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The theory of high-field nuclear-spin relaxation due to random-walk diffusion in monoatomic crystals
is extended to correlated diffusion mechanisms. It is predicted that the effect of the diffusion

mechanism on the relaxation times T„T„and T, can be observed in three different ways: (i) In
single crystals the relaxation times are shown to depend on the crystallographic orientation of the
magnetic field. %hereas on the low-temperature side of the T, minimum these anisotropies should

characterize the diffusion mechanism, they are expected to disappear on the high-temperature side. (ii)
Shape and width of the T, and T,p

minimum as a function of temperature are found to depend on
the diffusion mechanism —in both single crystals and polycrystalline samples. (iii) Assuming that in a
single crystal the decay of the transverse magnetization can be described by a single relaxation time T,
(usually true at temperatures above the T, minimum), deviations from the exponential decay, which

should be characteristic for a given diffusion mechanism, are predicted in polycrystalline samples. The
numerical results obtained for diffusion via monovacancies in bcc and fcc crystals are compared with

those obtained for the limiting case of random-walk diffusion. It is found that for these two
mechanisms the orientation dependences of the relaxation times are similar, but that considerable
differences in the shapes of the relaxation rates versus temperature should exist.

I. INTRODUCTION

In most monoatomic crystals diffusion results
from the migration of point defects (e. g. , vacan-
cies). Although these defects migrate randomly in
the crystal lattice, successive jumps of atoms
caused by the migration of these defects are in
general not indeyendent of each other, i.e. , they
are correlated.

For the study of diffusion by radioactive tracers
these correlations are well understood. Since
there we are concerned with the correlation of suc-
cessive jump directions only, we speak of "spatial
correlation. "

Although originating from the same physical ef-
fect, the influence of correlations between succes-
sive jumps on nuclear magaetic relaxation is more
complicated. Because in nuclear-magnetic-relax-
ation experiments there is an inherent time scale,
the so-called "temporal correlation" enters here
in addition to the spatial correlation. The tem-
poral correlation takes into account that successive
jumps of an atom caused by a randomly migrating
defect are bunched into groups.

A qualitative description of the influence of cor-
relations on the high-field nuclear magnetic relax-
ation was attempted by Eisenstadt and Redfield. '
The present author~ presented a quantitative treat-
ment of correlated diffusion mechanisms (so-called
"isotropic-vacancy model" ) based on Torrey's iso-
tropic random-walk model of diffusion. s This
treatment was unsatisfactory in two respects: (i)
The basic theory, i.e. , Torrey's random-walk
model in isotropic solids, does not take into ac-

count the discrete structure of the crystal lattice
in sufficient detail. As a consequence the theory
describing correlated diffusion mechanisms~ does
not allow for single-crystal effects and is hence
applicable to polycrystals only. (ii) The so-called
"pair correlation" was neglected. %hile the cor-
relations between the jumps of an individual spin
were allowed for, it was assumed that successive
jumps of two different spina (i.e. , of a "spin pair")
are not correlated with each other.

The purpose of the present paper is to remove
these two restrictions and to develop a theory of
nuclear spin relaxation by correlated diffusion
mechanisms in crystals taking proper account of
pair correlations.

Our starting point will be the theory of nuclear
spin relaxation due to random-walk diffusion in
crystals presented recently. This theory allows
for single crystal effects and avoids thus the first
restriction.

II. BASIC THEORY

The density-matrix method generally applied to
the calculation of the relaxation rates in the high-
field region as described, e.g. , by Abragam is
based on the applicability of perturbation theory.
Although this method is restricted to e.ncorrelated
relative motions of the nuclei it can easily be ex-
tended to include correlated relative motions, pro-
vided the correlation functions 0"'(t) are defined
as
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E& = v&3 sin8& cos8& e +&~

y'2' = g 3 sin~8jm

pffft
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(2. 2b)

(2. 2c)

Here y, , 8, , and y, are the spherical coordi-
nates of the vector r, from spin i to spin m in a
coordinate system with the strong external mag-
netic field Ho parallel to the z axis. (For details
see, e. g. , Ref. 4. )

With definition (2. 1), the equations for the relax-
ation rates 1/T„1/ Tl, and 1/T„can be written
(see, e. g. , Ref. 4) in terms of the spectral density
functions

2(I)(~) —2 J[ G(c)(f) ekklt df (2. 3)

for both correlated and uncorrelated relative mo-
tions of the nuclei.

In order to introduce the microscopic features
of the diffusion mechanism the time average in Eq.
(2. 1) is replaced by an ensemble average:

At t = 0, let spin m sit on the lattice site ro and spin
i on r~~ relative to a common origin (see Fig. 1). The
correlation of the jumps of m withthoseof i is as-
sumed to be a function of the vector r —r, from spin i
to spin yn. During atime interval t both spins may
jump, say, spin m to lattice site r, spin i to r, .
If r denotes the effective change of the initial rela-
tive vector ro —r~ during the interval t, the vector
from i to m at time f, is given by

where N is the number of nuclei in the crystal, and

the geometrical functions F~P'(f) are defined as
(see, e. g. , Ref. 5}

(2. 2a)

0
Pm

-o -or =r —r&+r . (2. 4)

Defining P(ro —r~„r, t) as the probability that the
change of the relative vector r —ro (at f= 0) during
time f, is equal to r, we may write for the correla-
tion function

G(a) (f) Q Q F(a) (ro r0)1

%0 ~0

III. ENCOUNTER MODEL

FIG. 2. Lattice plane of a primitive cubic lattice.
Spin i is located at the origin, spin m at ~r~. The rela-
tive displacement of these two spins after the encounter
may be characterized by the vector r~~ (see also Sec. IVB).
g denotes the nearest neighboring site, from which the
vacancy initiates the first jump of spin i.

0 0

0Ii

0 0

FIG. 1. Lattice plane of a primitive cubic lattice.
Before the encounter spin i is located at the lattice site
~r& relative to a common origin, spin m at ~r~. The sites
of i and m after the encounter are denoted by r& and r~,
their displacement vectors by br&o and br~.

In this section we introduce a model for corre-
lated diffusion mechanisms which allows to replace
the double sum in Eq. (2. 5) by a single summation.

Let us consider a single vacancy entering the
surroundings of the two spine i and m (indicated in
Fig. 1). As the vacancy walks randomly through
this region some nuclei will jump once or repeat-
edly; others will not. The result is a geometrical
rearrangement of the atoms. Let us assume that i
is the only spin about which we know for sure that
it jumped at least once during the rearrangement.
Any other nucleus in the neighborhood of spin i may
have jumped with a certain conditional probability.
Since these jumps were caused by the same vacancy
they are correlated with the jumps of spin i. As
first suggested by Eisenstadt and Redfield, ' the
entire rearrangement is called an "encounter" of
spin i with the vacancy. An encounter thus consists
of a number of relative jumps of the atoms caused
by the same vacancy.

Since for the usual vacancy concentrations (typ-
ically about 10 4-10 ~) the rearrangements due to
different vacancies are independent of each other,
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QB,(r~, r )=1 (3. la)

the encounter of spin i described above may be
looked upon as representative for any rearrange-
ment due to any vacancy.

The statistical description of the encounter of

spin i (from now on assumed to be located at the
origin in Fig. 1, see Fig. 2) starts from the fact
that the entire rearrangement due to an encounter
depends on the nearest-neighbor site g (g = 1,
. . . , G; 6 is the number of nearest neighbors in
the crystal lattice) from which the vacancy jumps
into the origin and, thus, causes the first jump of
i. The probability that a spin m, originally at r,
mill be located at r after the encounter is denoted

by B~(r, r ). Similarly, the probabilities for spin
I are denoted by B (0, r, ) (see Fig. 2). Thus, we

have

(3.3)

where (»') denotes the mean square of the jump
distance.

The number of relative jumps of i and m in an
encounter of spin i is Z(0)+Z(ro). In an encounter
of m spin i jumps Z(- r ) times on the average.
Since Z(r ) = Z(- r ) we can write for the rate of

encounters of the tmo spins

(3. 4)

The analogy between a random-malk diffusion
mechanism and correlated diffusion mechanisms,
which is based on the fa,ct that the encounter of
spin i as described above is taken as representa-
tive of the encounters of any spin, allows us to
simplify Eq. (2. 5). Replacing the summation over
i by a multiplying factor N, we obtain

and

B (0, r,)=1, (3. lb) xPI"*(r~ +r)d'». (3. 5)

where the sums extend over all lattice points.
The mean number of correlated jumps of m dur-

ing the encounter of I, Z(ro), depends on g. Thus,
me write

(3.2)

where Z~(r ) denotes the number of jumps of m If

the initial jump of i ends on the nearest neighbor
si.te g. The mean number of jumps of spin i during
an encounter is denoted by Z(0).

The quantities B~(r, r ) and Z(r ) (including
r~ =0) defined above as averages over a great num-

ber of encounters are the only parameters entering
into the statistical description of an encounter.
They must be calculated numerically for a given
diffusion mechanism.

As mentioned above, for small vacancy concen-
trations different encounters are independent of

each other. Therefore, the relative displacement
of i and m due to a random sequence of encounters
with different vacancies may be determined simi-
larly as in the random-malk model of diffusion,
which deals with a random sequence of individual

jumps to nearest-neighbor sites. The only differ-
ence is that the "random walk of encounters" al-
lows the individual displacernents per encounter to
be different from the vectors to the nearest neigh-
bor sites and to consist of more than only one jump.

The mean tj.me v „„„between two encounters
must be distingui. shed from the mean time 7 of stay
of an atom at a lattice site, which is defined via the
coefficient of self-diffusion 9 D by the Einstein
relation

This correlation function is formally identical with
that obtained in Ref. 4 for random-walk diffusion.
The characteristics of a given diffusion mechanism
enter into the probabilities P(r, r, f)

IU. RECURSIUE CALCULATION OF SPECTRAL-
DENSITY FUNCTIONS

A. Basic relations

For the calculation of the probabilities P(ro, r, t)
for the spin pair i-m we first separate the time
scale from the geometrical properties by means of
the relation (see, e.g. , Refs. 4 and 3)

(4. 1)

P,(r, r) denotes the conditional probability that
after s encounters the vector from i to rn is r +r
if it was r at f= 0. w, (f, '„' T)Mdaenotes the prob-
ability that s encounters occur during the time in-
terval t. The dependence of 7'„'„'„on s originates
from the fact that the vector from i to I (which is
a measure for the degree of correlation of the
jumps of m with those of I) changes with time.
Thus, both the mean number of relative jumps per
encounter and TN~ [see Eq. (3. 4)] vary from en-
counter to encounter.

If g„"~denotes the mean number of relative
jumps of i and m averaged arithmetically over s
encounters, we may define in analogy to Eq. (3. 4),

(4. 2)

For the usual vacancy concentrations (see Sec. III)
the mean time betmeen two encounters is long com-
pared with the time interval, during which the va-
cancy rearranges the surroundings of spin i.
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Therefore, we may use a Poisson distribution for
s(f~ TsMR):

() 1 I, I;
us(f& TsMR)

) &g) e p (s)
~NMR ~NMR

(4. 3)

From Eq. (4. 3) we may calculate the probability
that no encounter occurs in time g by means of the
relation

0{ ~ s'Ma) = ~~( ~ N'Ma) ~

$s
(4. 4)

P,(r~, r) =g W,(r', r')6(r - r') (4. 5)

Since the nuclei diffuse on a discrete crystal lat-
tice, the vector r is a discrete lattice vector after
an arbitrary number of encounters. Hence we may
write similarly as in Ref. 4,

W, (r~, r~) =gQ W, ,(ro, r~)W, (r~ +r*, r, ) .
r+ r& (4 ]I)

The vectors entering into Eq. (4. 11) are defined in
Fig. 3, which also shows that the double summation
over r~ and r, has to be performed under the re-
striction

r* = r*+r, .
Substituting Eq. (4. 12) into (4. 11), we obtain

W,(r, r~) =g W, ,{r„,r~) W, (ra + r~, r~ —r*) .
(4. 13)

What remains for the final evaluation of P(r, r, f)
from Eq. (4. 7) is the calculation of the number of
relative jumps SN"„'R averaged over s successive
encounters [see Eq. (4. 2)].

For s=1, we have

including ZN'MR= z{0)+z{r'). (4. 14)

Po(r, r) =6(r) . (4. 6)

W, (ro, r*) denotes the probability that after s en-
counters the vector from i to m is equal to r +r~,
where r~ may be any vector allowed by the crystal
structure.

Inserting Eqs. (4. 5) and (4. 6) into (4. 1), we get

P(r', r, f) = su, (f, T'„'„'a)6(r)

The total number of relative jumps in the first
(s- 1) encounters is (from the definition of Z~~a)
equal to (s- l)Z~~„". The number of relative jumps
in the next encounter (number s) is equal to Z(0)
+Z(r +r~), provided the vector from i to m is ro
+r~ after s-1 encounters. Then we may write

Z&MR= — S —1 ZN"MR'+Z 0

se, g, T „'„R 5', r, r~ 5 r —r~

(4. V)

8. Recursive calculation of the quantities
depending on diffusion mechanism

The probabilities W, (ro, r*) may be related to the
probabilities 8~(0, r, ) and 8 (ro, r ) defined in Sec.
III. Averaging over all nearest-neighbor positions
from which the vacancy may jump into the origin,
we find

w, (r„', r')= —gQ Q B,(0, i, )a,(p, i ), (4. 8)
m

C t ~ ~ ~ t

where the double summation over r, and r is re-
stricted by the relation (see Fig. 2)

Since in every encounter one of the two spins of the
couple jumps Z(0) times on the average, we may
write for Z~N'„'R:

(4. 16)

where an equation for h(s) may be derived by com-
parison of Eq. (4. 16) with (4. 15), e. g. ,

a(I) = Z(r')/Z(0} .

n(s) is a measure of the pair correlation, i. e. , a

ro+r+=r -r, .
Inserting Eq. (4. 9) into (4. 6), we get

(4. 9)
0

m

C

W, (ro, r~) = —g P 8 {0,r, )8,(ro, ro +r„"+r, ) .
(4. 10a)

It is obvious that the relationship

g W (r', r*)=1 (4. 10b)
e$

ttt

must hold for each vector r . Analogously to the
method described in Ref. 4 the probabilities W,(r,
r~) may be calculated from the recursion formula

FIG. 3. Before the first encounter spin i is located at
the origin, spin t~2 at r~. The relative displacernent vec-
tor after one encounter is denoted by r&, after s-1 en-
counters by r~, and after s encounters by r~~.
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measure for the motions of spin m induced in an
encounter of spin i. The influence of pair corre-
lations on the spectral density functions (deduced
in See. IV C) as a function of the initial vector ~r

or the number of encounters s may be studied in
terms of the variation of 4(s) with rO or s.

C. Calculation of the correlation functions

&.0=-,'TZ(0) . (4. 20)

t&(s) = t&(I) (4. 21)

into (4. 18), we obtain to a good approximation

Neglecting the change of the pair correlation with
the number of encounters, i.e. , substituting

&-„"„'„=~0[1 +n(s)],
with

(4. 19)

With the results of Sec. IV 8 we are now able to
calculate the correlation functions for correlated
relative motions of the spine. Inserting Eqs. (4. 3),
(4. 2), and (4. 16) into (4. 4), we obtain

"/"" e~'
s! [I+t&(s)]' I, I+a(s)

(4. 18)
where, making use of Eqs. (4. 16) and (4. 2), & NM'R

was replaced by

WO(t» TNMR) e p
TNMR

(4. 22)

Now, P(rO, r, t) may be calculated. From Eqs.
(4. 22) and (4. 7), we obtain

-o- t - "1 tP(r, r» t) = exp —
&, ) 5(r) + — (,)~NMR -s= ~ ~NMR

)&exp —
&,& P W,(r, r»)5(r-r*) .
NMR r» (4 23)

From Eqs. (4. 23) and (3. 5) we obtain, for the cor-
relation function,

G"'(t)=+~A'(r )~ exp —
&» +g P—, &, &

exp —
&,&

P&&"(r }HEI" (r +r*)w,(r, r»),
NMR s 1 fo ' NMR

m m m ( Lo (&»)'R

and from Eq. (2. 4)

»"'( ) —I; l»,'"=(r ) j,(( r„"„'„)+PI j(„"„')»',",(r )P»' (r ~ ))r(r', ")),
m

with (see Ref. 4)

2x 2x ~ „(s+1!
(I —tx)"' (I+2}"&~

))-"0
& 2 j

(4. 25)

(4. 26)

where x= &d& N'MR and K is the greatest integer c (s+1)/2. In Eqs. (4. 24) and (4. 25) it must not be forgotten
that rNM'R depends on r [see Eqs. (4. 19) and (4.47)]. Therefore, j,(&drNM)R) depends on r also.

The spectral density functions (4.25) describe the relaxation behavior due to a correlated diffusion mech-
anism in single crystals. Before we start with the numerical evaluation of 4")(&d) from Eq. (4. 25) we shall
compare the case of uneorrelated random-walk diffusion, contained in Eq. (4.25) as a limiting case, with
the results obtained recently.

V. SPECIAL CASE OF UNCORRELATED
RANDOM-WALK DIFFUSION

1
W, (r, r») —= W, (r») = —5,»;, (5.2)

Neglecting both pair correlations and the corre-
lation of successive jumps of spin i, the encounter
of spin i is reduced to a single jump of spin i to a
nearest-neighbor site.

We may then write

where r (g= 1, . . . , G) denotes the vectors from spin
i to the G nearest-neighboring sites in the crystal
lattice.

Similarly, we get, from Eq. (4. 11),

B~(0» r&) = (I/G)6»» (5. la) W, (r„', r*)-=W, (r») =—g W, ,(r»)5;»,;„; .
r 0]C

(5. 3)

and

(5. 1b)

where 5;;0 denotes the Kronecker symbol
which is 1 for ~r =r, and 0 otherwise). With
Eqs. (5.1) we obtain, from Eq. (4.8), 1/TNMR—= I/& NMR=2/& (5. 4)

For uncorrelated diffusion the number of encounters
per second is replaced by the number of relative
jumps per second. With Z„'M'R=1, we obtain, from
Eq. (4. 2),
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Substituting Eq. (5.4) and (5.3) into (4. 25), we get

8"'( ) =-'Z I"l.'(..)Z Z W,(')
the same values it is found from Eq. (4.2) and the
definitions of B"' and C~~ in Ref. 4 that for an ar-
bitrary value of the parameter &~ we have

x I,"'*(r~ + r*)j,((dT), (5. 5) p 7~((e)TNNR)B))e (S) = g 7~((dTNNR)C)ee (S) ~

with j,(x) given by Eq. (4. 21) with x= —,'urT (inde-
pendent of ~r }. Equations (5. 5) and (5. 3) are iden-
tical with the relations derived for random walk
diffusion in single crystals. As shown in Ref. 4,
Eq. (5. 5) is in agreement with the relation found by
Torrey~based on the theory of random flights.

UI. HO% TO DISTINGUISH BETWEEN

DIFFERENT DIFFUSION MECHANISMS

The encounter concept is not limited to a mono-
vacancy mechanism but may as well be appli. ed to
any kind of rearrangement due to randomly mi-
grating point defects, like, e. g. , for the divacancy,
the interstitial, or the interstitialcy mechanism of
self-diffusion. As shown in Sec. V, even a random-
walk mechanism may be understood in terms of the
encounter model. Equation (4. 25) is thus valid for
any point-defect mechanism of self-diffusion in
crystals, which is characteri. zed by the quantities
2'(r~) and W, (r', re').

A. Single crystals

In order to see the effect of different diffusion
mechanisms on the spectral density functions
8 "(&u), Eq. (4. 25) is rewritten using the proce-
dure for the evaluation of lattice sums described
in Ref. 4. There it was found that

Re(E,"'(r )E,"' (r })=A"'+B"'sin 28.
+C'"sin 8sin 2p, (6.1)

where A"', B"', and C~" a,re functions of the
crystallographic coordinates of the vectors r and
r, and the angles 8 and P characterize the crys-
tallographic orientation of the magnetic field (see
Ref. 4). Substituting Eq. (6.1) into (4. 25), we get

8I'„' = —Z P j,((e)T"' )[A„"'(s)+B"'(s)sin'28( I
CtP

+ C ~'(s) sin48sins &], (6.2)

with

f(8, $) =sin 28+sin 8sin Q . (6.6)

Analogously to the procedure described in Ref. 4,
we obtain, for ~v'» I,

(,) 4 (('g [A"'(0) -A"'(1)]
zW

, (e, ,)P '-"'")
-,P'"") (e.e)

tlat

and for co7« I,

8((e) T Q Ae)e (S) BNNR
S.f(e, e)gg )).'"(e)2."'). (e e)

The spectral density functions (6.5) enable us to
calculate the high-field relaxation rates from the
relationships

1/T&=+& y K I(I+1)[8 ((e)0)+ 8 (2(e)0)] e

1/T2 ——$y I I(I+1)
x[8' '(0)+108")((oo)+8 )(2(e)0)], (6.9b)

1/T, e
——+() y ~If I(I+ 1)

x[8"'(hu&)+108"'(~,)+ 8")(2~,)] . (6.9c)

(6.9a)

Here (do=yHO and (e), =yH, . The restriction of (6.9)
to high fields requires the conditions Hp» HT (in
the laboratory frame) or H, » HT, , (in the rotating
frame) to hold, where H~ and H~, denote the local
fields in the laboratory and rotating frame, re-
spectively. H& denotes the amplitude of the rf field
rotating around the direction of Ao.

(6 4)
Substituting Eq. (6.4) into (6.2), we get

j.(~TN'~)[A."'(s)+f(8, 4 )B."'(s)],
ff B

(6.5)
where

A"'(s) = g W,(r, r ")A"', (6.3a) L Orientation dependence of rehucation times

(6.3c)

B ' (s) = Z W,(r, r *„)B~), (6.3b)
pg

C."'(s)= QW, (r'. , r „')C"' .
~fft

Taking into account that for all pre-spins located on
the same atomic shell around spin i S~4' accepts

For a given value of ~7 the dependence of the
relaxation rates (6. 9) on the crystallographic
orientation of the magnetic field is determined by
the factors A(')(s} and B"'(s},which depend on the
diffusion mechanism [see Eqs. (6.3)].

In the following three temperature ranges, the
orientation dependence can be readily obtained from
Eqs. (6. 7} to (6.9}:
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(ij rood «1, ~,v «1 ("high temperature region, "
i.e. , high-temperature side of the T,-minimum):

=xy t I{i+1)rgb [A '(s)+AN'(ej]SN~'u'„,
1 Ill

(8.10a)

From Eels. (6.10a)-(6.10c) the relaxation times
are predicted to be independent of the crystal-
lographic orientation of the magnetic field. In ad-
dition, in this temperature range Tz, is expected
to be equal to TI . So far, the more general re-
lationship

=-'w' ll'tv+1} v gQ [kg'{s)
Tg TI ~ Tgy (6.11)

*.y'-a'f{f +1) rgb [Ae'(s)
T1~ SI

+10A u'(s) +A u'(e) jXg„. (6.10c)

+ 10A„u'(s) +A u'(s) jZ'g„, (6.10b) could not be derived analytically in terms of the
encounter concept for arbitrary diffusion mecha-
nism. NumericaBy, however, Eg. (6.11) was
found to be vaM for a random-walk mechanism of
diffusion4 and for diffusion via single vacancies
(see Sec. VIIB).

{ii) &go~ » 1, &y, ~ «1 ("medium-temperature region, " i.e. , low-temperature side of the T, minimum,
high-temperature side of the T„minimum):

1 g 4SI 1 1 4A~ '(0) -4A~u (I) +Aui(0) -As'(1)
9 x 3[Bc'(0)-Bu'(I)]

ty'a'rtt+=s) I+I,wP(~)zu, +As, y)I I s."'(~)z~|",),
=sy g I(I+1} l(QZ As'(e) S'"„+f(8,$) Q Q&+'(8) Z"'

1f) g tll S Sg

(6.13c)

(6.13)

As we see from these equations Tc TI and Tao are expected to be orientation dependent for medium
temperatures, and T&, shouM be identical with TI.

(iii) &d'or»1, a&|i»1("low-temperature region, " i.e. , low-temperature side of the Ti, minimum}: In
this region T, and TI are still given by Eqs. {8.13a) and (8. 12b). For T„, we obtain

*piiy( g)
1 (I AP(0)-Az(1)

(g y&p
8 (D)N-Bf'(0)

According to Etls. (8.Iga), (8.Igb), and (8.13), different orientation dependences are predicted for the
three relaeLtion times at low temperatures.

2. Ttmpetetgre or gfefd grpendcnee ofmR~etfon Nmes

For a given value of f(8, p) the spectral, density
functions (6.5) and hence the relsxINon rates (8.9)
vary wi,th the values of the parameter rue as a func-
tion of the diffusion mechanism. ExperimentaQy,
a variation of ~r can be accomplished by both a
variation of &o (i.e. , the amplitude of the magnetic
field) and a variation of r (i.e. , of the tempera-
ture). In principle, both types of experiments
provide the same amount of information on the dif-
fusion mechanism.

Of special interest are the shape and the width
of the Ti or Ti, minimum (plotted versus the
temperature) as a function of the diffusion mecha-
nism and the crystallographic orientation of the
magnetic field: no orient~on dependence for high
temperatures, pronounced differences in the
orientationdependencesof Tx p TI p and Tx~ for
temperatures (see Sec. VI A I).

S. Folycrys|ilhN)e samples

&M~~(f j&e, o =Mol exp[ —t&g'(9, 4)&e, ol

~ I (-1)"—5(n)), (5.14)
nf

with
6( ) =&g(8, 4»l, ~ -&g "(8.0)&;.. (6. 15)

In a polycrys~lg~ne sample the relamng magne-
tisation M,,i(t) of each individual crystallite decays
towards its equilibrium value with a relmcation
time T,(8, P) determined by its orientation rela-
tive to the magnetic field. Since generally the
sum of exponentials is no exponential, in the gen-
eral case simple exponential decays cannot be ex-
pected in polycrystalline samples. In Ref. 4 it was
found that the magnetisation then decays according
to the relationship
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TABLE I. Number of jumps Z(~r~) of spins located in the shell number z around spin i (z = 0);
(x~p, y, z~) denotes the permutations of the crystallographic coordinates of the atoms in shell
number z (2go is the cube edge of a unit cell; n is the number of atoms in shell z).

bcc lattice fcc lattice

z n

0 1 {0, 0, 0)

8

6 (O, 0~2)
(0, + 2, + 2)

4 24 (+1,+1,+3)
5 8 &+2, +2, +2)
6 6 &o, 0~4)
7 ~ (+]., + 3, + 3)
8 24 (0+ 2+ 4)
9 24 (+2, +2, +4)

r„'

CFp

0

W3

~19

2&5

2&6

&(IrP I )

1.34

0. 50

0.40

0.33

0.32

0.26

0.25

0.23

0.20

IrP I

QpZ tl

0 1

1 12

2 6

(o, o, o}

&o,.1,+1)
0, ~2)
1,+ 2) W6

2, +2) 2'
1,+ 3) ~10

2%3

2, + 3) ~14

3 24 {+1,+

(o, +4 12

5 24 &o, +

(0, 0, + 4)

6 8

7 38 (+1,+

&(I~r~ I)

1.31

0.59

0.41

0. 31

O. 27

0.25

0.22

0.20

g(8, P) denotes the relaxation rates 1/T„ 1/Tz, or
1/T„, respectively, and the brackets ( ) are an
abbreviation for an average over the solid angle,
e.g. ,

+2T

(g(e, y))...= —
l~ g(e, y) smededy

&~0 ~4=0
(6.16)

1. Deviations from exponential decays

In this section the effect of the nonexponential
part of Eq. (6. 14}on the total decay of M„,(f ) will
be studied in more detail. Since the relaxation
rates depend on temperature (see Sec. VIA), so

I/T-i(e, 0)=g(e, 0) = o~, (6. 17)

where o. is a constant which depends on the diffu-
sion mechanism only. [o may be determined from

do g(e, Q) and 6(n), i.e. , the relative importance
of the nonexponential part of Eq. (6. 14}varies with
temperature. Similarly, as in Sec. VIA 1, we are
going to study this effect in the following three
temperature ranges:

(i) &sod«1, ur, 7 «1 (high temperatures): Ac-
cording to (6.10}the three relaxation rates in this
region are independent of the orientation of the
magnetic field. Their temperature dependences
may be written

TABLE II. Values of W&(r~, r~~) (which are greater than 1%) for one nearest neighbor of spin i(located at r~p).

~p ~x $~ zz~

0. , 1,1)

bcc lattice

(o, o, o}
(-1,-1,-1)
(-1,-1, 1)

1,—1)
( 1, 1, 1)

{1,-1,-1)
{1,-1,
(1, 1, —1)
{1, 1, 1)
(o, o,
(o, -2, o)
(2, o, o)
(o, 2, o)
(o, o, -2)

(2, o, o)
(-2, o, -2)

(0, -2, -2)
(-2, -2, o)

11.8
7.7
7.4

7.6
7.5
7.1
7.5
7.2
1, 5
3.4
1.6
1.7
3.3
3.0
2. 2
2.3
2. 3

(1, 1,0)

fcc lattice

(o, o, o)
{-1, o, -1)
(-1, 1, 0)

(o,
(-1,-1, o)
(-1, 0, 1)

(o, -1,-1)
(0, 1, 1)
(3. , 0, —1)
(1, 1, 0)
(0, —1, 1)
(1, —1, o)
(1, 0, 1)

( 2, o, o)
(o, -2, o)

(-2, —1, 1)
(-1,-2, —1)
(-1,-2, 1)

8.1
6. 2

5. 6
5.8
5. 5
5.9
5. 9
5.9
6. 0
5.4
5. 8
5. 6
5. 8

1.8

1.8
1.2
1.3
1.3
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TABLE III. Lattice sums for s= 0 and s=1 in units of
a+0 (200 is the cube edge of a unit cell); see, e. g. , Eqs.
(6.7) and (6.8).

TABLE V. Orientation dependence of the relaxation
times on the low-temperature side of the Ti minimum.
[a =gy4K I{(+1), end f (8, p) is given by Eq. {6.6); eee
Eqs. (6. 12) and (6. 13) and Table IV].

0
0 1

2

+A
"&(s)

~ z„g
0. 1291
0. 0392
0. 1212

bcc
8(')(s)

%2)z NMR

0.0789
0. 0088
0. 0088

lattice

g A (s) ZNV

Q. 4200
0.1433
0 ~ 4271

(s) z„'g

0. 3315
—0. 0368

0. 0368

( 'OT - ~ E, {A)i T && 1

bcc lattice

('OT» E, eiT&~1

[0.1915+ 0. 0939 f(e, (t))] —',
an

[0. ()228+ O. 0182 f(e, (t))]
1 Tap

0. 1107
0.0249
0.0873

fcc lattice

0 0. 0380 0. 0063
1 1 0. 0079 —0.0007

2 0. 0285 0. 0007

0. 0272
—0. 0030

0. 0030

1

T2

E

Ti

[0.1915+0. 0939 f(&, d))] ~QT

"O

[0.»79- 0. 0~4,~ f(t), *)l ('{)Tao

s q

0
0 1

2

A~~'(s)

Q. 5913
0 ~ 1509
0.4994

g ~c )(s)
z~f

0.2354
0. 0262
0. 0262

gA (s) Zw'Ma,

1.9629
0 ~ 5255
1.7040

(s) zN~MR

0. 8938
—0. 0993

0. 0993

mn7» E, { 'i T « 1

fcc lattice

{ 7»1 td T»E0

1 GT
[P. 7526+ 0.2624 f(e, P)] ~

Tip an
[0.1180+0.0515 f(&, (t))]

zi Tap

0 0. 1194 0. 0296
1 1 0. 0264 —0.0033

2 0. 0921 0. 0033

0. 3180
0.0779
0.2598

0. 1139
—0. 0126

0. 0126

[0.7526 )- 0. 2624 f(~, 6)] ~an

[0.9056 —0, 0687 f(8, {t))]
20 Tao

comparison of Eqs. (6.1V) and (6.10).]
From Eqs. (6.17) and (6. 15), we find

5(n) =0 (6.16)

determined from the comparison of Eqs. (6. 20)
and (6. 12a). Inserting Eq. (6. 20) into (6. 15), we

get
for arbitrary n, and with Eq. (6.14),

&Mp~g(t ))s e ™pexp[ —
t&g (8, y))s„]. (6. 19)

1/T, -=g(e, 0)=,' [&,+ ~, f((), 4)],
(d p7

(6. 20)

where n1, p» and y& are constants which can be

Equation (6. 19) predicts simple exponential relax-
ation functions for polycrystals at high tempera-
ture, with the relaxation times &I/T, )s,)„&1/Ts)s,„
and &I/T&, )s, s, respectively.

(ii) &ger» 1, &u&7'« I (medium temperatures):
For the spin-lattice relaxation rate we can write
[see Eq. (6. 12a)]

&n
5(n) =~„~ [&&&+ ref(e, 4))s, e —&0)g+ ygf (8, 0))"&s,s],

(6.21)
and from Eq. (6.14),

Q1E
(M (t),, =M, „exp —,(P, ~ y, f(s, 4)),, )()007

+g( 1) —'" '("'„, (6. 22)
n-2 g' Q)P T

where C, (n) is constant for a given value of n and

Ms(t) denotes the magnetization parallel to Hs.
Analogously to the derivation of Eq. (6. 22), we

obtain for the magnetization M, perpendicular to
He (which decays to zero),

TABLE IV. Prefactors determining the orientation dependences of the spectral density
functions and of the relaxation times for ~~&&1 [see Eqs. (6. 7), (6. 12), and (6. 13)] and for
~v&&1 [See Eqs. {6.8) and (6. 10)] in units of a&+.

g (a)(0) g (a)(1)

~mam
-(i )

bcc lattice

Z4" 25
8"'{s)z(')

Sn N

0. 0911
0. 0313
0. 0927

0. 0726
—0. 0081

0. 0081

0. 7658
0.2112
0. 6782

0. 3756
—0. 0417

0. 0417

fcc lattice

~sam m zgs
20

g gA"'(s) zN'Me
snp m

20

g g B"'(s) z„"Me
snp m

0.4719
0. 1245
0.4073

0.2058
—0. 0229

0. 0229

3.0103
0 ~ 7301
2. 4613

1.0507
—0. 1167

0. 11.67
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2.4

2.2

2.0

1.8

1.6

1.4

I I I I I I I I I I I I I12~ W

0 20 40 50 80 Me 120 140 160 180—8(deg)

FIG. 4. Variationof T&~ for fdov»1 and +&a»1 between
8 = 0 and 8 = 180' for different values of P for abcc lattice in
arbitrary units fsee Eq. (6. 13) and Table V].

suit in the exponential part of M„(f) to increase
relative to the nonexponential terms, while no ef-
fect should be observed in the decay of M, (t) [see
E(ls. (6. 22) and (6.23}].

This suggests a new method to determine diffu-
sion mechanisms in polycrystalline samples: As-
suming that a simple exponential decay of Me. (&) is
observed in a single crystal at temperatures below
the T, minimum, deviations from this simple be-
havior, which are characteristic for the diffusion
mechanism, are predicted for polycrystalline sam-
ples from E(l. (6.23).

Relationships similar to E(ls. (6. 22) and (6. 23)
can easily be derived for the Tj, decay on both
sides of the T&, minimum. It can be shown that the
deviations from a simple exponential decay are not
as significant as in the Tz decay discussed above.

2. Shape of the T& and T» minimum

~ E(-t)"—(I(tt)t'). (5. 2e)
nI

For decreasing temperature (increasing values of
&or) the exponential in E(l. (6.22} increases, while
the individual terms of the nonexponential part de-
crease very fast. The opposite is true in Eq.
(6.23): with decreasing temperature the nonex-
ponential part increases while the exponential part
decreases. %e may thus conclude that the lower
the temperature the greater are the deviations of
the Tz decay from a simple exponential and the
smaQer are the deviations in the T, decay. This
point of view is also supported by the dependence
of Mt((t) and Mj(t) on (uo. increasing (do should re-

In polycrystalline samples the effect of the crys-
tallographic orientation of the magnetic field on the
shape of the T, or T» minimum versus tempera-
ture (as discussed in Sec. VIAL) is averaged out.
Nevertheless, there is a significant effect of the
diffusion mechanism on the symmetry properties
and the width of these minima. This can be seen
as following.

Let us assume that the exponential pa,rt is dom-
inant in the relaxation equations describing the de-
cay of nonequilibrium magnetimations, which were
derived in Sec. VIS 1. Then we can write

(et„,(t)), = tee(- ttte( , ) ) . (8.2e)1

('el e 8 I)

The averaged relaxation rates (1/T„l(e, $}}I)I, can

0.06

0.04-
s=4

0.02-

-0.02-

FIG. 5. Individual terms
of the summation over s
in Eq. (6.26) for s =1 to
s=6 in units of a() (d for a
bcc-lattice (2u() is the cube
edge of a unit cell).

-0.04-

-0.06
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0.4

0.3

0.2

0.1

FIG. 6. Curve (a) shows
the first term (s = 0) of the
sum (6.26) for q =0. Curve
(b) demonstrates tile effect
of terms 8 & 0 on the leading
term. The sum of {a) and

(b) is shown in curve c) (in
units of (d+goe).

0.0
2 lOgjo 4IK'

easily be derived from Eqs. (6.Qa}-(6.Qc) since
they may be written in terms of the averaged spec-
tral density functions (4@'(&u)), ~ . Using the re-
lationship~

(f(e, y}), , =O. 6,
we obtain, from Eq. (6.5),

(6.aS)

(g" ((u)), ~ =—Q j,(~~s'Mn) [A"'(s)+0.88"'(s)j .
1

SI S

(6.ae)
Ilmm Eq. (6.26) we see that the main effect of the
diffusion mechanism on the shape of 8"'(~) vs &o7'

is due to the relative shift on the +7 scale of the
individual terms in the summation over s. This is
a result of the change of the pair correlation (and
hence of the number of relative jumps per encount-
er) with the number s of encounters [see Eq. (4. 2}

and Sec. IV A). Also, the prefactors of the indi-
vidual terms in the summation over s depend on
the diffusion mechanism.

VH. NUMERICAL RESULTS FOR DIFFUSION VIA

SINGLE VACANCIES IN CUBIC CRYSTALS

As shown so far in this paper, the effect of a de-
fect diffusion mechanism on nuclear magnetic re-
laxation can be characterized by a few parameters,
which are related to the rearrangement resulting
from one encounter with the randomly migrating
defect. For diffusion via monovacaneies in Sec.
VGA we shall outline a method for the numerical
determination of the probabilities B~(r, r ) and
the number of correlated jumps Z(~r ), from which
the quantities W,(r, r ) and ~„"„'„and thus their
effect on the relaxation properties described in
Sec. VI can be calculated (Secs. VIIB and VII C).

(o)
log~ P(ay)

-0.5

- 1.0

-1.5

FIG. 7. logf(, g ' {ft)) vs
log&ocov. The upper limit
of the summation over s in

Eq. (6.26) was taken ass~
= 0, 1,6, and 25 {in units of
~4~%

-2.5
-2

Ogre cur
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0 lOglp 3(~)
(0)

d ~curio
1.0—

log@ cur

FIG. 8, First deriva-
tives of the curves shown
in Fig. 7.

A. Computer simulation of the random migration

of a vacancy

The so-called Monte Carlo method (see, e. g.
Ref. 6) allows the random migration of a vacancy
to be simulated on a computer equipped with a
procedure for the generation of random numbers.

The moment at which the vacancy has caused
the first jump of spin i to the nearest-neighbor
site g is denoted by t =0. Before this initial jump
of i (i.e. , for f'( 0), the vacancy ha.s approached
site g from, say, infinity and, on its way, has
caused jumps of spins m in the surroundings of i.
This situation for t & 0 is simulated by letting the
vacancy start its random walk at the lattice site g
with the restriction that no jump of spin i may be
caused (i.e. , the time scale for vacancy jumps is
reversed). The probabilities B,'(~r, r ) that spin
m has jumped from r„ to r before the first jump
of i are obtained from repreated simulation (e.g. ,
1000 times) of this restricted motion of the va-
cancy.

In the simulation for t & 0 the vacancy starts at
the origin (spin i now is located at site g), and the

vacancy may migrate through the crystal without
restrictions. Thus we obtain the probabilities
B,'(r', r ), that after the first jump of i spin m has
jumped from r to r, and B,(0, r, ) that spin i is
located at r, after the vacancy has left the sur-
roundings of i.

From the relationship

B (ro, r ) =P B (r, r ) B'(r, r„),
~m

we obtain the probability B,(r, r ) that a spin m

jumped from r„ to r, while the vacancy actually
rearranged the surroundings of spin i. Because of
symmetry reasons it is sufficient to determine
B,(~r„, r ) in the way described above for one spe-
cific value of g only, from which the probabilities
for the other values of g may be obtained by sim-
ple symmetry transformations.

Similarly, the mean number of jumps is obtained
from the simulation. For both the fcc and the bcc
lattice the jumps of about 140 atoms to more than
300 lattice sites around spin i were taken into ac-
count during the simulation of 1000 encounters.

TABLE VI. Relaxation times for polycrystalline samples on the low-temperature side and on the high-
temperature side of the T& minimum fcf =y y 5 If+1)J.

bcc lattice fcc lattice

~OT»]
(~&T» 1 VOT &&1

wpT &&1

apT &&1

~OT»1
u&T»1

0.2656 ~ap
0. 0374

(dg TOO
0.SS94 ~

Cp
0. 9625 ~

Crp
0. 1592

(d) TC p

3.1920 ~ap

0. 2656 ~
Cp

0. 1985
(dpTGp

0.S894 ~ap

0.8894 ~ao

0. 9628 ~
Cp

0. 8506 p 6
MOTCEO

3.1920 ~ap

3.1920 ~QT

QO
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(0)
(Og~o~(~)

—0.5

-10

—1.5

- 2.0

FIG. 9. Doubly logarith-
mic plot of /{0){~)vs e7
for a random-walk diffusion
mechanism {Ref. 4), va-
cancy diffusion {present
model), and for the so-
called isotropic vacancy
model {Ref. 3), in which
pair correlations were
neglected {in units of co a 0).

-2.5
-2 2 logIo ldt

Seven hundred vacancy jumps before the first jump
of i and the same number after it proved to be suf-
ficient to get satisfying accuracy of the values of
B,(r', r ).

With the numerical values of B,(r~, r ) and Z, (ro)
thus obtained, W, (r~, r*), and Z(ro) were deter-
mined from Eqs. (4. 10a) and (S. 2) for the fcc and
the bcc lattice. The relations (S. la), (S. lb), and
(4. 10b) were used to check the numerical values.

To get an idea of the magnitude of these quanti-
ties some selected values are listed in the Tables
I and II.

B. Numerical results for single crystals

Using the results of Sec. VIIA the probabilities
W, (r~, r*) and the time T„"„'„ca.n be calculated using
the procedure described in Sec. IV 8. In this way
the lattice sums in Eq. (6.7) and (6. 8) have been
evaluated for the fcc and the bcc lattice. The terms
for s=0 and s=l are shown in Table III.

In all summations over m the 1331 closest spins
were taken into account. The summation over s,
the number of encounters, was extended from s = 0
to s = 25 (bcc lattice) and to s „=20 (fcc lattice)
in order to obtain sufficient convergence on the
high-temperature side of the maxima of 8"'(u&).
The results obtained in this way are listed in Table
IV.

In Sec. VIA 1 it was derived that for tempera-
tures above the T, minimum (i.e. , for ~07 « I)
T„T„and T» are expected to be independent of
the orientation of Hp The orientation dependence
on the low-temperature side of the T, minimum
(~0~ » 1) is readily obtained from Table IV and the
relations (6. 12) and (6. IS). Thus, we get the val-
ues listed in Table V.

The typical dependence of the relaxation times
on the angles 8 and Q in the low-temperature region
(listed in Table V) is shown in Fig. 4, where T„ is

plotted versus 8 for different values of Q.
As we see from Fig. 4 the periodicity of T]p as a

function of 8 is —,'s for P = 0 (field in the x-z plane)
but s for P 4 0 [see also Eq. (6.6)].

In Sec. VIA 2 it was shown that the shape of the
T, or T]p minimum plotted versus temperature is a
function of the crystallographic orientation of the
magnetic field and of the diffusion mechanism. As
shown in Sec. VIB2 also in polycrystalljne samples
the second effect can be observed. Therefore the
shapes of the two minima will be studied in some
detail for polycrystalline samples only (Sec. VII C),
while the orientation dependence of these shapes is
not pursued in further detail in this paper.

C. Numerical results for polycrystalline samples

The deviations from exponential decays as de-
scribed in Sec. VI B 1 have not been studied numeri-
cally. In the present section we investigate the
shape of the intensity functions (6.26) versus ~7
in some detail. Therefore, we assume that ex-
perimentally exponential decays have been found
which are characterized by the relaxation rates
(I/T, )~,» (1/T2)e» or (I/T„)~ ~. According to
Sec. VI 8 2 these relaxation rates are linear com-
binations of the intensity functions (8"'(~)), ~.

In Fig. 5 the terms s = 1 to s = 6 of Eq. (6. 26)
have been plotted versus log, p(d7. The effect of all
terms s &0 on the leading term of Eq. (6. 26) is
shown in Fig. 6. In order to demonstrate the con-
vergence of the summation over s in (6. 26), in Fig.
7 the upper limit of the s sum has been varied from
s ~=0 to s ~=25.

The effect of higher-order s terms on the shape
of 8"'(&o) is best demonstrated by a plot of the first
derivatives of the curves shown in Fig. 7. From
Fig. 8 it is seen that the asymmetry of 8'0'(&u) with
respect to that value of u7 for which 8' '(&u) shows
a maximum is caused by the higher-order s terms.
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With these results for the spectral-density func-
tions and from the results of Sec. VIIB the relaxa-
ti.on rates for polycrystalline samples may be cal-
culated for a given value of &~. Table VI shows
the numerical values in the regions &o7» 1 and
~o~ «1 respectively.

VIII. DISCUSSION

The only model which has so far been available to
describe the orientation dependence of the high-field
relaxation rates is Torrey's random-walk modela

treated in Ref. 4. In Sec. V this model was shown

to be included in the present theory as the limiting
case of uncorrelated diffusion.

Although the absolute values of the relaxation
rates predicted for a monovacancy mechanism on
the one hand, and random-walk diffusion on the
other, differ considerably (20-30%), a comparison
of the variation of the relaxation rates with the
crystallographic orient, ation of the field Ho shows
only small differences between the two models (see
Ref. 4 and Sec. VIIB). Thus we find, e.g. , a vari-
ation of 49/& of I/Tz for vacancy diffusion instead
of 44/q for the random-walk model. The differ-
ences in I/T„are even smaller (60% instead of

62Vc)

Considerable differences, however, are pre-
dicted in the shapes of the spectral density func-
tions (and hence of the relaxation rates) as a func-
tion of log, o~T. Figure 9 shows plots of 8'0'(&u) for
the present model (monovacancies), the random
walk model of diffusion (Ref. 4), and the so-called
"isotropic-vacancy model"3 (see also Sec. I).

From Fig. 9 it is found that the width of the maxi-
mum of 8'0'(m) is substantially smaller for vacancy
diffusion than for random-walk diffusion. The rea-
son is that because of the pair correlations the in-
dividual s terms in Eg. (6. 26) are shifted relative
to one another on the (dv scale, since the number
of relative jumps per encounter varies with the
number of encounters of the two spins of a pair.
This narrowing effect on the shape of t"(~) de-
duced for random-walk diffusion seems to be a gen-
eral feature of correlated diffusion mechanisms.

ACKNOWLEDGMENTS

The author would like to thank Professor A.
Seeger, Dr. H. Mehrer, and Dr. E. Cavelius for
numerous helpful discussions.

~M. Eisenstadt and A. G. Bedfield, Phys. Bev. 132,
635 (1963).

H. C. Torrey, Phys. Rev. 92, 962 (1953).
3D. Wolf, Z. Naturforsch A 26, 1816 (1971).

4D. Wolf, J. Magn. Res. (to be published).
A. Abragam, The PrincipLes of NucLeax Magnetis~

(Clare@don. , Oxford, 1961).
6H. Mehrer, Z. Naturforsch. A 24, 358 (1969).


