo(i, m) )
changes if either of the spins i and m makes an
encounter. Hence we obtain for the total relative
change of the mean dipolar energy of one spin per
second

in the high-temperature approximation. (Kz, }i,

denotes the dipolar Hamiltonian of spin i before
the encounter; 8 is the spin temperature. For the
Zeeman Hamiltonian in the rotating frame we have'

Xz„=ya Ho-(d y, + (3.5)

In resonance ~=~o=yHo, and the first term on the
right-hand side of Eq. (3.5) vanishes. From Eqs.
(3.1) and (3.3), we obtain, for the mean dipolar
energy of spin i,

(3.5)

where U includes the traces over the spin opera-
tors. In Sec. II it was assumed that because of
the condition 7'„«T2' the orientation of the nuclear
spins is not changed while the vacancy actually
rearranges the surroundings of spin i, so that the
density matrix immediately after the encounter is
still given by Eq. (3.3) (so-called sudden approxi-
mation). In terms of the encounter model the re-
sult of the rearrangement is a "sudden" change of
the dipolar Hamiltonian from (Xi )i, to (3Cz )&, while
the Zeeman Hamiltonian remains unchanged during
the rearranging procedure. During the process of
spin-lattice relaxation (assumed not to begin be-
fore the end of the encounter) this change of the
dipolar Hamiltonian is communicated to the Zee-
man Hamiltonian, and can be observed as a change
of magnetization. For the expectation value
( «„„„}of the mean change of the dipolar Hamil-
tonian of spin i due to an encounter we may thus
write analogously with~

(«zMR) Trb[(5cz„)i (5Ca }yB

1=
be(2I 1) [»(50i„)i—»(5ci,4 (50~„)y]

(3.7)
Inserting Eq. (3.1) into (3.7), we obtain

(«...) =.' y'ff'II+-[I (F".'), I'-(F'."),(F".'),]
(3.1)Xz' =-,' y'b'QFi"' (3IizI z &iI)-r St +ENMR iy m (3.3}

where, as in the laboratory frame,

F&J =r~„(1—3cosz8, )

o = (1/Z) exp (- [(5Cz„),+ 5Cz„]/&8],

where

(3.3)

Z = (2I+ 1) (3.4)

The assumption of a spin temperature prior to an
encounter (i.e. , before the vacancy causes the
first jump in the surroundings of spin i) is equiva-
lent with the assumption of the following density
matrix of the spin system:

In the rest of this section the quantities (F i ')i and

(Fi„'}&will be specified in terms of the encounter
model.

Analogously to Ref. 4, B,(r, r ) is defined as
the probability that spin m, before the encounter
at r relative to spin i, will be located at the lattice
site r after the encounter, if the first jump of i
was to the nearest-neighbor site g in the crystal
lattice (g = 1, . . . , G; G is the number of nearest
neighbors). Similarly, the probabilities Bz(0, r, )
describe to possible jumps of spin i during the en-
counter.

Then we may write
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(S.9) r —r» =r +r- . (3. 11)

Pp &0)) (y (o)) p&o&(po)

m

x—Q g p B,(p, r&)B,(r~, r )E&&o&(r„—r, ) .
G g 1 p»

(S.10)

ln E%. (3. 10) an average was taken over the G

nearest-neighboring positions in the crystal lat-
tice, from which the vancancy may cause the first
jump of spin i. The vector r —r» from i to m af-
ter the encounter may be the same discrete lattice
vector for several combinations of r and r». As
in Ref. 4, the vector r* of the effective relative
displacement of the two spina is defined by the
relationship

Let W, (r„,ro) denote the probability that the rela-
tive displacement due to the encounter is r*, pro-
vided r~ is the initial vector from i to m. As
shown in Ref. 4 [E&l. (4. l, ps,)],

W,(r, r ) =—g g B~(0, r&) B~(r, r„+r*+r&),
(3.12)

and from E&ls. (3.10}-(3.12), we find

T (E("),(F&"
&y =Q s'&"(r„)

xg W, (r~, r+) Z,&o&(r~+ r„') .
(3.13)

With these results the relaxation rate T,' of the
dipolar energy may be calculated. Inserting Eqs.
(3.13), (3.9), (3.8), (3.6), and (2. 5} into (2. 6),
we obtain

1 2 + I
~&o&(P } Io ~&&o&(r~)/pe W&(r~, ro) $ &o&(P +r+)

T, r~ I E&&o&(r~) I' ~ Z(0)+ Z(~r)

Analogously to SA, we write

1/T, = 2(a p}/7. , -
and from E&l. (2. 4),

1/T„= [a'„/(Z', + a'„}]2(s P)/7—,

with

(3.14)

(3.15)

(3.16)

~(0),0 a (3.17)

Z(P) + Z(ro ) I &m (((

N re

The local field HJ.p in the rotating frame may be calculated from the relationship

(3.18)

(3.19)H =- —,
'

y f& I(I+1)g
I

F' '(r ) I

E&luations (S.16)-(3.18) describe the relaxation process resulting from a randomly migrating point defect
with a mean time of stay at a lattice site 7'&, which is small compared with 7'3, so that correlation effects
have to be taken into account. In Sec. VIE the quantities a and P will be evaluated numerically from Eqs.
(S.17) and (3.18) for diffusion via monovacancies.

IV. COMPARISON WITH RESULTS OF SA

As mentioned in Sec. I, a, spin temperature is
established between successive vacancy jumps if
To'.-& r,, «r (low-temperature region), and the cor-
relation of successive jumps of a nucleus as well
as the correlation of the jumps of different nuclei
(so-called pair correlation) does not affect the re-

I

laxation process.
In terms of the encounter model described above

this situation may be treated as the limit in which
the "encounter" consists of a single vacancy jump
only. The unimportance of pair correlations is
equivalent with assuming

B,(r~, r )=5o, oL (4. 1)
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Z(r„) =0, (4. 2)

& (o, r ) = (1/G) 6,
In the calculation of the energy change per vacancy
jump in Eqs. (3.9}and (3.10}it has to be taken
into account that before and after the jump of spin
i a vacancy is on a nearest neighboring lattice site.
If the summations over all nuclei m are replaced
by summations over all lattice sites r the con-
tribution resulting from the vacant site has to be
subtracted. Thus we find, from Eqs. (3.9),
(3.10), (4. 1), and (4. 3),

(4 3)

(4. 4}

G

E] ~ Eg y= — Fg r Eg r —rg

(4 6)
Since for v„» T2' between two jumps of spin i a
new spin temperature is established [(i.e. , Z(0}
=1], we obtain, in analogy to Eq. (3.14),

where 5~,p denotes the Kronecker symbol (equals
1 for r =r, and 0 otherwise). Since the vacancy
initiates a jump of spin i from one of the g nearest-
neighboring sites in the. crystal, we have

Eq. (4. 7) for the following two effects: (i) Since
before the first jump of spin i in the encounter
typically one of its nearest neighbors is hot (i.e. ,
it is not at the common spin temperature), this
spin is assumed not to contribute to the relaxation
rate, and Eq. (4. 7) has to be reduced by a factor
of 1 —1/G.

Actually, the "trail of hot spins" left behind by
the vacancy includes more than only one spin. In
our model (Sec. III) this is accounted for by the
jumps of spins in the surroundings of spin i before
the first jump of i, which destroy the common spin
temperature. If B~(~r, r') denotes the probability
that a ..pin m, initially located at r, will sit at
r' when spin i jumps the first time, then the prob-
ability H~(m}, that spin m is hot at that moment,
may be calculated from the relationship

H~(m) = Q B (z~, r') .
1 m~@

(4. 9)

(ii) Correlation effects due to the random motion
of the vacancy were taken into account by SA by a.
further reduction of the relaxation rate (4. 7} by the
factor 1 —2/G, the first approximation for the spa-
tial correlation factor. In the encounter model
these correlations are accounted for by the prob-
abilities W, (r„, r*) [see Eq. (3.12)].

With these two corrections of Eq. (4. 7), the re-
sult of SA for the case 7„«T2' «7 is usually writ-
ten

1 Hzp 2(l —P) G —1 G —2

Tjp Hj + Hyp 7 {jr G
(4. 10)

or

—py't"(r )p '()r t—i))
go g"-1

(4. 6)

(4. 7)

The main difference between the relaxation rate
(3. 16) and the approximation (4. 10) is that in
(4. 10) the same orientation dependence of T„for
vacancy induced diffusion is predicted for both
cases, &„» T&' and ~„«T&', while the orientation
dependence of T„resulting from (3. 16) is sub-
stantially different from that predicted for low
temperatures [see Eqs. (4. 6)-(4.8) and Table I].
V. LIMITING CASE OF UNCORRELATED RANDOM-WALK

SELF-DIFFUSION

with

(4. 8)

Equations (4. 7) and (4. 8) were first derived by SA'
and Ailion and Ho (Ref. 7) under the assumption
that v, » T,"'.

Starting from Eqs. (4. 7) and (4. 8), SA pre-
sented a qualitative solution to the problem of va-
cancy-induced relaxation in the high-temperature
region (i.e. , for r„«Tz'«T). They corrected

High-field nuclear magnetic relaxation resulting
from random-walk self-diffusion in monoatomic
crystals was treated by Torrey and by the present
author. ' This model is not very realistic in that
it assumes jumps to nearest-neighbor lattice sites
without the presence of vacancies or interstitial
atoms. Nevertheless, random-walk diffusion is of
some theoretical interest, because it may be con-
sidered as a limiting case of correlated diffusion
mechanisms.

Similar to the case of vacancy-induced diffusion
in the low-temperature region described in See.
IV, we assume a spin temperature to be estab-
lished between successive jumps of the nuclei



10 EFFECT QF CORRELATED SELF-DIFFUSION ON THE. . .

TABLE I, Numerical values for single crystals and for polycrystalline samples for monovacancy diffusion in the high-
temperature region {present theory and approximation of Allion and Ho) and in the low-temperature region {Ailion and
Ho). '&he results for a random-walk diffusion model shown here may be obtained from the values published by Ailion
and Ho (Ref. 7) for monovacancy diffusion. [d=g'Ysgtf(f+1), g(z()=cube edge of a unit cell. l

Present model
[T„«T,'«T, see (7, 7))

Ailion and 1Io (Ref. 7}
[T„«T"'«T, see (4. 10})

Ailion and Ho (Ref 7) Random walk
[T„- T",', see Eq. (4. 7)] [7'»T2', see Eq. (5. 1)]

A in units of ao"' bcc
fcc

0.0911
O. 4719

(). 11VO

V. 6592
0. 1676
0. 8623

O. 1676
0. 9248

8 in units of a&"'
l)cc
fcc

0. 0726
V. 205H

(), V(i, &(j

V. 2.)(i9
0. 1000
0. 3363

O. 1440
0. 3832

))cc
[0.0911-O.O726f{e, ~}) [O. »OO-V. 0(;(f{8,~}] [O. 1676-O. 1OOOf(8, @)] [O. 1676+O. 144Of(e, e)]

a-P
[see Eq, (8.2)]

[O. 2324+ O. 1622f{8,~))

[O. 4719- 0. 20;~sf{8, ~)]

[1.0742 + 0. 4594f(8, 0)]

[0.2324 —V. 1(122f{8,6}]

[V. (i592 = V. ' 5(i9f{8,5}]

[0, 2324+ 0. 1622f(8, 4)] [0.2324+ 0, 1622f(8, $))

[O. 8623 - V. 3363f(e, e)] [O. 9248+ 0. 3832f(8, P)]

[1, 0742 V. 4. 94f(e, 0}] [1, 0742 0, 4, 94f(8, Q)] [l.0742+ 0.459+(8, @)]

(a —P )q di bcc
[see Sect. 8. 2) fcc

V. 411
V. 441

V. Q, &V

(). (&VV

V. (i86
V. 785

O. 778
0, 854

for H&»H~
T Lp

1p

&o
in units of-

H~)T'

[see (8. 3)]

hcc [0.0911 + V. 072(if(8, 6)] [O. 1100- 0, 06 (if{8,4}] [0. 1(i76 O. 1000f(8, 4)] [0, 1676+ 0. 1440f(8, 4)]

fcc [0.4719 0, 2058f(8, h}] [0, (i592 - 0. 2. (i!)f{e,0}] [0.8623 0, 33(i3f(8, 5)] [0.9248+ O. 3832f(8, g)]

for HI »H&p
1

T)p 8, o
@o

in units of ~
f T

(see Sec. VIII 8)

fcc

0, 1, 492

0, (i365

V, 1(i25

V. H(i47

O. 2476

1, 1313

0. 2828

l.2314

(7» T",'), Then the "encounter" is reduced to a
single jump. The only difference to the vacancy
mechanism is that now spin i has no vacancy next
to it. Thus we obtain in analogy to the derivation
of Eq. (4. 7),

1/ Tz = 2(l —p)/r, (5. 1)

P y(0) r0 y(0) Mr r y(0) Mr
2

(5.2)
A more realistic random-walk model of diffusion
than the one described in Refs. & and 4 would be
to assume the nuclei to migrate on a sublattice
only (so-called uncorrelated interstitial diffusion).
In the SA region the relation ra.te for this mech-
anism was calculated by Ailion and Ho. 7 In the
high-field region this mechanism has not yet been

taken into account.

VI. EXTRAPOLATION TO THE HIGH-FIELD CASE

As mentioned earlier the SA theory is restricted
to low fields, i.e. , to the case H1 ~ H». The rea-
son is that in high fields (H, » Hz, ,) the splitting of
the Zeeman levels becomes large compared to the
local-field splitting, and a common spin tempera-
ture can no longer be established for the Zeeman
and the total dipolar system.

This difficulty may be overcome by the use of
perturbation theory for calculating high-field spin
lattice relaxation in the roatating frame. Recent-
ly, the influence of correlated self-defusion mech-
anisms on the high field T» was taken into account
by the present author. 4 For the low-temperature
asymptote of the Tt, minimum (i.e. , for (d,r» 1),
the following relationship was deduced for vacancy-
induced self -diffusion:

(5. 2)

=-, y'z I(l ~ )), I ) F, (r„)I' —z,"'( )p w(&, c)z,"&(r ))/[z(0) ~ z(r )). (
ip Q)gT

fit ~m

In Ref. 4 it was shown that (6. 1) includes Torrey's theory of random-walk diffusion' as a special case,
giving (for tu, r» 1)

G

z
='& Z (((") ~ I

Z)"(~d l'-zl."(~.) —I z)."(~.—,)),
1n c~i
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where g(=1 to G} denotes the nearest-neighbor sites in the lattice.
In the rest of this section it will be shown that (6. 1) and (6.2) may also be obtained from the results of

Secs. GI and V by means of a mo4fication for high fields.
The total rotating-frame Hamiltonian Xo„given by (3.1) may be regarded as a, sum of two terms (see,

e. g. , Ref. 5)

~0 ~0&0 ~o, n (6. 3}

where K&~ denotes that part of X& which commutes with the Zeeman Hamiltonian Xz, while X~'„" denotes
the noncommuting part. In high fields (H, » H~, ) the cross relaxation, by which the commuting Hamilto-
nians X~ and Xz„are coupled together, becomes very slow. Within a time interval which is short com-
pared to the cross-relaxation time T„sudden changes of X,„(resulting from nuclear or point-defect jumps)
are communicated to X~ (and thus to the bulk magnetization} only via the noncommuting part X,'", so that
for ~«T„a common spin temperature may only be established between the noncommuting Hamiltonians
Xg and Kz„. As shown by Ailion~ this effect may be taken into account by replacing H» by —,

' H» in Eq.
(2.4).

Thus we obtain from (3.16) for vacancy-induced self-diffusion in the high-field region (H, » H»):

I/T, p
= ,'(Hf p/Ho) —2(a-P)/v . (6.4)

(6. 5)

VII. APPLICATION TO CUBIC CRYSTALS

Inserting Hz, , from Eq. (3.19) into (6.4), and making use of the relationship u&, = yH„we obtain

= —'y'5'I(I+ I) Q I
F"'(rg

I

1P (dl 7'
eo

Substituting a and P as given by Eqs. (3.17) and (3.16) into (6. 5), we find Eq. (6. 1), the result obtained
from the application of perturbation theory.

Torrey's result (6. 2) is derived similarly: as shown in Sec. V, for random-walk self-diffusion we have
a = 1, and P is given by (5. 1). Inserting these quantities into Eq. (6.5), we obtain (6.2).

Inserting a, P, and Hz, , from Eqs. (3.17)-(3.19) into (3.16), we obtain

2 Za(f ~
+"'(r ) ~'-&"'(r )Z ' & (r, r*)+"'(r + r'))/(Z(0)+ Z(r )0

~j.n H" +gpo I E'"(r }I'

where the "reduced" field H j is defined by

4 y k f(I+I) ao HP =Hq .

(7. 1)

(7 2)

According to the procedure described in Ref. 4 for
the evaluation of lattice sums in cubic crystals,
we may write for the lattice sums governing Eq.
(7. 1),

Z I
~l'-'(".) I'=A" B.f(8, ~), (7.3}

Equation (7. 7) was deduced for vacancy-induced
diffusion in the high-temperature region (7.„«To'
«7). Similar relationships are obtained for other
diffusion mechanisms (see, e.g. , Secs. Ip and y
and Ref. 7}. Thus, we write for an arbitrary dif-
fusion mechanism

~ i z,"„'(P„)i'
Z(0) Z(P) =Ai+Af(8, 4), (7.4)

1 2 A+f(8, Q) B
T~p r HP+Ao+f(8, P) Bo

(V. 6)

with

Z(0) + Z(r~ )

=Ao+Bo ~ f(8 P) (?.5)

1 2 A, —Ao +f(8, Q) (B, —Bo)
Tip 7 HP+Ao+f(8, Q) Bo

(V. 7)

f(8, P) = (sin28) + sin'8 (sin2$) (7.6)
where the angles j9 and Q characterize the crys-
tallographic orientation of the field Ro (see Ref. 4).

Substituting (V. 3) to (V. 5) in (V. 1), we get

In the high-field limit we obtain from the results
of Sec. VI and from Eqs. (V. 3)-(V.5):

1 3 A+f(8, Q}B
7.'j p 2T

Inserting HP given by (V. 2} into (V. 9), we have

(V. 9)

T
=

6 oHo t&+f(8, 0) 4 . (7. 10)

Numerical values of A, B, Ao, and Bo, calculated
for the diffusion mechanisms treated in Secs. GI-
V, are listed in Sec. VIG.
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TABLE II. Prefactors governing the orientation dependence of T~~ fsee Eqs.
(7 ~ 3)-(7.7) ] for vacancy diffusion in the high-temperature region (in units of
ao, 2ao =cube edge of a unit cell) ~

bcc
lattic e

fcc
lattice

Ao

0 2324

1.0742pL

0.1622pL

0, 45 94IL

Ag

0.1291

0.5913

0.0789

0.2354

A2

0. 0380

0.1194

B2

0.0063

0. 0296

zlhese values are in agreement with those published by Ail ion and Ho (Ref. 7).
It has to be naiad that their values are presented in units of 16a06 ~

A+ Bf(8, 4 )
++Bpf (B, Q)

(8. 2)

Table I shows nume r ica1 values of A and B for the
diffusion models described in this paper . In addi-
tion to the single -crystal low - and high-field cases
[see Eqs. (8.1) and (V. 10)] Table I includes nu-
meric al values for polyc rystalline samp les which
were calculated according to the procedure de-
scribed in Sec. VIII B.

VIII. NUMERICAL RESULTS

In Ref. 4, numerical values of W, (r, re) and
Z(~r ) [see Eqs. (V. 4) and (V. 6)] were calculated
by means of the computer simulation of an encoun-
ter (so-called Monte Carlo method). Thus, the
relaxation rates (V. 7) and (7. 10) may be deter-
mined numerically

A. Single crystals

In this section the orientation dependence of Tgp

given for a low field by (V. 7) and for a high field
by (V. 10) is analyzed in some detail. Table II
shows the numerical values of the p ref actors A&

and Bp [see Eqs. (7.3)-(7.6) and Ref. 4].
For H, =0 we obtain from Eqs. (3.16) and (7.8),

1/ T,p
= 2(a -P)/p (8. 1)

with

2.5
Oo

The variation of (a -p) ' [see Eq. (8. 2)] for va-
cancy diffusion in the high-temperature region as
a function of 8 and P is shown in Fig. 1. To dem-
onstrate the strong increase of the orientation de-
pendence of T&, with increasing field H&, in Fig . 2
we have plotted T» for different values of H,' .

Another interesting effect on the orientation de-
pendence of T&, is expected as the temperature is
increased from the low-temperature region (v„
» Tz') to the high-temperature region (p „«Tz'
«7) ~ This effect is demonstrated in Fig. 3 for
both zero field and for the high-field limit for
= 0' and P = 46' (see also Table I). As we see from
Fig. 3 a variation of (II) between 0' and 45' has
diffe rent effects on the relaxation times in the two
regions: while in the low -te mpe rature region T»
should increase with increasing values of (h (for
a given angle 8), the opposite is expected in the
high-temperature region. This effect is particu-
larly strong for values of 8 close to 90' .

B. Polycrystalline samples

The re laxation behavior for po lyc rystalline sam-
ple s is obtained from the single crystal results by

2.0 = 0

7. 0
r. 5

e.o

S.0

P

1.0
gQ = 454

3.0

0 I I I

0 20o
I I I I I I I I I I I I I t

C0 50O e0 100 120 140 16K 1e0
8

FIG. 2 ~ Orientation dependence of T~~ for p = 0 and
different values of Hq [in units of Q; see Eq. (7.8)). Hf
is related to H~ by Eq. (7 ~ 2) (for typical values of y and
sp we obtain Hj pp 10 H( ).

0..5 I I I I I I I I I I I I

0 20 CO 50 80 100 120 1C0 16P 8 re0cp

FIG. 3. Temperature d epend enc e of the variation of
T~~ with the crystallographic orientation of the magnetic
field for H~ = 0 and H&» H~. Bottom: 1ow-temperature
region (~„»Q' ). Top: high-te mperature region
(vp«TV«v). (zero-field curves in units of $v; high-
field curves in arbitrary units) ~
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Mo
(M(e, el) = w T(ge))

y, sin8d8 de) ~ (8. 3)

I"general, , Eq. (8.3) does not describe a simple
exponential decay of (M(8, 4) )e, e [in Eq. (8 3) as-
sumed tp decay to zero]. It was shown in Ref. 4,

averaging the exponentially decaying magnetizations
M(8, P) in the individual crystallites over all ori-
entations of 8 and P, i.e. ,

however, that the deviations from an exponential,
characterized by the decay constant

1 1
Tg, (8, 4') e, e 4& e.o

(8. 6)
With f(8, P) given by (V. 6), we thus have

r

}
sin8d8dg,

(8.4)
are very small for spin-lattice relaxation and may
be neglected. Substituting Eq. (V. 8) into (8.4), we
obtain

1 2 1 "' "' [A+Bf(8, $)]sin8d8dg
Tlee, e T4v &8ao "e 0 H1+Ao+Bof(8&g)

2 1 ' ' [A+ B(sin28) + Bain 8(sin2$) ] sin8d8dp
&',~+Ao+ Bosin'28+ rosin 2Q sin 8

Integrating first with respect to Q, we get

1 2 8 1 A B sin8d8
Tie e, e T Be+2 H'1'+40 B e.o B o28 1 Bo 221+ „sin28 1+,o sin28+sin8}

Substituting cos8=x in Eq. (8. V) we obtain the following hyperelliptic integral for the relaxation rate:

1 2 I3 1 A B dx
T~ee, e r Bo 2 HP+Ao Bo g [(1+&)+(4t+6c)x+(4c —Vc)x —20' x+12@ x]

where

a=Be/(H, +A,) .

(8. 6}

(8. ?)

(8. 8)

(8.8)

So far we have not been able to solve the integral in Eq. (8. 8) analytically and thus, in analogy to the
results for single crystals [see (?.8}]to derive a linear dependence of (T„)e,e on H', (i.e. , on H, ). How-
ever, from the numerical integration of (8.8) for different values of H,' it was found that (T„),e is pro-
portional to HP even for very low fields (H,"=10» to 10», which typically corresponds to values of Ho [see
Eq. (V. 2)] from about 10 6 to 1 Gj. The values for polycrystalline samples listed in Table I were also
obtained from the numerical integration of Eq. (8. 8) (for H', =0 and Hf'»Ao).
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