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The cumulant expansion for spins developed previously is rearranged and extended up to an infinite

order in perturbation. A pair of spin-deviation lines is considered as a propagator and, as an additional

propagator appears and interacts with the original one, that part of the diagram is defined as a

self-energy correction. All cumulant corrections are decomposed and added to the corresponding

self-energy corrections, so that self-energy corrections and their cumulant corrections are automatically

calculated together exactly. The contribution of a self-energy correction to a diagram depends on the

geometry of the incoming and outgoing spin-deviation lines of the self-energy diagram, yielding a new

type of perturbation expansion. Numerical results suggest that the nature of the spin-spin correlation in

the spin-1/2 case is distinct from that in other cases and that spins behave like fermions rather than

bosons in this limit.

I. INTRODUCTION

Recent developments in neutron diffraction tech-
niques are providing much detailed information on
magnetic structure of a variety of materials. For
instance, a. new experiment on the spiral spin struc-
ture of Ho (Ref. 1) not only demonstrates a bunching
of the magnetic moments along the easy axes of the
hexagonal plane, but also suggests considerable
modulations of the moments, making them larger
along the easy directions than along the ha. rd direc-
tions. Such modulations may be explained only if
zero-point fluctuations of the moments are la, rger
along the hard axes than along the easy axes. Al-
though magnetic structures have been determined
mostly classically, more precise experiments are
revealing quantum deviations in many of them~ and
a more precise theory is needed to calculate them.

A simple spin-wave theory3 predicts the tem-
perature dependence of magnetization with rema, rk-
able accura, cy, but it tends to overestimate zero-
point deviations of the moments. 4 Exceptions are
the large zero-point deviations observed in the
quadratic-layer antiferromagnets K2NiF4, K~MnF4,
and Rb~MnF4, in good agreement with the values
predicted by spin-wave theory including the anisot-
ropy. However, it is not really clear why the good
agreement with spin-wave theory can be expected
for the zero-point deviations; the thermal variation
of magnetization depends on spin waves in the long-
wavelength limit and hence may be predicted ac-
curately by a simple spin-wave theory, whereas
zero-point deviations of magnetic moments involve
the spectrum more impartially and consequently de-
pend also on the short-wavelength region, where
the accuracy of the spin-wave approximation is
questionable.

It is therefore desirable to calculate the ground
state of an antiferromagnetic or spiral spin struc-
ture directly by perturbation expa. nsions. The dif-
ficulty involved in such an approach is that spins,
being neither bosons nor fermions, have compli-
cated commutation relations. Consequently, usual
many-body perturbation technique based on Wick's
theorem cannot be applied to spins immediately.

To avoid this difficulty, one might expand spin
operators in terms of boson operators, but the
method becomes similar to the spin-wave theory
and inherits its poo." convergence, as is demon-
strated in Davis's calculation. ' It is also difficult
to extend the calculation to higher orders owing to
the appearance of the kinematical interaction,
which is just a reflection of the complicated com-
mutation relations among the original spin opera-
tors. In the limit of spin--,', Stinchcombe et al. '
were able to use spin operators directly in the cal.-
culation of ferromagnetic spin waves, but the en-
tire exchange Hamiltonian including the z component
is regarded as a perturbation. Hence it has the
same drawback as Davis's approach and the results
have to be renormalized by summing over all three
diagrams (the contributions from the z component).

It seems more natural and efficient to rega, rd
spin operators 8' and 8 as creation and destruction
operators a,nd generate Wick's theorem appropriate
to these operators. The kinematical interaction is
then automatically taken into account ai each stage
of a perturbation expansion and hence the conver-
gence is expected to be better than any other method
developed so far. In fact, Wick's theorem has been
generalized in this manner, ' and by applying it in
Kubo's cumulant rearrangement of perturbation
theory, ' compact prescriptions for the calculation
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of the antiferromagnetic ground state have been ob-
tained. '

The prescriptions are so compact that we could
program them into a computer to generate and cal-
culate all possible diagrams necessary for the per-
turbation expansion up to the sixth order. " For
three-dimensional lattices, the finite-order per-
turbation series appear to converge, but a more
careful inspection of the calculation reveals that
many cancellations are involved among distinct
diagrams in the sixth order, casting some uncer-
tainty on the accuracy of the results. As the di-
mensionality decreases the convergence becomes
poorer and, in a linear chain, the contributions of
the sixth-order perturbation become nearly com-
parable to those of the fourth order, In the case of
a linear chain with spin- &, the calculated value of
the zero-point deviation is, in fact, greater than &

and hence unphysical.
This suggests that it is necessary to extend the

perturbation up to an infinite order before zero-
point deviations of spins can be compared with ex-
perimental results. Since an infinite-order per-
turbation expansion has never been developed for
spins, and it is not obvious how such a summation
can be performed in practice, it is essential to
establish the concept of self-energy corrections for
spins. Since spins are interacting even in the un-
perturbed state, the definition of a self-energy cor-
rection is not trivial nor simple as will be discussed
in Secs. IV and V. In this paper, a pair of spin-
deviation lines is regarded as a propagator, and as
an additional propagator appears and interacts with
the original one; that part of the diagram is defined
as a self-energy correction. As will be found in
Sec. V, the contribution of a self-energy correction
to a diagram depends on the geometry of the incom-
ing and outgoing propagators of the self-energy
diagram, complicating the summation. Cumulant
corrections are decomposed into parts and divided
into the corresponding self-energy corrections so
that self-energy corrections and their cumulant
corrections are automatically calculated together
exactly. The decomposition of cumulants will be
discussed in Sec. DI, w'nile the cumulant expansion
developed previously will be reviewed in Sec. II.
As far as we are aware, this is the first attempt
to extend a cumulant expansion up to an infinite
order. '2 The present method is developed as if it
is applied to an antiferromagnetic ground state, but
it can be generalized'for the calculation of spin-
wave spectra, including the kinematical interaction,
exactly. For this purpose alone, however, more
precise information on the ground state is needed.
The numerical results in Sec. VI will not only pro-
vide useful information as to what types of diagrams
should be included in a particular problem, but also
suggest that the nature of the spin-spin correlation

in the spin- & case is distinct from that in other
cases and spins behave like fermions rather than
bosons in this limit.

II. SUMMARY OF THE CUMULANT PERTURBATION

EXPANSION

Let us consider the two-sublattice structure such
that the nearest neighbors of an atom, say a, on
sublattice A are on sublattice 8 and vice versa.
Let S, and S be spin operators of atoms of types
a and 5, respectively, and assume that the values
of spine S, and S, are all equal, IS, I

= lQ l =j. The
anisotropic exchange Hamiltonian may then be writ-
ten as

H=H()+ XH;

Ho ———2JQ S,Sf,
(ab)

Hq = (1 —y) JQ (S',Sq+S,S~)
(ab)

(2. 1a)

(2. lb)

(2. 1c)

where J& 0, the summation P&~& runs over all the
pairs of nearest neighbors, and (1 —y) is the an-
isotropy parameter. For convenience, the alter-
nating coordinates are used so that the z axes are
always along the direction of the sublattice mag-
netization.

The ground state of Ho,

(2. 2)

may be considered as the vacuum state, since

S-, io)=S;io)=0 . (2. 3)

The energy of the system is then given by

00 n

EZ+ &OiH, H, ~0&.
72 0 0

(2. 4)

and our problem is reduced to the calculation of
cumulant matrix elements (Ot ~ ~ ~ I 0)

Since nth-order terms contain n pairs of spin
deviations S',S; or S,S,, which are connected with
each other through the interaction (1 —y)Z and dis-
tributed among atoms in a cluster, they may be
computed as follows.

(i} Construct all possible and topologically dis-
tinct atomic clusters containing at least two atoms
but not more than n atoms. All atoms in a cluster
must be connected with each other through the in-
teraction J involved.

(ii) Distribute ,'n pair cr—eations S;S~ and m pair
destructions S,S~ in all possible time sequences and
in all possible ways among atoms in the cluster.
This process may be described by diagrams as
follows. As time increases to the left, S' and S
will be denoted by right (0} and left (&) terminals,
respectively, of horizontal line segments showing
the propagation in time of a spin deviation on an
atom. For each atom involved, draw a different
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line and, whenever possible, neighboring atoms
will be shown on neighboring lines, A pair creation
S,+S,' or pair destruction $,8~ on neighboring atoms
is denoted by a zig-zag line connecting the corre-
sponding tmo terminals. This divides the diagram
into n —1 time intervals.

(iii) Draw all possible contractions of spin de-
viations involved in a diagram. Overlapping spin
deviations yield more than one set of contractions.
This mould divide a diagram into one or more sub-
clusters, mhere a subcluster is an ensemble of
terminals connected to each other by contraction
lines and zig-zag (pair-creation or -destruction)
lines.

Let us denote by (A ~ ~ ~ A,A, ) the value of
the diagram consisting of m subclusters A,A2 ~ ~ ~ A

and including the cumulant corrections. Then

(A. ".A,A, )
l=1 alI possible

t partitions

x(A ~ ~ ~ ) (A. ~ ~ ~ ) ~ ~ ~ (A ~ ~ ~ ),'t
2 l

(2. 5)
where A, ~ ~ ~ A, ~ ~ ~ . . . A& ~ " illustrate one

7
g

way to divide m variables A ~ ~ ~ Ag, into f parts.
(A, ~ ~ ~ ) is the value of the small diagram consist-
ing of subclusters A& ~ ~ ~ and not including the

1
cumulant corrections. The calculation of diagrams
may then proceed as follows.

(iv) For the numerical value of a diagram before
cumulant corrections, (a) for each time interval,
multiply by the inverse of the value of

Eo —Ho = —(4zjP —2q) J
where z is the coordination number, 2p is the num-
ber of spin deviations, and q is the number of in-
teractions among the spin deviations which exist
during that time interval; (b) for each contra. ction
with time interval f, multiply by a factor 2(j-n),
where n is the number of contractions for the same
atom covering the entire interval t.

(v) For the cumulant corrections for a diagram
with more than one subcluster, form all distinct

partitions of the diagram into subdiagrams com-
posed of one or more subclusters. For each par-
tition repeat steps (iv a) and (ivb), by regarding
them as if the subdiagrams are spatially separated
from one another. Multiply by the factor
(-1)' '(f —1)! involved in Eq. (2. 5), sum over all
partitions, and add to (iv). This yields the value
of(A. " Ag, ).

(vi) For each diagram, multiply the value of
(A ~ ~ ~ AP, &,„by the factor [(1—y)Z]" and by the
number of times the cluster appears in the crystal.

I et us draw a dotted line between tmo subclusters
which interact with each other by having contraction
lines that are overlapping or that appear in nearest-
neighbor atoms during an overlapping time interval.
If any tmo subclusters of a diagram are connected
with each other through dotted lines, the diagra, m
is said to be connected. If not, the diagram is dis-
connected and should be discarded. Even if a dis-
connected diagram is included, however, the cumu-
lant average given by Eq. (2. 5) becomes zero, thus
eliminating possible mistakes in generating dia-
grams. This is a definite advantage in this formu-
lation.

III. REARRANGEMENT OF CUMULANT CORRECTIONS

The main difficulty in extending the cumulant ex-
pansion to an infinite order is that as the number n

of variables increases, the number of cumulant
corrections increases as nf . To overcome the dif-
ficulty, let us rearrange the cumulant sum given by
Eq. (2. 5) such that the values of higher-order cumu-
lants (A „A„~~ ~ A, &,~ obtained by adding an extra
variable A „can be calculated immediately, pro-
vided A „is connected with A, only and does not
overl. ap in time with the other variables A, .. . , A, .
In Sec. IV-VI me shall discuss hom higher-order
variables A, l should be generated so that the
method developed in this section can be applied.

Let us first show that (A „,A ~ ~ ~ A, ), can be
expanded as

(A !A ~ ~ ~ A!), =Q Q Q (- 1)' (l —1)!(A! ~ ~ ~ ) (A ~ ~ ~ ) ~ ~ ~ (A [A ~ ~ ~ ]) ~ ~ ~ (A ~ ~ ~ )
/ =1 all possibl e $~1

l partgt lees
(3. 1)

where the second summation is to include all pos-
sible l partitions A, ~ ~ ~, A; ~ ~ ~, .. . , A; ~ ~ ~ of
the m va, riables A, . . . , A„mhile the notation

between two objects A „and [A!
For instance, the addition of an extra variable,

As, to the cumulant average

(A .,[A, ~ ~ ~ ]) -=(A .,A, ~ ~ ~ ) —(A„„)(A; ~ ~ ~ )

(3.2)
is introduced to represent the cumulant correction

(A~,&, =(AP, &-(A, & (A, &

leads to

(3. 3)



MICHELE PARRINELLO AND TADASHI ARAI

(A,A2A, ),„=&A~[A2A, ]&, —(A,A,) (A2)

-(A,A,) (A,), (3.4)

as can be proved directly. The more general ex-
pression, Eq. (3. 1), can be proved as follows. Use
of Eq. (3. 2) in the expression on the right-hand side
of Eq. (3. 1) yields

g (-1}'-'(f- 1)!
l yart iti ons /=1

x(A ~ ~ ~ ) ~ ~ ~ (A,A ~ ~ . )... (A ... )
1 m+1

l

a

b

C

(- 1)' '(f - 1)!
l = l yartitims g=

x(A. ~ ~ ~ ) ~ ~ ~ (A ~ ~ ~ ) ~ ~ ~ (A, ~ ~ ~ ) (A,)m+1

(3. 5}
Since the second term of the above expression is in-
dependent of j, the summation g~&, may be replaced
by l. Hence this term may be considered as the
sum of all possible partitions of m+ 1 variables
A „,.. . , A„ in which A ., always appears alone.
The simplest partition is (A ~ ~ ~ A~& (A „)and
hence l =l+1 runs from l =2 to l =m+1. On the
other hand, the first term may be regarded as the
sum of all possible partitions of the same m+ 1

variables, in which A „appears with other A s.
The highest partition is of the form (A ) (A„,)
~ ~ ~ (A „A&& ~ ~ ~ (A,) and hence l runs from f = 1 to
l = m. The two terms may then be combined as

fn+1

(- 1)' '(f - 1)!
l yartiticea

x&A ~ ~ ~ &&A. ~ ~ ~ &" ~ &4" ) (3 8)
1 t2 l'

where Ai ~ ~ ~ A, ~ ~ ~ .. . A, ~ ~ ~ are an l parti-'2 . ' ' ' ' 'r
tion of the m+1 variables A „, . .. , A, . This ex-
pression is exactly the same as the expression on
the right-hand side of Eq. (2. 5} except that m is
replaced by m+ 1. This proves Eq. (3. 1).

If the subcluster A „is connected with A, but
does not overlap in time with all the other A' s,
&A, ~[A& ~ ~ ~ ]), will vanish unless A, ~ ~ ~ involvesm+1 i ~ cen
A, . Then Eq. (3. 1) is reduced to

I I

I I

tf ta t, t, to
FIG. 1. Simplest examples of self-energy corrections:

(a) is the basic diagram; (b) is the simplest self-energy
correction to the basic diagram; and (c) illustrates the
direct way to add an arbitrary number of times the same
correction to the basic diagram.

g(A, ) = (A,A,),„ /&A, & . (3. 8)
The present simplification allows us to extend a.

summation of certain types of diagrams up to an
infinite order, as will be discussed in Secs. IV
and V.

Eo —2EO(1 —y)'(—» —2)-'

where

Zo -=2g 2zZX, ~ -=4'

(4. 1a)

(4. lb)

and N is the number of atoms on each sublattice,
while the diagram composed of two subclusters A~ '

and A~~' shown in Fig. 1(b) yields the value

gE(I)g

«"' -=4i'(1- ~)'(» - 2) '

(4. 2a)

IV. INFINITE SUMMATION AND SELF-ENERGY

CORRECTIONS

Let us first illustrate, by a simple example, how

an infinite series of diagrams can be summed up.
The simplest diagram shown in Fig. 1(a,) has the
value

(A „A ~ ~ ~ A,&~ =Q Q (- 1)' '(l —1).
l~1 all possible

l yartitices

x(A „[A,A, ~ ~ ~ ]),

x&A, .~ . )."(A ... )
2 l

(3.7)
where A& ~ ~ ~ A, ~ ~ ~ . . . A, ~ ~ ~ are an l parti-' ~ ~

tion of m —1 variables A2, . .. , A . This proves
that the contribution b „ofA, ~ in (A „A
~ ~ ~ A,)~ is just the cumulant correction between

two subclusters A „and A„

x[(2»-8) '-(2»-4) '], (4. 2b)

where the contribution 4E " of the additional sub-
cluster A," contains the cumulant correction of the
diagram properly. Note that the terms in the square
brackets in Eq. (4. 2b) is the contribution during the
time interval f; —f, and the factor (» —2) appears
during the interval t&

—t,.
Let us now generate a series of diagrams by

adding, one by one, subclusters A',", A,", . . .
which are not overlapping with ea.ch other in time
as shown in Fig. 1(c). According to Eq. (3.8), the
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value of a diagram with m+ 1 additional subclusters,

(~ (x) A ((), ~&))~(o&) &Z&(&(~ ((& .. A (()A(o))
m+1 m Clllh CUED! p

(4. 8)
and hence the sum of the series is calculated as

I
I
I

I
I

I

I

I

I

I

Q(g (&) ~, , g&(&A(o)) Z Q [gZ(r)]m
m=0 m=0

(l gz(I)) ( (4. 4)

~(I) (e 2)&) Z(I& (4. 5b)

Here we have rewritten the energy expression such
that the total contribution of subclusters, M" &, ap-
pears in the form of a self-energy correction to the
original diagram A'0'.

Let us further investigate diagrams of the type
shown in Fig. 2(b}. The values of such diagrams
may be evaluated similarly by dividing them into
time intervals where two lines and four lines ap-

~ ~ ~ ~ ~ w4 ~ ~ ~

It is not necessary to add subclusters to the same
pair of atoms. Even if subclusters are added to dif-
ferent but equivalent pairs of atoms around the main
diagram A( ', as shown in Fig. 2(a), the value of
the diagram remains the same. If there are P"
equivalent pairs of atoms, the sum of all possible
diagrams will be

z,(l —p& "~z"&)-' = —2z,(i —y)'(. —2 —p&"M'&)-',

(4. 5a)
where

FIG. 3. Example of self-energy corrections which are
not separable from the basic diagram. The two horizon-
tal lines linked by a dashed line represent nearest-neigh-
bor atoms in the lattice.

pear alternatively. The contribution from each
time interval is then found to be exactly the same
as the contribution from the corresponding time
interval in the diagram in Fig. 2(a), Hence the
value of the new diagram is the same as that of the
diagram in Fig. 2(a) and the sum of the new series
of diagrams may also be given by Eq. (4. 5). As is
illustrated in Fig. 2(c), these two types of sub-
clusters may appear mixed in arbitrary order.
Therefore, the total sum of diagrams thus far dis-
cussed should be

(l 2p&(&&Z&(&) (= 2A (l )o(e 2 2p((&&((&)

(4. 8)

confirming that M (& plays the role of self-energy
corrections.

Our infinite-order perturbation is a natural ex-
tension of the foregoing calculation. %e may add

to the main diagram A' ' all possible and distinct
subclusters A ",Az", .. . , each of them repeating
an arbitrary number of times. If the subclusters
are not overlapping with each other in time and

interact with A ' only, the value of such a. diagram
may again be calculated, step by step, by a relation
similar to Eq, (4. 8), and the total sum will be
written as

Z= Zo+Z, (—l —Z((&) '

where

= —A; —2Z,(l - y}'(e —2-sg("}', (4. 7)

C

z

FIG. 2. Examples of self-energy corrections which
give the same contribution to the basic diagram: {a)
demonstrates that there are many equivalent locations in
the basic diagram to which the simplest correction can
be added; {b) shows a correction which looks different but
yields the same contribution as the simplest correction;
{c) illustrates how the two types of corrections can ap-
pear mixed in the basic diagram.

g(l) ~(K)g~(I) ~(r)gg(I) ~ ~,

5If&I & (e 2)Z(I )

~(I ) ~(Z) ~(~)~(I ) ~ ~ ~Pa I, +~8 8 +'''

gz(() (+N ~ )GUB1
a (g( 0))

V(& =(e —2)~Z&)& .

(4. 8a)

(4. 8b)

(4. Sc)

(4. sd}
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M~8 = (e —A~)b E~~ig& (4. 8)

where 4 = 2 if the outgoing lines occupy nearest-
neighbor atoms and AI= 0 otherwise. The indices
e and P, respectively, identify the type of the self-
energy correction as well as the geometrical con-
figurations of the incoming and outgoing lines. M(I&

introduced in Eq. (4. 8) may be written as M~&'~&,

emphasizing the fact that the incoming and outgoing
terminals are the same type.

Self-energy corrections with matching terminals
can be added in series as shown in Fig. 4. Let
"Q~z be the sum of all possible n corrections which
have the common incoming and outgoing terminals
o a.nd P. Then"'Q~~' may be computed by the re-
currence relation

)-)5ff &I) n@& I& 0@&(& (4. 10)

Here M'" is the portion of self-energy 9g" which
is created by subelusters of the type A~ ', and p~"
is the number of times that subclusters of the type
A~" appear around the main diagram A'P'.

"Subclusters" like the one in Fig. 3 may also be
added in the summation. Since such a subcluster
is connected to the main diagram A' ' through pair-
creation or -destruction lines and is inseparable
from A. , it is convenient to define a self-energy
correction more generally as follows. Let a self-
energy correction be a portion of a diagram be-
tween two successive time intervals containing only
two spin-deviation lines. The value of a self-energy
correction depends on whether or not the incoming
two spin-deviation lines occupy nearest-neighbor
atoms and also whether or not the outgoing two
spin-deviation lines occupy nearest- neighbor atoms.
If the two outgoing spin-deviation lines do not occupy
nearest-neighbor atoms, their contribution to the
self-energy correction is no longer (e —2) ' but be-
comes e '. Hence the energy of the diagrams can-
not be summed up in the form of Eqs. (4. 7) and
(4. 8), and, in particular, Eq. (4. 8d) should be re-
placed by

t2
I

t2

FIG. 5. Example of second-order self-energy correc-
tions.

having fixed terminals a and y, that is, p p"„'M"'.
Summing both sides of Eq. (4. 10) in all orders n,
we find that

(4. 11)

where

g(I) -~ n~(iI)
18 ~ Qof 8

n=p

is the sum of corrections in all orders.
Let us regard 4 ~' and SR 'z as the eP elements

of matrices go& and%a& and (e —4, ) as the o&o&

element of the diagonal matrix (e —I) ("). Then

g(I) [1 (e g(I&)-lm(I&]-I

After solving the above equation for Q, the ground-
state energy can be calculated by

E = Kp+ $11 Ep

As an example, let us consider diagrams of the
type shown in Fig. 4. Depending upon the configura
tions of the incoming and outgoing terminals, there
appear four distinct self-energy corrections M11,
M,z', M2", , and Mzz', and hence

which is a generalization of Eq. (4. 3). Here%"„&
is the sum of all possible self-energy corrections

P11~11 P12i+ 12
f I) (I )

eg(I)
21M 2) p22M22 ) (4. 15a)

and

(4. 15b)

I I

/
'M)pi

I I
/

'Mpp'

I I

/
'Mp)i

The ground-state energy is then calculated as

E = —Ko —2%0(1 —y)I(e —2 —5R II') ', (4. 16a)

Im(I) ~(I)~(I) + ~(I)~ (I)
11 &11 11 + ~12 12

FIG. 4. Self-energy diagrams which have terminals
different from those of the simplest corrections. && (e p(I)M&I&)-Ip&I)M (I)

22 22 21 21 (4. 16b)
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V. HIGHER-ORDER SELF-ENERGY CORRECTIONS x [(3e —8) —(3e —6) (5. 3b)

(A&0&) (A(II&A(I&) (5. 1)

where

(A""IA"'A'"1). = 4j '(1 r)'(—e —2) '

xhE&" &(2e —6) 'E (5. 2a)

Let us further generalize the concept of self-en-
ergy corrections introduced in Sec. IV. It is ob-
vious that a self-energy correction may contain re-
peated portions and hence it would be useful if they
can be summed similarly.

We shall again illustrate the method by the simple
example shown in Fig. 5. The main diagram con-
sists of two subclusters A,~~' and A '. The third
subcluster A"" does not interact with A o' directly
and (A&a&A ') =0. Hence the contribution of A""
may be computed by Eq. (3.7). The result is

(A nI &A&I &A&0&) (A( n & [A(I&A&0&] )

In this example, the self-energy correction de-
fined in Sec. IV appea, rs during the time interval

t&
—

t& and is given by the difference between the
two quantities in Eq. (5. 2) divided by E,. On the

other hand, the contribution of A'"', which appears
during the time interval t,.—t2, varies depending
upon whether or not A " and A. are connected;
the value mill be 4E',"' when A"'and A' ' are con-
nected as in Eq. (5. 2a), but &E2&11& when A'I' and
A'0' are disconnected as in Eq. (5.2b). This would

introduce a new complication in extending the cal-
culation to an infinite order, but we can handle it
as follows.

Let A"" be the mth correction added to the main
diagram A "A . If m corrections A 6"A ",'
~ ~ ~ A~ ' are not overlapping with each other in time
and do not interact with A' ' directly, the cumulant
average may be divided into parts by Eq. (3.7) as
follows:

(A&0&) (Au&&A&I&) 4j 2(1 1,)2(e (A &II& A(II&A(I)A&0&)
OUI

(5. 2b) (A &I I &
~ A(11 &

[A&I
&A&0& ])

(A(0&) (A
('II& ~, A(n&A&I &) (5.4)

x[(3e —10) ' —(3e —8) ']

gE&II& 4j 2(1 ~)2(2e 4)-1

(5. 3a) The two cumulants on the right-hand side of Eq.
(5.4) can be computed separately by Eq. (4. 7) and

the sum of the series may be written as

P(A (II& A(II&A(I)A(0&) (1 I) E&II&)-1(A&I&A&0&) (1 (( E&II&)-1(A&I&) (A(0&)

m=0

=4j'(1 —y)2[(2e —6 —M', "') ' —(2e —4 —M211&) ']E, (5. 5)

where

M &II& p& n)(2e 6)ZE&II& (5. 6a)

M(II& p&11&(2f 8)QE&II& (5. 6b)

are the self-energy corrections for (A&"A&0') and

(A"') (A'0'), respectively. We can of course cal-

culate the sum of diagrams generated by adding
many subclusters A~'~, each of which contains
A "' ~ ~ ~ A,"". The calculation can also be extended

by adding higher-order corrections A, A2
~ ~ ~ ~

to each of the subclusters of type A "', etc. If we

continue to extend the calculation in this manner
but if we exclude diagrams which have distinct in-
coming and outgoing terminals, M 2 ((III p), the
total sum will be written in the form'3

E = —K0 —2K0(1 —y) /5E

~E'=-E —2- f, 26 —6 fa f2
3e —10-(f2/4e —~ ~ ~ ) —(f2/4e —~ ~ ~ ) 3e 8 —(f2/4e ... ) (f2/4e

-f, 2e —4-(
f2 f2

(f l4& — ' ) — (e —6 —0 /4f —~ ~ ~ \ —~ ~ ~ ) (5. 7)
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where fz =4jh(1 —y)hp(~& and p(~& is the number of
times that subclusters of the type A( ' appear
around the diagram A ~ ".

The foregoing calculation suggests that subclus-
ters A(") ~ ~ ~ are self-energy corrections to the
original self-energy M ". We may call this type
of correction second-order seLf-energy corrections
and denote them by %"'= g p""M '" We can
further introduce higher-order corrections lg " ',
m"v), etc.

By definition, the simplest possible time interval
in any first-order self-energy correction M " con-
tains at least four spin-deviation lines. A second-
order self-energy correction is then defined more
generally as a portion of a diagram between two
successive time intervals which contain only four
spin deviations. Hence a second-order self-energy
correction itself consists of at least six spin-devia-
tion lines and its value depends on how these lines
are connected. Let us denote the value of a sec-
ond-order self-energy diagram

M (II) M (II) (c) M (II) (nc) (5 S)ah IBl ah sgl eh &Bi

where the index h (or I) denotes whether the four
outgoing lines at the terminal o& (or the four incom-
ing lines at P) belong to two separate subclusters or
not and, if so, h (or I) also denotes whether the sub-
clusters are connected or not. This information is
automatically transferred from diagram to diagram
through the matrix multiplication. In addition, M"'
and M("' illustrate whether the subcluster A in-
volving the two spin-deviation lines that are ter-
minated at the terminal e is connected with the four
incoming lines of the diagram or not. If A is a
simple subcluster like the example in Fig. 5, the
cumulant correction associated with A may be
calculated by Eq. (5.S).

Self-energy diagrams with matching terminals
can now be "dded in series. The sum of all pos-
sible second-order self-energy corrections Q"h"I,
which have the common incoming and outgoing ter-
minals eh and Pl, is then obtained by

~ah h( Z (2 ~ah) Ch, rh ~&'h ct&I
5 ah eh(»

(5. 9)
or

cf(II) [I (2h &&
(II))-1cm(II&]-I (5. 10)

where Sg h,» is the sum of all possible second-order
self-energy corrections M ~~,'». The above equa-
tions correspond to Eq. (4. 11) and (4. 12) and g&"&,

K(11&, and (2s - d, (1'&) are matrices whose ah, Pl
elements are given by 0ah"„I c % a'„,'h» and (2e —&&, „)
5 h ~„respectively.

We note that the cumulant correction contained in
the subcluster A terminated at time tz is not
necessarily given by Eq. (5.8). This happens when

A extends beyond the self-energy diagram as in the

I

tp

FIG. 6. Cumulant corrections involved in complex
self-energy corrections.

~ '~"' lh"h( — ~'". h"' lh'-'
h& ~

Since Eqs. (5.9) and (5. 10) already contain this dif-
ference, solutions Q"" always include cumulant
corrections for terminating subclusters A prop-
erly.

In the example in Fig. 5, the incoming and out-
going subclusters are both connected or both dis-
connected and there are no cross terms. Hence
the matrix equation (5. 10) is diagonal, yielding the
result, Eq. (5. 5), consisting of iwo terms.

The cumulant correction between two outgoing
subclusters may be included properly when the
first-order self-energy correction is calculated by

M.",&=4(j- .) (j- .-) (I-~') (4',",„
—@''h".h&) (2' ~h&) ', (5. 12)

where the two outgoing subclusters are connected
in Q „"I but disconnected in Q 'h", z, . In case the
four outgoing lines belong to a, single subcluster,
Q~",al = 0.(II)

If there are more than one contraction lines over-
lapping in time at the same atomic site, we need to
determine the values of &I . and &I „ in Eq. (5. 12)
according to the instruction (ivb) in Sec. II. The
same factor n will also appear in M' ". Since a
contraction Line may extend many self-energy dia-
grams, this would introduce some additional dif-

example in Fig. 6. In such a case, whether A is
connected to the rest of the diagram or not may be
determined automatically by the fact that the two in-
coming subclusters are connected with each other
or not. Let us denote by yk and yk two corre-
sponding situations; that is, the two incoming sub-
clusters are connected in yk but disconnected in
yk . Then Ma'h", ~' = Ma'h", »'" = 0 and the cumulant
correction relevant to A is given by

)ig (II ) g (II ) )Ig (II ) @ (II )™yh~s~l + ~v
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According to Eq. (6. 1), this value should be equal
to —KpC6(1 —y), while Ep = —KpC1(1 —y)6. Hence
the sum of the self-energy diagrams, gg~» ~, is
given in terms of Cy and Cp as follows:

3g(', "=(6-3) (1-y}'C,/C, . (6. 3)
r

I
I
I
I

I

I

I

Since the matrix Z" 6 ' is one dimensional in the
present approximation, the ground-state energy is
calculated by Eqs. (4. 13) and (4. 14) as

&(4) = —Kp+ [1—(e —2)-'3(f („('4)1 '&6

—KpC)(l —y)
1- (C,!C,) (1-y)' (6. 4)

FIG. 7. All possible diagrams in the fourth-order
perturbation. The double-headed arrows indicate that
the diagrams obtained by interchanging the times of the
indicated pairs should also be included.

ficulties in solving Eq. (5. 10). However, this
equation is quite general and it can be extended in
calculating higher-order self-energy corrections
M" ~, M ' ", ~ ~ ~ without introducing any new
concept.

VI. NUMERICAL RESULTS AND DISCUSSIONS

We shall now demonstrate how the foregoing
method can be applied in calculating an infinite
series of diagrams that are involved in the anti-
ferromagnetic ground-state energy.

To avoid possible omission of important lower-
order diagrams, let us first examine the results
of a finite perturbation expansion. Previously, "
we have generated by computer all possible dia-
grams in the second-, fourth-, and sixth-order
perturbations and tabulated the ground- state energy
in the form

E = —Kp[l+ C, (1 —y)'+ C6(l —y)'+ C, (1 —y) + ~ ~ ~ ]
(6. 1)

where K0=2j z JN and Cy C2 and C3 are the sums
in unit Ko of all diagrams in the second, fourth, and
sixth perturbations.

The second-order diagram is the trivial one
shown in Fig. 1(a). The fourth-order terms con-
sist of five diagrams shovrn in Fig. 7, and the por-
tion between the time interval t,.—f, of each fourth-
order diagram yields a self-energy correction
M",,' ' which has two incoming lines and two out-
going lines, occupying neighboring atoms. By using
relations like Eq. (4. 2), the sum of the fourth-order
diagrams 5E 0" may be written as

6E(6) (e 3)-)3g ((t6)E

4. (e 3}-1%(1 ~ 6)e 19$ (1~6)K

+ (e —2) '%"'"(e—2) '%"'"E (6. 5)

This result corresponds to the sum of all possible
diagrams which can be generated by adding, an
arbitrary number of times, self-energy diagrams
of the types shown in Fig. 7.

Sixth-order diagrams consist of three pair-crea-
tion and three pair-destruction operators and may
be classified into three types of diagrams illustrated
in Fig. 8. Here self-energy corrections M,z' ',
M ~,

' ~, and M" & ' in the second and third diagrams
consist of four spin-deviation lines and are irre-
ducible. Self-energy corrections M,", ' in the first
diagram contain time intervals with six spin-devia-
tion lines, which can be considered as second-order
self-energy corrections M~"', but, for simplicity,
we shall not sum over these second-order correc-
tions in the following.

The second and third diagrams in Fig. 8 are
reducible and, in particular, since the third dia-
grams have been included in the fourth-order re-
sult, Eq. (6.4), we have to omit them. For this
purpose, let us first decompose the sum of all dia-
grams in sixth order, 5E', ', as follows:

6@(4) (e 3}-1cg(zy4)E

gg &&s 4& ~ (r&M (r, c)
11 =~ P

(6. 3) FIG. 8. Three types of second-order self-energy cor-
rections which appear in t;he sixth-order perturbation.
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j=r'

E lo' ~'S 1O' m'
5i=1

E 1O' m'
2-2

lO' ~' 1O' aS'Lattice

chain S~') l. V5OO —25OO 1.3759 426 l.2300 300 1.1658 229 1.1296

l. 1332

l. 1367

l. 1393

l. 0591

1.0600

l. 0612

1.0617

1.0376

l. 0379

1.0384

1.0385

l. 0280

l. 0282

l. 0286

1.0287

185

E~ ) 1.8000 500 1.3821 l.2352 1.1701

l. 1743

l. 1773

l. 0745

1.0755

l. 0770

1.0776

1.0472

l. 0475

1.0481

1.0482

1.0352

1.0354

1, 0360

1, 0361

52 36

S&'& l. V5OO

s„") l. v619

l.3837 78 1.2403 103

1.2436 33119 15 30 26l. 3852

s«)
S(4) l.3314

plane 1.1555 126—19 1.1008

1.1020

l. 1038

l. 1045

65

10l. 1567

1.1591

I.1597

l. 0964

1.0967

l. 0978

l. 09SO

l. 0717

1.0721

l. 0730

1.0732

E() l. 3345

E ) l. 3345

31 2530 21

E() 1 ~ 1993

s'4) l. sees

1.0633

1.0636

1.0645

1.0647

l. 0472

1.0475

1.0482

1.0484

31

S~') l. 2O13

S&') l. 2O13

20 12

Eo~ ) l. 1478

S~ ) 1.1479

50 37bcc

E() I.1494

S(6) 1.1495

16 13 10

Ibs represents energy depreciations, that is, ~=EO -S() «r So ', S -So «r S So -Eo ««o»dE")-E")for S"&.

of the types illustrated in Fig. 8.
The long-range order ( and short-range order g

defined by

As before, this value should be equal to the last
term in Eq. (6. 1), that is, —XOC3(l —y) . Since
gg ~»'+ is given by Eq. (6.3), the remainder in Eq.
(6. 6) is

(6. 6)
(I J6) + lyg (Iy6)q 1

ling
(Is6)

11 + 13 31

(6. 9)
= (e —2) (i - y)'t(C, /C, —(C,/C, )'], (6. 6)

may be reduced to the following form by using
Feynman's theorem":where% % 3 and'mg1 ' are the sums of all

possible self-energy corrections found in sixth-
order perturbation but it does not include %«1", '

calculated in fourth-order perturbation.
The total contribution to self-energy corrections,

m~", , is given by Eq. (4. 16b), but up to the sixth-
order perturbation, there is no diagram contributing
to M,'3". Hence%11 should be given by the sum of
the quantities in Eqs. (6. 3) and (6.6), and the
ground-state energy may be calculated by

8E
2Ko 8E' (6. 10)

(6. iS)

The above equations may be calcu', ted easily by
inserting the expression for E + or E 6~ in Eq. (6. 4)
or (6. f). Previously, the differentiations of C,
with respect to E have been performed by computer
using the algebraic expressions obtained for the C's„
and the values for C and —(e/2)SC/Se are tabulated
in Tables II and ID of Parrinello, Scire, and Arai"
(PSA). Use of these values in Eqs. (6.4), (6. f),
(6. 10), and 6. 11) yields the values of EN', E'8',
g, and $ as tabulated in Tables I-III.

The results show an interesting tendency of the
Heisenberg magnets. As expected, the one-dimen-

Zo(6)

KOCH(1 —y)
1 —(C~/C~) (1 —y)~ - [(Cs/C~) —(C2/C&)~l (1—y)»

(6.7)
This result corresponds to the sum of all possible
diagrams which can be generated by adding, an
arbitrary number of times, self-energy corrections

TABLE I. Ground-state energies of spins coupled by the isotropic exchange interaction p, in units of -K0 — 2i AN.
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TABLE II. Values of long-range ordering parameter
&I).

Lattice

chain E(4) —o.25oo

—O. 12OO

ED&') O. 3125

E &') —O. 2335

0.6345 0.8113 0. 8726 0. 9039

0. 5942 0.7887 0. 8565 0.8913

0. 5481 0.7639 0.8411 0.8802

0. 5204 0.7400 0. 8235 0. 8662

plane

8C

bcc

E(t4)

E(4)

E (6)
0

E (6)

E &4)
0

E(4)

E (6)
0

E (6)

E(4)
0

E (4)

E (6)
0

E &6)

0. 7422 0.8914 0. 9323 0.9509 0. 9615

O. 7427 0. 8867 0.9284 0.9478 0.9588

0.7233 0.8778 0.9226 0. 9435 0. 9555

0.7225 0. 8739 0.9192 0.9406 0.9531

0.8720 0.9397 0.9610 0.9712 0.9772

O. 8721 0.9385 0.9598 0. 9702 0. 9764

0, 8646 0.9350 0. 9575 0. 9685 0.9750

O. 8643 0.9341 0.9566 0, 9678 0.9744

0.9055 0.9556 0.9711 0. 9787 0.9831

0.9047 0.9544 0. 9701 0. 9779 0.9824

0. 8995 0. 9517 0. 9683 0. 9765 0. 9814

0.8987 0.9508 0, 9675 0.9759 0.9809

sional cases are different from others although the
differences are rather qualitative. On the other
hand, the spin-z cases (j= —,) exhibit a distinct
tendency and, in particular, the spin- & one-dimen-
sional case (j= -, , z = 2), having the two odd factors
mixed in, exhibits a very unique feature.

In case spins are greater than —,', there is the gen-
eral tendency that as the dimensionality z decreases
the contribution from higher-order diagrams in-
creases. More specifically, let us consider hom

the fourth-order results, Eo", $(EO' '), and g(EO '),
based on the five diagrams in Fig. 7 can be im-
proved. One may is to generate all possible dia-
grams in the sixth order and to find the expression
(6. 1). As has been discussed in PSA, such a cal-
culation is very involved since numerous diagrams
appear and many cancellations take place among
them. Another may is to generate an infinite num-
ber of diagrams, just repeating the type of diagrams
found in the fourth-order calculation. The resulting
expression in Eq. (6. 4) is trivial to compute. In
the tmo- and three-dimensional cases, the improve-
ments found in the second approach, E'„"-Eo",
((E ') —$(EO '), and f/(E„' —'g(EO '), are about —,

' of
those found in the first approach, Eo ' —Eo
t'(Eo~') —$(EO'"), and q(EO") —ri(E'0"). However, the
contributions are both small, suggesting that the
fourth-order results Eo", $(EO"), and g(E'0") are
already nearly satisfactory. On the other hand, in
the one-dimensional case, the correlation effect
becomes appreciable, and, in particular, the ratio
between the improvements obtained by the second
and first approaches is about 0.8 for z= 1 and about

TABLE III. Values of short-range ordering parameter
qÃ).

Lattice

chain 0(
) 0 ~ 7500 0 5389 0 7100

J =2

0.7884

E( ) 0.6000 0. 5058 0. 6816 0. 7648

Ep( ) 0.7500 0.4999 0.6585 0. 7459

E( ) 0. 6734 0.4883 0. 6329 0, 7224

0. 8334

0. 8134

0 ~ 7979

0.7772

plane Ep 0. 6724 0.8193 0, 8794 0. 9099
E( ) 0.6723 0. 8129 0. 8730 0. 9044

EP 0. 6569 0. 8013 0. 8644 0. 8974

E 0. 6569 0. 7963 0.8592 0.S926

0. 9279

0. 9230

0.9174

0, 9131

8c Ep 0. S021 0 ~ S926 0. 9277 0. 9454

E( ) 0. 8020 0. 8907 0. 9257 0. 9436

Ep( } 0. 7921 0. 8856 0. 9217 0. 9409

E ) O. 7920 0. 8863 0. 9203 0. 9398

0. 9562

0„9546

0. 9522

0.9511

bcc Ep( 0. 8424 0. 9183 0. 9454 0. 9590

E( ) 0. 8415 0. 9162 0. 9436 0. 9575

ED( 0, 8344 0. 9118 0. 9404 0. 9550

E~ 0.8334 0.9103 0. 9391 0. 9539

0. 9675

0. 9659

0.9642

0. 9634

2 for z &-', , suggesting that a considerable improve-
ment can be obtained without generating higher-or-
der irreducible diagrams and instead by simply re-
peating the self-energy diagrams shown in Fig. 7.

The above results mill lead to the following con-
clusion. Among diagrams in the sixth order, those
belonging to the last term on the right-hand side of
Eq. (6. 6) are included in E„"' exactly, and as the
dimensionality decreases the contribution increases
and becomes dominant in the one-dimensional case,
while the effect of other diagrams, which are newly
found in the sixth-order perturbation, remains
relatively small. Consequently, it seems more
efficient to keep the number of basic diagrams
small and to extend the summation to an infinite
order, rather than spending a, large effort in gen-
erating higher order irreducible diagrams.

In spin- —, cases, spins behave like fermions and
try to avoid each other. In two- and three-dimen-
sional cases, this tendency may be taken into ac-
count by diagrams which extend to larger space,
and in mhich spin deviations do not appear repeat-
edly at the same atomic site. An effective inter-
action between two sites, a and b, is then intro-
duced indirectly through neighboring atoms which
connect the two sites a and b. This may be the
reason that the contribution from irreducible dia-
grams in the sixth-order perturbation is dominant
while the effects of the infinite summations, E„'"
—Eo ' and E„'-E'0 ', are nearly absent for these
cases.

In the spin--, one-dimensional case, the indirect
interaction cannot appear since there are no neigh-
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0 .

A(E)

A(0) f

A")

A(Q)

ag W u)i)f
AQI

FIG. 9. Second-order self-energy corrections included
in the calculation of the linear chain.

boring atoms which connect two sites a and b in-
directly and diagrams available for inducing an ef-
fective interaction are limited to those with multiple

spin deviations at the same site. Since curnulant

corrections involved in multiple spin deviations are
nonvanishing even for j= &, these diagrams con-
tribute, but they overestimate spin-flip processes.
For instance, the second-order diagram in Fig. 1

leads to ( = 0, indicating the disappearance of long-
range ordering. The fourth-order diagrams involv-

ing double spin deviations at the same site further

increase zero-point fluctuations, yielding $ = —0.25.
The negative value for $ is unphysical since it in-
dicates that zero-point fluctuations become greater
than the value of spins, 2, effectively reversing all
spins in the chain from the unperturbed state
ePO, P ~ ~ to PO.Po ~ ~ ~ . The sixth-order calculation
worsens the situation by increasing the negative
value of $ to -0.3125. The reason for this failure
is the same; many of the sixth-order diagra, ms
contain double spin deviations at the same site. On

the other hand, the infinite summation based on the
fourth-order diagrams reduces the negative value
of 5 to —0. 12. The reason is that the second cor-
rection tends to bring the spin ordering back to the
original ordering ePeP ~ ~, and although the third
correction reverse it to PePn ~ ~ ~, the fourth cor-
rection again tends to bring it back to nPeP
and so on. This suggests that the difficulty may be
removed by repeating multiple spin deviations
further. To calculate correctly the value of $, we
have to calculate self-energy corrections in the
second order, third order, and so on, by Eq. (5.7)
as is discussed in Sec. V.

In order to demonstrate the above arguments in
practice, we have calculated the contribution of the
second-order self-energy corrections shown in

Fig. 9. These corrections are assumed to be added
to the fourth-order diagrams in Fig. 7 one by one.
In the spin--', one-dimensional case, Eq. (5.7) is
then reduced to

K0Cg (1 y)
I —(C f/C ) (1-y)'

Cg 4 1 2 1

C, e —2+ 3 (1-y)'/(e —2) e —2+ (1 —y)~/(e —2) e —3+ I/(Se —6) (e —2)

(6. 12)

(6. iS)

yielding the following values:

E(r ) —1 7954KO (6. 14)

((Z"")=0. 1726 . (6. 15)

This example demonstrates how the negative value

for $ can be removed, but the above values should

not be taken seriously; it is obvious that the per-
turbation series for the chain does not converge
well and the addition of the third-order self-energy
corrections will reduce the value of $ considerably.
A definite conclusion on the value of $ may be ob-
tained only after a more systematic treatment of
higher-order terms based on the present method,

which is beyond the scope of this paper. There
exists an exact solution for the linear chain, ' but
the long-range ordering ( cannot be calculated from
the exact solution. '

In conclusion, when spins are greater than &, the
system behaves like that of bosons and diagrams,
which contain simple self-energy corrections re-
peatedly, contribute to the ground-state properties
predominantly, making the present infinite-cumu-
lant-expansion method very valuable. When spins
are 2, the system behaves like that of fermions
and requires quite different classes of diagrams,
suggesting that the spin-spin correla. tions are dis-
tinctively different in these two cases.

~Based on work performed under the auspices of the U. S.
Atomic Energy Commission.
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