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A new formula is derived for calculating the work function of jellium. A theorem is proved which

shows that this new formula is equivalent to traditional methods, e.g., as given by Lang and Kohn.
The new formula shows that the work function is related to the ground-state energy per particle. In
addition we comment on a theorem recently proved by Budd and Vannimenus that allows the

generalization of our formal result to an exact treatment of jelhum; i.e., a treatment in which the

exchange correlation energy functional is not approximated by a local density expression.

The modern theory of the work function of met-
als was formulated by Bardeen in 1936.~'~ For the
alkali metals, he calculated the contributions from
the kinetic, exchange, and correlation energies,
and discussed the surface dipole term. This lat-
ter contribution was calculated recently by Smith, 3

and much more accurately by Lang and Kohn, ' and
good agreement is obtained between theory and ex-
periment. In essence these calculations are trying
to determine the absolute magnitude of the energy
of an electron on the Fermi surface of the metal.

%e will show that the work function may also be
computed as the ground-state energy per electron,
with an additional term to account for the surface
dipole. Of course, the ground-state energy is not
the energy of an electron at the Fermi surface, but
is an average over all of the electrons. %e will
show, for the jellium model of a metal, that this
new definition is numerically and analytically iden-
tical to the conventional one.

To develop the equivalence of the two algorithms
for the work function we first briefly summarize
their derivations. A general definition of the work
function @ at zero temperature is

C'=[V'(")+E» i]-E»
where y(~) is the electrostatic potential energy of
an electron at x =+~, while E~ and E„., are, re-
spectively, the ground-state energies of the N
(neutral) and N —1 electron metal. Since we limit
ourselves to a jellium model, we presume a uni-
form positive background of charge exists in the
region x& 0. The total charge in this background
is chosen to neutralize that of N electrons. The
difference between the two formal expressions for
the work function obtained below arises from dif-
ferent prescriptions for the evaluation of the change
of the ground-state energy of the metal upon the re-
moval of one electron.

Lang and Kohn remark that by thermodynamic
definition

(2)

where p, is the chemical potential. Using the en-
ergy functional formalism, they next prove that

5E[n]
5n(r)

if E[n] is the exact electron energy functional. We
refer the reader to the original paper for a formal
definition and existence proof of this quantity. '6
Note that the derivative implied in (3) is a function-
al derivative with respect to electron density n(r)
but that the result is independent of r. Lang and
Kohn exploit this independence to evaluate 5E[n]/
5n(r). Their argument is to consider an infinite
uniform medium (all surfaces infinitely distant) and
to note that the energy of such a system can be ap-
proximately written as

dr n(~)

x e(n(r)) +v(r) +—,+E,dr'n{r')
2 )r —r'I

where

e(n(r)) =
q E„s+ —E„+E, ,

with

h k„3.68 e
KE 2m F

s 0

-0.88 e2

r, +7.8 2ao

and v(~) is the potential energy resulting from the
positive background and a single electron while E
is the potential energy of the background interact-
ing with itself. The parameter r, is determined by
the electron density: 1/n(r) =3 v(r, ao), with ao the
Bohr radius. This decomposition nicely separates
kinetic, exchange, correlation, and electrostatic
energies. Lang and Kohn next make the reasonable
ansatz that the 5E[n]/5n(~) of Eq. (3) for r 'deep
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within a semi-infinite metal may be determined by
taking the functional derivative of Eq. (4). Differ-
entiating only the explicit density dependence there,
they find that (3) becomes

p = Exz+E„+E,+ C) (r),

Our new formula for the work function may be
derived by making an alternate estimate of E„
—E~ ~. We begin by supposing that we may use Eq.
(4) to compute the ground-state energy of even the
semi-infinite metal. Then the difference in energy
of the X and N —1 electron ground states is

where

E,' =—(nE,) = —0.88, '

and

9)'(r) =v(r)+e' . , dr'
( r —r'I

(10}
z, —z,., = d .(ri(—( a) ~ 9( )),

where n, (r} is the infinitesimal change in the den-
sity between the two ground states and is normal-
ized to unity:

(i5)

~=[p( ) —9(- )]—(E„,+E„+E,'), (12)

where the last three terms are to be evaluated at
the uniform density of the interior. A more ex-
plicit expression for the surface dipole term can be
written using the net charge density of the system

t ( ) —yt-") 4~~'f d*=5 — )ft*),
~ C)

so that since the system is neutral

t'(") =v(- ) =4 ' f d **ft*). .

Here f(x) =n(x) —noe{-x), where we note that the
density depends only on x and nt)[=n(x= —~)] is its
value deep inside the metal.

In the second line of (ll) we have replaced the elec-
trostatic potential energy of an electron in the in-
finite bulk metal (p') by its electrostatic potential
energy deep within a semi-infinite metal [cp{-~)].
Combining, we obtain the final result of Lang and
Kohn for this jellium model:

We next pick a particular form for n, (r). For a
semi-infinite sample of surface area A we take

n, (r) =— 1 dn

npA dx

There is a simple physical reason for this choice.
After the removal of one electron, the electron
density readjusts so that it has the same average
charge density deep inside the metal as before.
Hence the actual change in charge density is lo-
cated on the surface. The simplest model is where
the charge density just contracts a bit. So if it has
the density profile n(r) before the electron is re-
moved, it has the profile n(r -P5x) after. Thus
the change is

A dn
n, (r) =n(r —x 5x) —n(r) = —5x —. (18)

dx
'

The normalization condition (16) uniquely fixes
5x= (n, A) and higher derivatives in (18) may be
omitted because of their dependence upon higher
inverse powers of noA. Now if we put (18) into
(15) we find

1 dn d 1 dn(x)
E)t( —E)(t, = dr — — (ne)+—p = ——[n{x)e(x)]"„+ dx —— y(x) .npA dx „dn np np dx

d- —— — y(-) = y(-=0) .f 1 dn(x)
np dx {20)

So we derive for the work function the new formula

C =[q(")—q(0)]-(5E«+ 'E, +E.), -

where as in {12)the last three terms are to be

The terms from the upper limit of the first integral
vanish since the density vanishes far outside the
metal. The terms from the lower limit yield e(x
= —~). The second integral in (19) requires a bit
more effort. In the Appendix it is shown that this
contribution is given by

evaluated at the uniform density of the interior np.
It is interesting to compare the new result (21)

with the conventional formula (12). Both contain
the same sort of energy contributions, but in each
case the coefficient is different and the surface di-
pole contribution is evaluated at a different point.
The two formulas, however, seem to be numerical-
ly equal. Table I shows the work function calcu-
lated with each formula at three different densities.
The first part of the table is just reproduced from
Lang and Kohn. Using computer results for n(x)
graciously supplied to us by Dr. N. D. Lang, we
computed y(0) from Eq. (18) and verified the nu-
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rs Kinetic Exchange Correlation
Surface
dipole

Work
function

3.68

s

12 52
3.13
1,39

l.22 0,88(7, 8+fr )
(V. 8+ r, )2

-1.30
-1.13
—0.99

~(~) -q (-~)

+ 6.80
+ 0.92
+ 0.04

3.89
3.07
2. 41

2.21 0.916

7.51 -6.23
1.88 —3.12
0.83 —2.08

0.SS
7.8+ rs

1~ 22
-1.01
—0.87

y(~) -y(0)

+ 3.95
~ 0.82
+ 0.31

3.89
3.07
2.42

merical equivalence of the two formulas.
%e also found a proof that the two contributions

must be equal. Qur proof, which is given in detail
in the Appendix, does not specifically rely on the
density functional formalism. Instead the theorem
is proved by a certain integration of a single-par-
ticle Schrodinger's equation. The explicit result
we prove is that

TABLE I. Work function of jellium in units of electron
volts. The same result is obtained for both Eqs. (12)
and (21). The one digit discrepancy of r~=6 is probably
caused by slight errors in p(0).

using the v,f, of (23) plus Eqs. (19) and (20), as

8 86 ~

&(0) —0(-")= —(«) I
—'I =ffo — (24)

en ~O ~ 08n, , '

where we emphasize that E is given by Eq. (5) and
that n(r), and consequently y(r), is determined by
using the LDA. Our proof of (24) remains valid if
one were to change the density dependence of ~, but
it breaks down if one were to use a more correct—
specifically, nonlocal —treatment of the exchange
correlation energy functional. However, a theo-
rem recently proved by Budd and Vannimenusv
gives the generalization of our formal result (24)
to an exact treatment of jellium. Their result is
identical to (24) except that e is now the exact (and
unknown) energy functional of the bulk jellium, e',
say,' and Cf(0) —y(- ~) is the exact electron poten-
tial-energy difference. Budd and Vannimenus ob-
tain their theorem by considering the energy
changes which occur from an infinitesimal change
in the positive background. Their theorem allows
a direct generalization of the equivalence of our
result with that of Lang and Kohn:

l 1 dn(x)
dx —— veff(x) veff(x ) + o +KE s

no dx

4 =[9'( ) -y'(--)]-—(n")I
8

tfp
(12')

where v~f(x) is the effective local potential acting
on an electron. Lang and Kohn used a local den-
sity approximation (LDA) to the exchange correla-
tion energy functional thereby yielding

v.„(r)= io(r) +Z,(ff(r))+Z,'(ff(r)),

where n(r) is determined self-consistently by solv-
ing Schrodinger's equation for single-particle
states, +, and then summing up their density con-
tributions:

E.(R= p I4,()I'.

-I:c (")-~ (0)]-e I., (21')

Budd and Vannimenus originally proposed that
the extent to which (24) is satisfied in an approxi-
mate calculation is a meaningful test of the approx-
imation. They later withdrew this assertion, and

proposed instead that the numerical test only mea-
sured the self-consistency of the Lang-Kohn com-
putations. Qur results support this latter conclu-
sion. Their numerical test is essentially the same
as that of our Table I. The theorem that we prove
here demonstrates that (24) is exactly satisfied
within the LDA. Hence any numerical inequality of
(24) within LDA is only a measure of "computing"

The crux of our proof lies in this prescription for
determining n(r).

One may also examine the choice of —(1/noA)
xdn(x)/dx for n, (r). In Fig. 1 we have plotted an
"exact" An, (x), based on the approximation (23),
and compared it with —(I/ffo) dff(x)/dx computed
from the density for this model. The two curves
are similar but not identical. The reason we ob-
tain the same work function as Lang and Kohn even
though in the heuristic argument given above we
use the approximate —(1/no A) dn/dx is because we
have presumed the validity of (4) for the semi-in-
finite metal with only the Thomas-Fermi term used
for the kinetic energy. The cancellation of these
two errors is remarkable.

Another way to view the equivalence of our re-
sult with that of Lang and Kohn is to rewrite (22),

r =4

-IC -8

FIG. 1. Top curve compares the surface charge dis-
tribution An (x) found by Lang and Kohn against —n0 dn/
dx. The two curves are similar but not identical. Both
are normalized to one unit of charge obtained by integrat-
ing over all Ch. Atomic units are used throughout. Nu-

merical data supplied by Dr. N. D. Lang.
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accuracy and self-consistency in obtaining n(x),
rather than a direct measure of physical validity.
It is certainly intriguing, though, that (24) should
be true both in an exact treatment and in LDA.

Finally we remark that there is an appealing
physical interpretation to the new formula (21) for
the work function. We may view @' as the net en-
ergy required to take an electron off the surface to
infinity [thereby doing an amount of work (I()(~)
—y(0)] and also (after relaxation) to change the
ground state energy of the bulk metal from Ne(x
= —~) to (N 1) -(ex= —~). Combining these two en-
ergy changes we get (k = [y(~) —y(0)] —e(x = —~),
which is E(l. (21). The choice of x=0 to represent
the surface position is reasonable here since that
point determines the center of mass to the electron
density change:

0= dx x (As)

This neutrality has been assumed by all workers in
this field.

The distribution —(1/no) Sn/Sx has an interesting
property if it is interpreted as a surface charge
density. The center of mass of the charge density

xo= xdx ———=0 (AV)

dxp x ———=p 0 — dx x

(A5}
The last term is zero because of the charge neu-
trality of the surface

dx —— x=0 .

This result is proved in the Appendix. By the
above argument we see that the work function may
be related to the ground-state energy per electron
of the bulk metal. Again, this statement is true
either, as shown here, within LDA or, as shown by
Budd and Vannimenus, within an exact treatment of
jellium.

APPENDIX: MATHEMATICAL PROOFS

The first proof is that

~ 1 en
y(0) = dxq)(x) i-——

( n« sx

where

x()= xdx 5(x) ———1 sf
no Sx (As)

The first term is obviously zero, while the second
term becomes zero after an integration by parts.

The last proof is for (22) which is the important
theorem. In the jellium model, the eigenfunctions
are plane waves parallel to the surface, and 4«(x}
perpendicular to it

is identically zero. This is the point which effec-
tively locates the metal surface in calculations of
image charges e«/4)x-xo( or electric field poten-
tials eE(x —xo). «

The proof of (AV) is very similar to that of (Al).
In the definition of xp, one adds and subtracts a
delta function from the integrand

r&

y(x) =4ve J
«'(x' —x)f(x')+ p(- ~} .

a OQ

(A2) 0'««(r) =e+"4'«(x) . (A9)

This is proved by adding and subtracting the & func-
tion 5(x) to the integrand

dxytx)(()(x) ———1 sf
np 8x

The first term gives (I()(0), while we must show the
second term to be zero. This is done by integrat-
ing by parts to get the expression

dx C) (x) —=— &xf(x)—1 "" sf 1 " s9)

np 8x np 8x

dx x dx x

4me ~ Cxx, 4
no ~oo X

where the last identity results from interchanging
the order of integration. If we add the last two ex-
pressions together and divide by 2, then

We may take the 4'«(x) as real-valued functions.
The charge density is obtained by summing over
all occupied electron levels

1
n(x) =—g + (x)«=~ dk(k k ) 4' (x)V&&' m o

(Alo)
The wave functions k«(x) are obtained as a solution
to Schrodinger's equation

5~ d~ Sk+v n~x) v xf~ ~ +@=0
2m dx 2m

(All)
where v„,(x) is defined in (23). This is the self-
consistent procedure used by Lang and Kahn for
calculating n(x). o Our proof does not depend upon
the form of v,«, except that it goes to a constant
value v,«(- ~) in the bulk metal.

Multiply Schrodinger's e(luation by 284'«/&x and
obtain
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d d ~ d
&

S~0~
+ —(@ )' v (x)-v (-~) — =O.

d& 4 eff off 2~ (A12)

Integrate dx over all space and getd, 8'a' e' d4, ~ '"
+ dxv„, (x) d

(+„)'= v.„(-~)+
2

[@,(x)] +
2

(A13)

All terms are zero in the vacuum x =+~

d h ~k~ S~ d4dxv„, (x) —(e)'= v ( )+ [e (- )]'+-
dr " "' 2m " 2m dx

Summing over all occupied electron levels and dividing by no yields the

dxv«x -——=z« -~ +——~ 0'+, -~ +
no dx no V q, p2mg dx (A15)

The two kinetic-energy terms are evaluated by
noting that the wave function + has the form
sin(kx+ ()) far from the surface, so these terms
give

dx Er (n(x)) ———= -', Er(n,),J 1 dn

0

this can also be written in the form

(A1V)

—Q )f'k /2m=-, E„(no)
1 2

noV a„„

which does yield the desired result (22). Since

Ch — vere x +&a + x =Ex~'"0 +~e~c —~f 1 dn

no dx
(A18)

which summarizes the equivalence of the Lang-
Kohn result on the right and our results on the left.
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