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In this paper we study the effect of correlations on Hartree-Fock energy bands for solids. The band
picture is retained, and -we obtain rigorous and general expressions for the correlation corrections. These
are then specialized to study insulators, and the range of validity of the approximations is discussed.
Qualitative conclusions about the effects of correlation are obtained directly, without the need of model
calculations. We recover the narrowing of the optical gap and the narrowing of the valence bands,
which have been known through model calculations, and also show that the effect of correlation on
x-ray-emission transition energies is less pronounced, almost negligible, due to a cancellation of
correlation contributions. In the case of metals, we again obtain general results and discuss model
calculations. We further address the problem of short-range correlations, which is best described in an
alternative formalism, and give estimates of the corrections. We give specific and detailed results for
MgO as illustration of all the concepts in this paper. Finally, we discuss the effect of correlation on
wave functions and oscillator strengths, and, in an appendix, point out a comparison of correlation
effects among free atoms, insulators, and metals.

I. INTRODUCTION

During the last few years, self-consistent solu-
tions of the Hartree-Fock equations with nonlocal
exchange have been reported for a number of sol-
ids, mostly insulators, ' ' but also a few semicon-
ductors6' and metals. ' For nonmetals, these
calculations confirmed earlier predictions~ that
the Hartree-Fock value for the optical gap would
be lax gee than the experimental gap by 3-5 eV.
These corrections have in the past been calculated
using the semiclassical model of Mott and Little-
ton, ' the parametrized polarization-potential
model used by Dagens and Perrot, ' the electronic-
polaron model of Toyozawa' ' ~ used by Kunz and
co-workers, and the plasmon model of Herman-
son. '4 Another model which has been used'~ in
this context is based on the Coulomb-hole-plus-
screened-exchange approximation of Hedin. ' In
this model, one constructs an effective one-elec-
tron potential which includes correlation in an ap-
proximate way.

In the case of metals, a model has been proposed
by Overhauser'6 which calculates correlation cor-
rections to the free-electron bands. This model
was used by the present authors to correct the
Hartree-Fock bands of calcium.

Recently, it was found that the above models
were not adequate to account for the discrepancies
between Hartree-Fock theory and experiment in the
case of LiF. Additional corrections were attrib-
uted to short-range correlations neglected by po-

laron-type models, and were estimated using
atomic calculations. 7'~

In this paper we give a unified treatment of en-
ergy-band theory beyond the Hartree-Fock approx-
imation. %'e first formulate the problem using the
configuration-interaction formalism and obtain rig-
orous expressions for the correlation corrections
to Hartree-Fock bands. We then show that definite
conclusions about the effects of correlation can be
made without introducing a particular model, such
as the electronic-polaron~~' or the plasmon mod-
el, '4'6 for the evaluation of the general expres-
sions. We study the optical gap, where correla-
tion effects are important, ' and also x-ray-emis-
sion transition energies for which we find that cor-
relation effects tend to cancel out, making Hartree-
Fock theory quite accurate. The variouS models
for calculations are identified, and their range of
validity is discussed. We then show that these
models neglect short-range correlation effects.
We introduce an alternative formalism, and show
how the new contributions to the correlation cor-
rections may be estimated by neglecting overlaps.
Throughout the paper, we do not consider electron-
hole-interaction effects which go beyond band
theory, leading to formation of excitons, reso-
nances, etc.

The plan of the paper is as follows. In Sec. II
we give the basic equations for the energy-band
theory in the Hartree-Fock approximation, in or-
der to establish notation and motivation. In Sec.
III we give the general configuration-interaction
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formalism and define the correlated energy bands
for an arbitrary solid. In Sec. IV we study the
special case of insulators and wide-gap semicon-
ductors. In Sec. V we discuss the special case of
metallic crystals. In Sec. VI we address the prob-
lem of short-range correlations. In Sec. VII we
discuss the effect of correlation on the Bloch func-
tions calculated in the Hartree-Fock approxima-
tion. %'e close with concluding remarks in Sec.
VIII.

II. HARTREE-FOCK THEORY

The results of Hartree-Fock (HF) theory for a
crystal are well known, but we summarize them
here in order to establish notation and perspective
for the main objective of this study.

In the HF approximation, the wave function of
the X-electron system is approximated by an anti-
symmetrized product of one-electron functions

g (r, ) This. .may be written

4 = 4 ' = a II q '(y,.),

which is simply a Slater determinant. The best
one-electron functions are then the eigenfunctions
of the one-electron Fock operator E

Fp~ (r) = e~4 /~4(r),

where we have written a band index n and a wave
vector f instead of n. This is a consequence of
the translational symmetry of the crystal (Bloch's
theorem). The eigenvalues e„~ form the well-known
Hartree-Fock energy bands. Their interpretation
is given by Koopmans's theorem, ~0 which states
that

E HF EHF
0 (N) (S1)

for a one-electron state which is occupied in the
ground state of the system, and

adding an extra electron to the N-electron system,
and creating a hole in the N-electron system. The
electron and the hole are not allowed to interact.
The most significant feature of this picture is that
it describes the various excitations by a unique
band structure. This is illustrated schematically
in Fig. 1. For the transitions A, B, and C, we
have

8(df = S(d~+ A('dg .0 0 0

Such a relation is extremely useful in deducing in-
formation from experiments. In what follows we
will see how the band picture and Eq. (5) are re-
tained beyond Hartree-Fock theory, as long as
electron-hole-interaction effects (excitons) are not
included.

III. CORRELATION AND QUASIPARTICLE
BANDS: GENERAL FORMALISM

In going beyond the Hartree-Fock approximation,
one would like to retain the band picture so that
excitation energies may be obtained directly from
equations like (4), and so that relation (5) holds.
Up to a point, this is possible and straightforward.
By analogy to Eq. (3), we define band energies in
terms of exact total energies as follows:

E (&) E (&-1)
nIf'.

These are no longer one-electron energies. They
are known as quasi-Particle bands, for reasons
that soon will become clear. If an excitation ener-
gy is defined as a difference in the new band ener-

COND

VAL

&n'9 —EH F EH F
0 (8+1) (iV ) (3b)

for a one-electron state which is vacant in the
ground state of the system. Here E„F is the total
energy of the M-electron system calculated in the
HF approximation. In Eq. (3), the assumption is
that during the removal or addition of an electron
to the N-electron system, the go~(~) do not change
appreciably. In this picture then, the excitations
of the system are simple one-electron transitions
from the state gg(~) to the state po.g. (r), and the
excitation energy is

CORE

FIG. 1. Schematic band-to-band transitions in an
insulator. A: valence-to-conduction-band optical ab-
sorption; B: valence-to-core-band x-ray emission; C:
core-to-conduction-band x-ray absorption. Dispersion
in k is not shown. , as it is of no interest to the present
di scus sion.

@~ = ~n') ' ~N ~ (4)

We have written the excitation energy as h(d', as
we visualize transitions via absorption or emission
of a photon whose energy is given by Eq. (4). In
view of Eq. (3), we see that such a band to-band-
excitation consists of two independent processes:
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gies by

S(d = E'~ —f~e) e
y

one can easily verify that a relation

ACOC = Rdg+ S(da

analogous to Eq. (5) holds.
Clearly, the HF one-electron bands defined by

Eq. (3) are a first approximation to the quasipar-
ticle bands. In fact, definition (f}) is useful only if
one assumes that EHF is a good approximation to
the exact total energy E', so that contributions
to E'"' beyond the HF approximation, the correla-
tion energy, may be included by perturbation
theory. Then one can write

E (N ) E (N ) E ((M')
HF+ C

over b and b' include the state go as well. Similar-
ly, for the (N+1)-electron system, if we assume
that the extra electron is placed in state P, , we
have

8+1 8+1
z, (/+1) ~ ~ (X+1.)o

j~i j'=1
(15)

e0+ g (N-1)(/&) + g (N)(e)

eo+ g (N) (h) + g 'N'1 &(e ),
(Iga)

where the (N+1)th term in the sum has j =a. The
quantity e((&,

'1" is as in Eq. (12), except that the
sums over b and b do not include b =a or b'=a.

%'e can now determine the corrections to the HF
bands as given by Eq. (10). We introduce a notation
which will soon become clear„and write

for M=X-1, X, N+1, where the subscript C
stands for correlation energy. By using Eq. (9}
in (5) and comparing with Eq. (3), one then imme-
diately obtains

where

g (N&( } ~ (N&e -~e.. . (17a)

eZ= &w+(&c"'-&c""}
eo „~(E(N+1) E(N) )

(ioa)

(10b)

In order to interpret Eq. (10), we proceed to in-
troduce the configuration-interaction formalism
used in Ref. 13. For convenience, from now on
we will use a single index i, j,0, . . . to denote nK

when the corresponding one-electron state is oc-
cupied in the HF ground state of the N-electron
system; and a single index a, b, c, . . . to denote
n'(1 when the corresponding one-electron state is
vacant. One can then show2~ that Ec ' can be rig-
orously written as

S
E, — ej(j~)

j~i j =1

The quantities e j ' are Pair correlation energies.
In second-order perturbation theory, they are
given by 3'32

e(N, & g g l(Ig(),'. lR I (}o(j&',.) I'
o)N v)N (e(.+ e( ~ }—(eo+ eoi)o o o o

(12)

where

R = (1 —P&o) .
1 ri —r2)

Here P,~ is the permutation operator. Now for the
(N-1)-electron system, if we assume that (l&0( is
the state from which the electron was removed, we
have

g S
E(s 1) e (N 1)i (14)

where e&&.
1" is as in Eq. (12), except that the sums

g (N+1) ( ) ~ (M+1)a

j=i

g(N-1)(t ) (& ~ (e(N) {N-1)i)
i

j=1 j =1
j&i

(1Vb}

(Iqc)

g (N)(h) ~ ~ (e (N+1)a e (N)
a jj'"ji (ivd}

These expressions appear complicated, but they
have a straightforward interpretation: g("&(e) is
the self-energy of an electron when it occupies the
one-electron HF state x, and the total number of
electrons in the system is M. By analogy, g„'"'(I&)

is the total change in self-energies of the M elec-
trons when the electron occupying state x is re-
moved. It is thus referred to as the self-energy
of a hole. In view of the definition of the quantities
e,'j ', itbecomes clear that these self-energies arise
from virtual scattering of an electron intotheemp-
ty one-electron states {or hole into the occupied
one-electron states), while another virtual excita-
tion is created in order to conserve momentum.
This yields the picture of an electron or hole which
is dressed with virtual excitations of the electronic
system, and which is called a quasif1article (elec-
tronic polaron in ionic crystals). A significant fea-
ture of Eq. (16}is that, in general, any HF one-
electron energy state, whether it is occupied or
vacant in the HF ground state, must be corrected
successively by the self-energy of an electron and
then by a hole present in that state. Physically,
this makes sense; the correlation energy is a sum
of pair correlations [Eq. (11)j. We can think of the
e jj. as correlation bonds between pairs of electrons.
%hen an electron is removed, two things happen:
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In insulators, the following approximation to
Eq. (16) has been implicitly assumed thus far'0'0:

eo+ g &&&-1&(h}

e0 + g (X+1 & (e )

(18a)

(18b)

Toyozazawa's' electronic-polaron model has been
shown by Kunz to be a method for approximately
evaluating &g,

'" 1&(l&) and &g,&"'1&(e). Hermanson's&~

plasmon model is an alternative model for evalu-
ating the same terms. 3 Here we discuss the con-
ditions of validity for Eq. (18), and arrive at some
conclusions about Eq. (18) which are independent
of the method used to calculate the self-energies.

We go back to Eq. (17) and the definitions of the

quantities e,'";.'. First we examine the self-energies
that are retained in Eq {18}which become

&«&
I (jj '

I R I f f&) I

0

g (N-1){I )i ~ Q Q (e0+ ~0} (e0+e0 )
s

4+
{&9a)

g(N+1){

I {ja IR I bf&') I

(~'+ e'. ) —(e'+ e') '

b&o b&o

{19b)

(i) all the bonds between this one electron and all
the other electrons are broken. This is the elec-
tron self-energy in the f&&-electron system 8 "'(e);
(ii) the bonds among all the N le-lectrons left be-
hind change a little. All the changes together are
the hole self-energy in the (N 1-)-electron system,
S&'" "(h). Similarly, when an electron is added,
all the bonds it establishes constitute the electron
self-energy in the (X+ 1)-electron system, and all
the changes in the bonds of the N electrons is the
hole self-energy in the X-electron system. The
number of electrons, N, N+ j., or N-1 is very
crucial, as we shall soon see.

There is one more point worth noting about Eqs.
(16). To second order of perturbation theory, Eq.
(16a) is exact for the ionization energy of an elec-
tron for a system of any size, whether it is an
atom, molecule, or an insulating or metallic crys-
tal. Similarly, Eq. (16b) gives the electron affin-
ity for any system. In the next few sections, we
will see how different approximations apply to dif-
ferent systems. For example, we find that for the
ionization energy [Eq. (16a)], the electron self-
energy is the dominant correction in atoms and
small molecules. For wide-gap insulators, we
have the other extreme, namely, only the hole self-
energy is important. Finally, for metals, both
corrections are equally important. We treat insu-
lators in Sec. IV, and metals in Sec. V. Atoms
and molecules are discussed in the Appendix.

IV. INSULATORS AND WIDE-GAP SEMICONDUCTORS

We first concentrate on the state ~ being the top of
the valence bands, and the state a being the bottom
of the conduction bands. In this ca,se, we note that
in both Eqs. (19a) and (19b) above, the smallest
energy denominator is of the order of the Hartree-
Fock energy gap E between the valence and con-
duction bands. If we now examine the two seU-en-
ergies which are dropped from Eq. (16) to Eq. (18},
which are

I (ji I R I bb'}
I+Z ~ (e'+ e', ) —(e'+ e') '

4~1 b)N b'&N
jAj

(19d)

we note that in these two expressions, tne smallest
energy denominator is of the order of 2E»; the
electron or the hole would have to scatter across
the gap. Thus, if the terms (19b) and (19c) are
dropped, then in calculating Eqs. (19a.) and (19b)
the electron or hole should be allowed to scatter
only within an energy range less than E, . (Note
that this does not rule out interband scattering in
general, but only scattering across the fundamen-
tal gap). This would allow a direct test of the va. -
lidity of Eq. (18): If scattering of the electron or
hole to energies larger than E» is computed and
found to have a significant contribution to the self-
energies in Eq. (18), the approximation (18) is not
valid. One would expect this to happen in semi-
conductors with a small gap and, of course, in
semimetals and metals where the gap vanishes.
Even in insulators with a wide gap, however, ap-
proximation (18) cannot be expected to be altogether
adequate. Clearly, if scattering by energies more
than E, is omitted, the electrons in full core bands
would not polarize when a hole is present in the
valence band or in one of the core bands.

We conclude that approximation (18) is altogether
bad for small-gap semiconductors and metals.
For wide-gap insulators, it generally adequately
describes correlation interactions with the elec-
trons of the valence bands. It is not adequate for
correlation interactions with core-band electrons.
In this section, we confine our attention to the cases
when approximation (18) is adequate. We study a
number of general properties of the self-energy
corrections to the HF energy bands which follow
directly from this approximation, but we do not de-
pend on any particular model for calculating them.
Some of the results have been arrived at previously
through specific models 2 ' ~ which implicitly as-
sumed approximation (18}.

A. Valence bandy

We first examine the case in which the width of
the HF valence bands is less than E, . From the
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form of Eq. (19a) one immediately infers that, for
all points in these bands, the energy denominator
is akvays positive; the corresponding self-energy
is, therefore, also positive, and the HF bands move
uP on the absolute energy scale.

As we noted earlier, for the top of the valence
band, the smallest energy denominator is of order
E, . For points below the top, the energy denomi-
nators are less than E» for scattering to higher en-
ergies. Assuming that these terms dominate {the
matrix element might alter this), we have the follow-
ing consequence: as we move toward the bottom of
the valence bands, the self-energies become larger
and the HF levels move up more than the top levels.
This is illustrated in Fig. 2. The net result is
a narrowing of the valence bands. This is in agree-
ment with results of actual calculations based on
the electronic-polaron model, but we see here that
it is a model-independent result. Matrix-element
effects could, of course, alter the picture and re-
sult in smaller self-energies for the bottom of the
valence band, the outcome being a net widening of
the bandwidth. This seems to be unlikely, how-
ever.

An additional comment of interest is that for the
toP of the valence band, scattering near the top is
dominant, so that an effective-mass expansion of
the band energy of the form h k j2m~ (or equiva-
lent anisotropic forms) may be adequate. On the
other hand, for the bottom of the valence band,
scattering near the toP is again dominant and an
effective-mass expansion would not be appropriate
at all.

Finally, we examine the case of HF valencebands
for which the bandwidth is larger than E». In this
case, the self-energy expressions blow up for
points which lie an energy ~E, below the top; the
energy denominator can be zero. This simply
means that the form of perturbation theory we used
is inadequate to describe such cases. In fact, ap-
proximation (18) itself is on shaky grounds. One
might still expect similar qualitative results such
as narrowing of bands. By simulating the excita-
tion spectrum of the crystal with a "model" spec-
trum, one might even be able to avoid the singu-
larity. We will see how this can be done in Sec.
IVE below, and in Sec. V, which is on metals.

B. Core bands

The core bands are very simple because they are
generally flat, i.e. , the bandwidth is negligible
compared with E . The self-energy corrections
are similar to the case of valence bands which are
narrower than E», and hence they are always posi-
tive. Because of their flatness, and the fact that
they are farther than E» from other bands, their
self-energy corrections will in general be larger
than those of the top of the valence band. In both
cases the smallest energy denominators are equal
to E, , but there are more of them in the case of a
flat band. (Flatter bands have larger effective
masses, and thus the result "larger effective mass
implies larger self-energies" is again model-inde-
pendent, barring unexpected matrix-element ef-
fects. Hermanson arrived at this conclusion with
his model calculation of self-energies. )

C. Conduction bands

IO

CORE 8ANOS

FIG. 2. Effect of correlation on the Hartree-Fock
energy bands (solid lines) in an insulator. The dashed
lines are the correlated bands.

Conduction bands, of course, form a continuum.
From any particular point in these bands, scatter-
ing can again be allowed within a range extending
less than E» on both sides, in accordance with the
conditions of approximation (18). For the bottom
of the conduction band and for points within a dis-
tance E,' from the bottom, Eq. (19b) reveals again
that the energy denominators are always positive.
This makes the self-energy corrections always
negative, which means that these conduction bands
always move down on the energy scale. Again,
this result is familiar from model calculations of
self-energies. ' For the conduction bands of
higher energies, the perturbation expressions blow
up again. A "model" might again save the day, and
one can argue that the self-energies at high ener-
gies go to zero (Sec. V).

For the bottom of the conduction band, the small-
est energy denominator is equal to E, as it was for
the top of the valence band. Ignoring matrix-ele-
ment effects again, we can conclude that the self-
energy correction is larger when the minimum is
flat than when it is steep. Since, in general, con-
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duction-band effective masses are smaller than
valence-band effective masses (valence bands are
flatter), electron self-energies would in general
be smaller. This has again been borne out from
model calculations. ' '~' 4

For points above the minimum, scattering to the
neighborhood of the minimum is again more im-
portant (energy denominators are smaller than E',)
so that, for example, the flatness of the band at
L might not determine the relative size of the self-
energy correction at I (assuming a minimum at
I'). If matrix-element effects do not change the
picture radically, we would again expect that points
of higher energy have larger self-energy correc-
tions, as illustrated in Fig. 2. This cannot be al-
together true, of course, since at very high ener-
gies self-energies ought to vanish. Matrix ele-
ments may be the ones to bring about the switch.
The fact that a switch from increasing to decreas-
ing self-energy corrections must occur, lends sup-
port to the speculation that electron self-energies
don't vary appreciably over the range of energies
of interest. Overhauser's" model for metals (Sec.
V) shows that electron self-energies for the empty
bands increase for a whi1. e, and then make a fairly
abrupt switch and start decreasing, heading toward
zero. A similar effect is more likely to happen in
insulators. In fact, Toyozawa's electronic-polaron
model shows that the effective mass of an electron
isenhancedby self-energy effects. This means that
the band minimum becomes flatter, in agreement
with our general result that points of higher energy
move down move than the minimum. We can thus
end this subsection with the conclusion that the gen-
eral Eq. (19a) would indicate a downward move-
ment of the conduction bands, with points of higher
energy moving more than the minimum. Only par-
ticular calculations can show whether the move-
ment is essentially rigid or not. So far, model
calculations seem to favor almost rigid motion of
conduction bands, at least for the energies of in-
terest.

D. Interband transitions

We have thus far studied the general trends of
correlation corrections on HF bands. We now ex-
amine the effect of these corrections on interband
transitions. There are two cases of interest: (i)
excitation of an electron from an occupied band
(core or valence) to the empty conduction bands;
and (ii) transition of an electron from a valence
band to a state in a core that happens to be vacant.
If we choose to think in terms of transitions caused
by interactions with an e1.ectromagnetic radiation
field, (i) corresponds to the absorption of photons
and (ii} to the emission of photons.

In the case of absorption, the transition energy
is given by

Scan b

so that

lz(u, ~ = (e,'—e', ) + ($,(e) —8,.(») ), (21)

where we dropped the superscripts on the self-
energies for simplicity. This is the expression
originally discussed by Fowler" for the optical
gap. Since we have found g(e) & 0 and S;(») &0,
we recover the well-known result that HF ab-
sorption thresholds are reduced by correlation
effects.

We now turn to the emission process during
which an electron drops from a valence-band
level to a core-band level. Both these levels be-
long to the occupied space of the HF manifold so,
according to approximation (18), both are cor-

rectedd

by hole self -ener gies. Using «; and «;
V C

for the valence- and core-band levels, respective-
ly, we get

&~emis = «»„—«», ~ (22)

E. Models

Equations (19a) and (19b) have not been evaluated
in real cases. Examination of E|I. (19b), for ex-
ample, reveals that it can be interpreted as an
interaction energy, to second order, between the
electron and a collection of virtual particles which
can take on energies equal to «~ = «, . —«, , and
whose wave functions are given by the products
P', P, =6~. The electron can scatter from state «,'
to states «, via the creation of a virtual particle.
Equation (19b) becomes

~ ( ) Q Q (J'al Rl bb')

g «~+ «P —«a
(24)

By imposing conservation of crystal momentum,
and recalling that a and b stand for nA and l, k+ q,
P is found to stand for a band index (let P denote

so that

6', z, =(&; —e& )+(& (») —& (»)). (22)

We note an important new result. Since the two-
hole self-energies are both positive, they will tend
to cancel each other. This means that correlation
corrections to emission energies may not be sig-
nificant. As we saw earlier, core-hole self-ener-
gies are likely to be larger, in which case the HF
transition energy is reduced by correlation. It is
conceivable, however, that core-hole self-ener-
gies may be smaller, in which case the HF transi-
tion energy is increased by correlation.

Finally, we observe that by writing the corre-
sponding expressions for A», h&~, and k&c of
Fig. 1 using Eqs. (21) and (23), relation (8) is
satisf ied.
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this band index) and a wave vector which must be
q. Hence

(ts k'+qAtk}

(25)

where we have written V,~(q) for the matrix ele-
ment. In a similar manner, the following expres-
sion is found for a hole self-energy:

~ (I,) ggg ~ Vi~(e)~'
~ l~ k+0 ~Pq

( l a 0+aktk'}

(26)

In Eq. (25) the sum over / is over empty bands;
in Eq. (26) the sum over I is over occupied bands.

The electronic-polaron model of Toyozawa' and
Kunz" takes the virtual particles io be longitudinal
excitons, and restricts attention to one band with
no dispersion. Hermanson's model takes the vir-
tual particles to be plasmons. In both of these
models, virtual excitations of only the valence elec-
trons are included; these are handled adequately
by linear response (dielectric theory). Virtual ex-
citation of core electrons (resulting in core polar-
izations) are entirely neglected, and in fact are
not calculable by linear-response theory. As we
saw earlier, they don't even fall within the validity
limits of approximation (18). They will be dis-
cussed in detail in Sec. VI.

The details of the iwo models may be found in
the respective papers. ' ' ' In both cases, the

coupling matrix elements are determined so as to
reproduce the dielectric properties (in the linear
limit) of the insulator. One prediction of the elec-
tronic-polaron model ' ' deserves more atten-
tion here. As we mentioned in passing earlier, it
predicts a definite enhancement of the particle's
effective mass, which means that the band mini-
mum becomes flatter. Toyozawa f inds this en-
hancement to be by a factor of —,

' a where c). is the
polaron coupling constant. In alkali halides o is
- 0. 5, ' so that the mass enhancement is about
10%. This means thai levels slightly above the
conduction-band minimum move down by as much
as 10/& more than the minimum. It seems likely
then, that levels farther away from the minimum

at I' (say), as we go toward X or t., would move
down by over 10 j(} more than the minimum. Such
a result is evident in the calculations of Ref. 13.
This calls for more accurate calculations of cor-
relation corrections to the conduction bands.

Finally, we note one interesting difference in
the two xnodels. In the electronic polaron, the
minimum excitation energy is the optical exciton,
i.e. , it is of order E~. Ne recall that if the Har-
tree-Fock valence band were wider than E„ the
perturbation expression blows up when applied to
correct the bottom of the band. In the plasmon
model, the minimum excitation energy is the plas-

ma frequency, which is of order 1.5E~. Thus,
through the artifice of the model, one can use the
perturbation expressions for valence bands which
are wider than F,. This same artifice proves to
be extremely valuable in the case of metals (Sec.
V).

The situation in metals is entirely different.
There is no gap separating occupied states from
virtual states. First, this makes approximation
(18) completely bad; both terms in Eqs. (16a) and

(16b) must be taken into account on an equal foot-
ing. Second, disaster occurs in all cases, be-
cause there are always energy denominators in
Eq. (19) which vanish. This is a well-known prob-
lem. The singularity is found to be logarithmic.

One can get around this difficulty by the artifact
used in Overhauser's model'6: One can go ahead
and interpret the expressions for the self-ener-
gies as interactions with a set of virtual particles
and write equations like (25) and (26) for all four
of the self-energies of interest appearing in Eq.
(16). Then, if one assumes that these imaginary
particles can take on nonzero energies larger than
a finite energy, the singularity is removed. Over-
hauser's model takes these particles to be plas-
mons whose smallest energy is given by IEa~,

where (d~ is the plasma frequency. The model
works well. In Fig. 3 we show the results for a
number of metallic densities to energies high
enough to illustrate the point we made earlier:
electron self-energies at first keep getting larger
in absolute magnitude, but a switch occurs at some
energy, so that, finally, the correlation correction
goes to zero at very high energies.

There are a few interesting observations to be
made. First we note that if approximation (18)
were to be valid, it would mean that the top of
occupied &evels (Fermi level e~) moves up while
the bottom of empty levels (infinitesimally above

e~) moves down. Thus a level at c~ —5 would
undergo a positive correction, and a level at e~
+ 6 would undergo a negative correction. In the
limit 5- 0, the correction would have to go to
zero, since in normal metals no gap exists at the
Fermi level. Thus the expression for the cor-
relation energy would go through zero at ~F. %e
don't expect this to be so, however, because Eq.
(18) is not valid; both occupied and vacant states
can move either up or down in principle. This is
borne out by Overhauser's model. The Fermi
level is seen to move down by about 1-1.5 eV.
This is a, measure of how much Eq. (18) breaks
down in that case. %e also note that the bottom
of the band at k =0 moves up for a net narrowing
of the HF band. The Overhauser model has been
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klkp

FIG. 3. Correlation correction to Hartree-Fock bands
for metals in the free-electron limit using Overhauser's
model I'Hef. 16). The number on each curve is the value
of r„ the radius of an average spherical volume per
electron in Bohr units. Note that at some point at ener-
gies above the Fermi level, the correlation energy turns
up toward zero.

used by the present authors to correct the ab
initio HF bands for metallic calcium with a fair
amount of success.

VI. SHORT-RANGE CORRELATIONS

Under the category of short-range correlations
we will study effects that go beyond the approxi-
mations which lead to the polaron and plasmon
models discussed in Secs. IV and V. These are
predominantly polarizations of core-band elec-
trons resulting from virtual excitations with ener-
gy denominators larger than E',. For such pro-
cesses, approximation (18) ceases to be appro-
priate. We call these short-range effects because
the models used to calculate the correlation inter-
actions with valence-band electrons neglect scat-
terings of short wavelengths. This is clearly true
for the electronic-polaron model: only one band
of excitons is included, and thus q is restricted in
the range of the first Brillouin zone. Larger
q's —short wavelengths —are left out; if q is al-
lowed outside the first zone, it would correspond
to more than one band of excitons. In the case of
the plasmon model, some kind of short-range ef-
fects are included through the dispersion of the di-
electric function. Such a correction could be in-
cluded in the polaron model as well. In either
case, one would conclude that dispersion in the
dielectric function would make the coupling con-
stant and, hence, the self-energies smaller. Use
of effective mass in the plasmon model means
that only small values of q are sampled anyway,
so that short-wavelength effects are again ex-

where P„ is the total wave function of the ground
state of a negatively charged ion at the vth site.
Then, in order to satisfy crystalline symmetry,
we construct the Bloch-sum-type state

V A v
(30)

so that

eluded. Dispersion in the dielectric function
would thus not alter the self-energies appreciably.

We might note, before we begin, that long-range
correlation corrections calculated by the electron-
ic polaron method have generally been adequate to
account for the shifts of the HF valence and conduc-
tion bands, and produce agreement with experi-
mental values of optical gaps. In the case of LiF,
this was not true; core-electron polarizations were
estimated by atomic models, and agreement with
experiment was obtained. In this section we pre-
sent a formal study of these corrections.

The configuration- interaction formalism used
in the previous sections, though good in principle,
is not very suitable for the effects of interest; here.
They are, instead, conveniently described by a
formulation similar in spirit to the formalism in-
troduced by Frenkel ' for exciton states in in-
sulators. In this approach, the ground state of the
system is written

N~

+.=~II ~' (27)
v=1

where Q'„ is the ground-state many-electron wave
function of the IL(.th atom, and N„ is the total num-
ber of atoms. If the Q, are taken to be free-atom
wave functions„C, for the crystal would have to be
a, linear combination of functions like Eq. (27). On
the other hand, the (I5; may be thought to be built
fromWannier functions of the crystal, in which
case Eq. (27) is adequate. We will have this in
mind, but will use the term "atomic" for sim-
plicity and clarity in the motivation.

The ground-state energy of the crystal contain-
ing X electrons can then be written

E()() (q
~

Jf()()
~

y ) (26)

where H'"' is the N-electron Hamiltonian. For
the Frenkel exciton, one then proceeds to construct
an excited state of the N-electron system. In the
problem of interest here, as is clear from Eq. (6),
we instead construct the ground states of the (N
+1)-and (N 1) electron sys-tems, -in order to de-
scribe the bottom of the conduction band and top
of the valence band, respectively. For example,
for the (/+ 1)-electron system, we first define

~, =~~. II ~:, (29)
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E(N t) (g
~

Ht)t'+1)
~

y ) (31)

The index a labels conduction bands. Finally,
from Eq. (Gb) we get

e,„-, =(+,„-, ~H'""~g, „-.) —(4,~H' )~e,). (32)

Similarly, for the ( lV I)--e Ie ctr onsystem, we de-
fine

We note that gk stands for the sum h,'")(lz)
+ tel,'""(e)which appears in Eq. (16b). In the pres-
ent formalism, such a separation is not possible.
For simplicity, we will still call S,g. the electron
self-energy. Similarly, for the valence and core
bands, we get

0
&~P =& r+ ~sr

where
(33)

$,„-=(~,„-/
H'"-"

f
e, g -(e, ;/

H'"-"
i
g, „-) . (43)

where (t); is the wave function of a positively
charged ion at the Xth site. Then

N

ik Rg +e ke'k,
A A=i

(34)

where i labels valence or core bands. Finally,
from Eq. (6a),

k;„-=(g,~H'"'~C, ) —(4;k~H'" "~C;g. (35)

The first thing we must show for the above for-
malism is that, if we neglect polarization, we re-
cover the Hartree-Foek approximation and Koop-
mans's theorem. %'e do this for the case of the ex-
tra electron. If we neglect polarization of the oc-
cupied orbitals, we can write

y„= )t„(r) y„', (36)

where )i„(r) is the Wannier function at the bottom
of the conduction band (first virtual orbital of the
atom described by P„'). The bar on tt)„denotes
that polarization is not included. Using Eq. (36)
into (29), and then in Eq. (30), and comparing with
Eq. (27), we can write the unPolanzed equivalent
of Eq. (30) as

&t ((4,
~

H '" "
~

4 „,) —(4 '
~
H '~ "

~

4') ) (44)

and note that the limit of interest occurs when
overlaps are negligible. This is thus particularly
suited for core states. Thus, neglecting all over-
laps, in which ease H'" "becomes a collection of
noninteracting atomic/ionic Hamiltonians, we get

1
45

Again for convenience we call this the hole self-
energy, even though it stands for the sum of the
two terms in Eq. (16a).

We note that Eqs. (41) and (43), in principle,
contain all correlation effects, as did the con-
figuration-interaction formalism. In evaluating
them, we can seek a limit in which only short-
range effects are included. Then the corrections
obtained from the polaron or plasmon models of
the previous sections will be additive with the new
corrections.

We do this for Eq. (43) by writing it using Eq.
(34),

NA NA

g Q Q ik'()tk-)tk )

+ok' t ok'(r) E

where

(37)

where H& is the Hamiltonian of a positive ion at
the Xth site. Defining

g.'; (~) =~H e'"'""X.(r),
A v

(38)

is clearly the HF Bloch function of the extra elec-
tron in the conduction band. With Eq. (37) in Eq.
(32), we see that everything reduces to the Koop-
mans theorem and thus

E't.t = &M'k
~

H k
~
4'k),

Et.t = &tl''k~ H'k~ '&D,

we see tha. t

~ik ~ tot ~ tot ~

(46)

(47)

(48)

0„
&aP' = &ai'

The proof for the hole state is analogous, but

slightly mare involved.
Having shown this, we immediately conclude

that the electron-band energy is given by

(39) which is simply the difference in total energy be-
tween the unrelaxed and the relaxed ion. It is
thus an inherently positis'e quantity, it ra, ises the
occupied-band energies, and thus reduces absorp-
tion thresholds even further. It can best be cal-
culated by writing Eq. (48) as

0 ~0
&ak = &af' + ~aP' ~ (40)

toik (+tot +tot) (stot stot) (49)

where, from Eq. (32),

S p = (C.„-.
i
H ""

i 4,-„)

(41)

The first term is simply the true ionization ener-
gy for the atom, whereas the second term corre-
sponds to the eigenvalue approximation for the
ionization energy. This is the form of the cor-
rection used in Ref. 17. %'e see that the correc-
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tion is important in crystals made up of atoms
for which Koopmans's theorem is appreciably un-
suitable. Such atoms are the first-row elements
for which the number of electrons is small. This
explains why the correction was necessary for
I.iF. In fact, the same correction (about 3.4 eV)
must be present for the valence bands of all fluo-
rides. For chlorides, on the other hand, the cor-
rection is smaller, of order 1.5 eV. In Table I
we list estimates of the valence-band hole self-
energy corrections obtained from Eq. (49) and
published HF calculations for atoms and ions
for a number of elements. We conclude that these
corrections are important in nitrides, oxides, and
fluo rides.

We emphasize that these are upper-bound esti-
mates. " The valence atomic orbitals are actually
smeared out in the crystals, and don't polarize the
core orbitals as much. A similar approach can be
worked out for conduction-band states. For these
cases, however, overlaps are very large, the
electrons are largely excluded from the core re-
gions, and their presence does not polarize the
core electrons appreciably. For first-row ele-
ments, about 1 eV would be an upper bound for
such a correction, and for larger elements it
should be negligible.

Finally, for core states, the approximation of
neglecting overlaps works best, and estimates in
terms of Eq. (49) are expected to be quite accu-
rate. " In Fig. 4 we plot the size of these correc-
tions for a number of atoms, and we observe thai
they increase in magnitude with increasing atomic
number Z. These estimates have already been
used in the case of Mgo (Ref. 7) to correct the HF
x-ray transition energies. With the additional cor-
rections arising from the long-range correlation
effects discussed in Sec. IV, the final theoretical
values were found to agree exceedingly well with
experimental values. In Table II we reproduce the
results of that calculation as an illustrative ex-
ample.

TABLE I. Estimates of short-range-correlation cor-
rections to valence-band-hole self-energies.
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FIG. 4. Estimates of short-range correlation effects
due to core-band polarizations. Z is the atomic number
of the atom from which a band of interest originates.

VII. WAVE FUNCTIONS AND OSCILLATOR STRENGTHS

2 l(gzz, lpl g,z-,) I

Sm ez(k) —ez (k)
(51)

The quantity f,&(k) is the oscillator strength for
the transition between bands i and j. If f;;(k)/[c&(k)
—e, (k)] is assumed constant, then e,(~) becomes
proportional to the joint density of states of bands
i and j. As is well known, the position of peaks
and valleys in e2(zd) is almost entirely determined

We have thus far concentrated on the effect of
correlation on the band-to-band excitation ener-
gies. Experimentally, however, one obtains both
the transition energies and the strength of various
transitions by measuring absorption coefficients or
the intensity of emitted photons as a function of

energy. Theoretically, these quantities are pro-
portional to the imaginary part of the dielectric
function e2(&d}. This is given by

e'ff' ~ d'fz f~g(k)
m zz (2zz}' ez(k) —e, (k)

X Q(E,. —6, I zzz)

where

Material

Fluoride s
Oxides
Nitrides
Clorides
Sulfides
Phosphide s
Neon
Argon
Diamond
Silicon

Self-energy correction (eV)

3.4
4. 9
4. 7
1.5
1.9
2. 6
2. 2

1.3
1.0
0.4

Core leveP

OL,
OK

Mg L23
Mg Li
MgK

30.6
557 7
49. 1
89. 9

1322. 6

&5 ~HF+ b& Experiment

2. 5

16.6
1.9
1.9

20. 5

28. 1

541.1
47. 2

88. 0
1302.1

22 —23
528. 5

46. 2
85. 0

1299.8

lo error
2~ ~lo ryPt

2%

'Spectroscopic notation is used for the core bands.
"Reference 32.

TABLE II. Transition energies (in eV) from the top
of the valence band to the core levels of Mg and 0 in

MgO.
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by the joint density of states. Subsequent inclu-
sion of f&~(k) generally alters the height of peaks
and the depth of valleys, but does not shift their
positions appreciably.

Thus, having computed a Hartree-Fock band
structure for a crystal, and having corrected the
bands for correlation effects, a, joint density of
states ought to predict the positions of peaks and
valleys in ep(~) quite accurately. In order to
compute a theoretical ep(&u), one needs the oscil-
lator strengths [Eq. (51)]. Use of one-electron
Bloch functions for such a calculation cannot, how-
ever, be expected to yield good agreement with
experiment. This can be seen as follows: as we
have seen in Secs. III-V, a large part of the cor-
relation correction to the Hartree-Fock bands is
obtained by a polaron-type model. The correction
is obtained by second-order perturbation theory
(the first-order correction vanishes) from Eqs.
(19) or (25) and (26). To the same order in per-
turbation theory, the wave function is given by

(52)

where X-„ is the wave function of the exciton (or
plasmon) of wave vector K, which is a many-elec-
tron function. Thus C~g is also a many-electron
function which describes the quasiparticle (the
electronic polaron). Equation (52) makes clear
the fact that it is the quasiparticle that has a defi-
nite wavevector k, while the bare particle, elec-
tron or hole, describes by gf(r), constantly shares
part of its momentum with virtual excitons. Thus,
since the corrections [Eqs. (25) and (26)] to the
Hartree-Fock energies are important, the cor-
rection to Pf(r) given in Eq. (52) may be expected
to be equally important in the evaluation of oscil-
lator strengths. " In the cases where short-range
correlation effects are also important in correct-
ing the Hartree-Fock energies, one would expect
that Hartree-Foek oscillator strengths would be
even worse.

This difficulty with oscillator strengths is quite
unfortunate; if one could calculate accurate cor-
related oscillator strengths, the result would be
an accurate theoretical band-to-band spectrum.
By comparing such a spectrum with an experimen-
tal spectrum, one could then identify all eleetron-
hole-interaction effects, such a,s exeitons, reso-
nances and antiresonances, which are neglected in
the band picture. The ab initio computation of
these effects is, of course, even harder, and we
do not discuss it at all in this paper.

VIII. CONCLUSIONS

In this paper we have studied the effect of cor-
relation on Hartree-Fock energy bands in the limit

in which electron-hole interactions are not in-
cluded. In this limit the concept of rigid bands,
in terms of which excitation energies may be com-
puted remains valid. We have seen that the "cor-
relation corrections" may be formulated in a gen-
eral way, from which a lot of information may be
obtained for the special cases of insulators and
metals, without appealing to explicit model calcu-
lations. The models that have appeared in the liter-
a,ture were seen to be special cases, and their
ranges of validity were studied. We also formu-
lated the problem of short-range correlations,
which are not included in the polaron-type models,
and gave estimates of their magnitudes.
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e, =~', +n,E,+ S,'"-"(a)+g,'"'(e) (A 1)

by analogy to Eq. (16a). e; is again the Hartree-
Fock eigenvalue. The quantity 4E~ is the correc-
tion due to the failure of Koopmans's theorem in a
small system. One usually calculates &&+ AF.„
by doing a new Hartree-Fuck calculation for the
ion, and subtracting tota. l energies

0 (N) (N-1)
&~+ ~Ex = EHF —&HF ~ (A2)

The correlation corrections are not convention-
ally written as in Eq. (Al), but the expression al-
lows us to unify the present study for an arbitrary
N-electron system. We recall that in the case of
insulators we found g,'" "(h) to be the dominant
contribution [S,'"'(e) could be dropped], whereas
in the case of metals we found both A",

" "(h) and

8,'"'(e) to be comparable. In the case of atoms,
it is found that, in general, the other extreme
holds, namely, S';"'(e) is dominant. In physical
terms this is understood if we think of the cor-
relation energy as a sum of "bonds" between pairs
of electrons, as we did in Sec. III. The removal
of one electron does two things: breaks all the
correlation bonds of the one electron [this is

APPENDIX: CASE OF FREE ATOMS

In the main text of this paper, we studied the
effect of correlation corrections to Hartree-Fock
bands in solids. For free atoms, instead of bands,
one has discrete term values, namely the eigen-
values of the Fock operator. These eigenvalues
are, of course, not true ionization energies. Two
corrections must now be applied: (i) corrections
which are within Hartree-Fock because Koopmans's
theorem is not valid in small systems, and (ii)
correlation corrections which go beyond Hartree-
Fock. Thus the electron ionization energy may
be written as
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g,'"'(e)] and alters the unbroken bonds [this is
SI" "(h)]. ln atoms "breaking of bonds" is more
crucial, and empirical studies led to a set of rules
for correlation corrections. ' Note that this al-
ways leads to correlation corrections that make
the ionization energy larger, since 8,'"'(e) is al-
ways negative. Exceptions to these rules were

found" and termed "anomalous". The interesting
observation here, excluding these anomalies, is
that atoms and insulators are the two extreme
limits of Eg. (Al) where one or the other self-
energy is dominant. Metals are, in some sense,
a transition case, since for them both self-ener-
gies are comparable.
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