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Lattice vibrations induced by a polarizable impurity atom in polar crystals
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The efFect of a polarizable impurity atom on the frequency of optical vibrations of a crystal is

calculated. The impurity-lattice interaction is treated by considering the lattice polarization as discrete in

contrast to earlier methods based on the continuum approximation. In the appropriate limit, our result

goes over exactly to the result of the continuum theory.

I. INTRODUCTION

Dean, Manchon, and Hopfield' have recently ob-
served lattice modes bound to neutral impurities
in Gap. These modes are shown to be due to the
coupling between the impurity atom and the optical
modes of the host lattice. Using an appropriate
form of the Frohlich Hamiltonian they have calcu-
lated the energies associated with these modes,
which are in reasonable agreement with experi-
mental data. Implicit in these calculations is the
assumption of a continuous polarization field of
the lattice. For an impurity whose electronic wave
function extends over several lattice cells this
assumption is reasonable, but for a strongly lo-
calized impurity state the discreteness of the
lattice may be important and ought to be taken into
account. The purpose of this paper is to analyze
the problem within the framework of a model that
retains the discrete features of the lattice. The
energy of the local modes calculated through this
model is a generalization of the analysis given by
Dean et al. ' and goes over to their value in the
continuum limit. The effect of dispersion of the
optical modes is included in this model. The value
of the change in the binding energy of the impurity
electron due to electron-phonon coupling with the
optical mode is also computed.

The optical modes in a polar crystal can be con-
sidered as arising out of the dipolar oscillations
in different lattice cells. This coupling is rather
weak and hence the dispersion in the optical branch
is rather small. Although this picture of optical
modes is not as rigorous as what one uses in the
full lattice dynamical analysis of the vibrations,
it is adequate to bring out the essential physics of
the present problem, and will be the principal
feature of the model of the polar crystal adopted
in this paper.

In the presence of the impurity additional cou-
pling between the dipolar oscillators in different
lattice cells arises through the induced polariza-
tion of the impurity. This coupling perturbs the
optical modes and can produce local modes of the

sort observed by Dean et a/. ' We shall examine
this in detail.

II. ANALYSIS OF THE MODEL

The equation of motion for the effective dis-
placement u1 which leads to polarization within
the Tth cell of the crystal with a single impurity is

—paPu; = Q +(~T -T'
~)

~ u;. +g D(T,T') ~ up,

and

u;=~pe '"''v(k)
k

(2.2)

where N is the number of cells and k is a wave
vector defined within the Brillouin zone, Eq. (2.1)
can be written as

—p, [uP —&u'(k)jv(k) = Q D(k, k')v(k') . (2.3)

Here, for simplicity, we presume that I" is iso-
tropic and

u~'(k)=pe '"'+(ITI), (2 4)

(2 1)

where p. is the effective mass associated with the
dipolar oscillations within each cell, E(iT-T ~)

and B(T,T') are the force-constant tensors, giving
the force on the Tth dipole due to the T'th dipole
through direct interaction and via the impurity,
respectively. E((T-T'~) depends on the difference
)T-T'~, due to lattice translation symmetry,
whereas D(T,T') depends on T and T' separately, as
also on the position of the impurity. We shall
treat the impurity term in (2.1) as a perturbation.

In terms of the Fourier transforms v(k) of u&

defined through the equations
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D(k k~) Q g(T Tl)s -)(k') -k"T') (2.5)
lar determinant would give us the perturbed LO
frequencies of the lattice.

We shall see in Sec. III that D(T, 1'}can be written
as a sum of separable factors in the form

D(T,T') = n[Gr(T)C(T')+8'(T)H(T')+ .],
(2.6)

where T stands for transposed matrix. The vari-
ous terms in the right-hand side of Eq. (2.6) cor-
respond to the different electronic transitions of
the impurity atom occurring in its polarizability.
%'e shall retain only two terms, taking a hydro-
genic model for the impurity atom, corresponding
to transitions 1s- 2s and 1s-2p. We can then
write (2.3) in the form

—)1[ (o' —ld2(k)] v(k) = u Q [G*(k)G(k')
k'

+H*(k)H(k')]v(k'),

(2. 'I)
where

G(k) (or J7(k)] = ~ Qe'"' G(T) (or H(T)) .

(2.8)

In (2. 'I), ~(k) is the frequency of the longitudinal-
optical (LO) modes of the lattice without the im-
purity atom. The other modes would not produce
as strong an interaction with the impurity as the
LO mode, and will not occur in this model. Mul-
tiplying Eq. (2.7) by G(k) (and H(k)) and summing
both sides over k, we get the secular equation

~ =-,' g u-, D(T,T') u; . (3 I)

This energy can be evaluated by considering the
polarization induced on the impurity due to a di-
pole (qul ) at T, calculating the energy of a dipole
(qu-, ) at T' in the field produced by the po1arized
impurity, and summing over all lattice sites.
Here q is the effective charge of the dipole in a
lattice cell. The induced polarization on the im-
purity can be calculated from the potential energy
of the impurity electron (with the iinpurity core
located at the origin) due to the dipole in the Tth

cell:

(T)
squ) ' (1' —R) )
e„lr -Rga' (3.2)

where c is the high-frequency dielectric constant,
r is the electronic coordinate, and R& the coordi-
nate of the Tth cell. If we assume that u) oscillates
with frequency co, compute the induced polariza-
tion on the impurity by second-order time-depen-
dent perturbation theory, evaluate the potential
energy of the dipole ( qul. }due to the induced po-
larization, and sum over all cells, we get

III. ANALYSIS OF THE LATTICE-IMPURITY

INTERACTION

An explicit form of the term D(T,T') can be ob-
tained as follows. The change in the energy of the
crystal due to the coupling of the dipoles through
the induced polarization of the impurity can be
written as

o) ~ G(k)C*(k)
2(k} 2

e ~ G(k)H~(k)
ld'(k) —(u'

~ (ls lV(T) In) (nl V(T ) l is) [E„-E„]
(E„-E„)'—(Is)}'

T, &',n

(y ~ H(k)G~(k) - n ~ H(k)H*(k)
p. ~ (o'(k) —u' )1 ~ &d'(k) -(u'

(2 S)

Here 7 is the unit tensor. The roots of this secu-

(3.3)
If we retain only two terms, n = 2s and n = 2p in
(3.3), we get ~ in essentially the form of (3.1),
and D(T,T') is thus determined. The details of the
calculation are given in Appendix A and the results
are

A(T) o o

G (T)= 0 0 0

0 0 0

B(T)cos81

H r(T ) = —c(T ) sin8)

B(T) S1118) Cos pi

C(T) cos8) cos@&

—C(T ) sinq))

B(T)sin81 sing)

C(T) cos8-, sin q);

C(T) cos@)

2(E, -E„)
(E -E, }' (a

(3 4)
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where

4
A(T ) 9(2)s/2

3~1 -3R /2ttp
1

e„ap 2ap

B)T)=„'„.( ") .-" '- ss("')'+ss "') ss("')+s+s ', ') -ss(" )

c(r)=ss„. (
'. )I.-"-- s(,';)'-s(,';)* s(,'„") ),s(,'„")* . (3.5)

Here ap is the effective Bohr radius of the impurity
atom, and A&, 81, and (II)-, are the polar coordi-
nates of the Tth dipole. Equations (3.4) and (3.5)
when used in (2.6), (2.8), and (2.9) give us the ex-
plicit form of the elements of the secular determi-
nant.

IV. FREQUENCIES OF THE LOCAL MODES

The frequencies of the local modes are obtained
from the roots of (2.9) which are outside the range
of values of u)(k). An approximate formula can be
obtained if the dispersion in the LO branch is
ignored. Then, in a cubic crystal for instance,
the off-diagonal terms in the matrices such as

P G(k)f7'(k), g H(k)G'(k)

vanish, and if the shift from the unperturbed LO
frequency &c, is sufficiently small so that in (3.4)
u&c can be written for &s), the roots of (2.9) are

this dispersion aspect in any more detail, in view
of the relatively small dispersions in LO branches
in actual crystals.

V. APPLICATIONS OF THE MODEL

We shall examine here the applicability of this
model to two situations —one in which the wave
function of the impurity atom is strongly localized
and the other in which it is spread over several
lattice cells.

A. Strongly bound states

When the wave function is strongly localized the
sum over T in Eqs. (4.1)-(4.3) reduce essentially
to that over the nearest neighbor of the impurity.
With this approximation and using (3.5) we can
write Eq. (4.1) in the form

3 (Ep —Ess) —(Kcs)c) 6'~aci2(dc

2 2 +(~0) ~ A2(T)0 (4.1)

uP = uP, — ' P [82(T)cos'8-, +c'(T) sin'8-, ],

(4.2)

Similar expressions can be obtained for (4.2) and
(4.3). Equation (5.1) may be written in terms of
the static dielectric constant ep of the material if
we make use of the well known Born result'

&u' = e', — ' g [8'(T ) sin'8) sin'4)
&

2 &()s)O

1

+ C'(T) (cos'8, sin'4);+ cos'4)) )] . (4.3)

ec = e„+42%8 /&uri), , (5 2)

where u~ is the transverse mode frequency, and
is related to co, by

The effect of dispersion of the LO branch can, in
principle, be taken into consideration by perform-
ing the k sum in (2.9) with 2))'(k) being used in it
instead of up If the dispersion is small and can
be approximated by a nearest-neighbor-type inter-
action in a cubic crystal, i.e. ,

&u'(k) = )s)2[1+ti(cosk, a + cosk, a + cosk,a)],

(5.3)

The quantity N in (5.2) is the density of lattice
cells. Equation (5.1), using (5.2) and (5.3), may
now be written as

E„,—F., e 1 1
31/ (E22 —Ess) —(k (dc) ac E Ec

where a is the length of the cubic cell of the lattice
and P && 1, it is not difficult to show that the local-
mode frequencies will shift from their values in
(4.1)-(4.3) by about Pu&c. We shall not dwell on

x — e 3 {5.4)

It follows from (5.4) that in the limit a, -0 the
shift in the frequency vanishes as is expected.
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B. Weakly bound states

If the electron wave function of the impurity is
spread out over a large number of cells of the
host crystal, the sums in (4.1)-(4.3) can be re-
placed by integrations so that

while

a aJ —— ~ in the limit ao»Q
ao a

provided a, & (e'/R&uo) . (5.9)

Q = N fB si '-, 8-, dR; de jdy; .

Using (3.5) and (5.5) we may express (4.1) as

(5.5)
A change in the energy of a weakly bound impurity
is treated by several authors, "while the present
model provides a method to obtain ~ for strongly
bound impurity states.

w =m ——4m' o'(~o) e V
0 729

P. 6 ~ao
(5 6)

0 729 (g E )8 (g )2

(5.7}

The equation (5.7) agrees exactly with the result
of Ref. 1.

Similar expressions for (4.2) and (4.3) can also be
obtained. Using (5.2) and (5.3) we may now write
Eq. (5.6) in the following form:
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APPENDIX A

Here we shall evaluate (3.3) for n =2s and n =2P
and compare the result with (2.6) and (3.1) to give
explicit expressions for G (I) and H (I). The
wave functions to be used in (3.3) are

C. Binding energy of the impurity
1 1
1/2 3/2 (Al)

o.(&u, )J
Qog Mo Qo

where the function

(5.8)

aJ —-0 in the limit Qo-0,
Q()

If we combine shifts in the lattice frequencies,
we obtain the total shift in the zero-point energy
of the lattice. This may be equated to a change in

the binding energy of the impurity atom. The de-
tails of such a calculation are not attempted in
this paper. It is not difficult to see, however,
that the form of the expression for the change in
the binding energy M can be written as

1 1 1
2

r
e -r/2ao

I s) =
( )ir. 2 (2 ).i. (A2)

)
1 1

(w)'" 2(2a )'" a

cos8 for p,
sin8 cosQ for p„
sin8 sing for p,

(A3)

where r, 6}, P are the electron position coordi-
nates for a given system of coordinates.

The potential energy V(T) in (3.1) may be written
as

vI =-—eq ~ u T(r cos8'- Jl;) + us
~ (r sin8' cos Q') + u ~ t (r sin8' sing)

e (r'+R& —2rft q
cos8')'" (A4)

(ls~ V(T) ~2s) = [us&, usi, u~t]

where u ~, u &, u~ r are the three components of
uI in the direction of increasing 8&, 8&, and P&

and 8', 5' are the angles defined so that the pro-
jections of r in the directions u" 1, u &, u & are,
respectively, r cos8', r sin&' casP', rsin8' sing'.
The matrix element (1s~ V(T) ~

2s) may be evalu-
ated using (Al), (A2), and (A4) to give, in matrix
notation,

A(T )0, (A5)

where

("~
( '+ft'--2 ft- o 8)'' ~

')'

0
0
0

(A7)

(A6)

Substituting (A5} into (3.3) and considering n = 2s
only we may write by comparison with (2.6) and
(3.1) the result

A(T) 0

G (I)= 0 0
0 0
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and

2(E„—E~)
(E„—E„)'—{Ice)' ' (A8)

In the matrix element {Is~V(l) ~2p), the potential energy V{l) is expressed in terms of angles 8' and y'
while the state ~2p) is given in angles 8 and p. The two sets of angles are related to each other through

r cos8 cos8 —sin 87

r sin8 sing sln8T sing)t)') cos8) sing) cosp)

r sin8 cosQ = sin8& cosQ& cos81 cosQ& —sing&

r cos8'

r sin8' cos@'

r sin8' sinfdt)'
PH

(A9)

where the elements of the tensor are the cosines of angles between directions of g" ~, M~~, g@] and
Cartesian coordinates defining angles 8 and g. We may now use (Al), (A3), {A4), and (A9) to write in
matrix notation the following results:

B(T)cos8;

(Is~ V(T) ~2P, ) = [u"f, use, u~& ] -C{T)sin8-,

B(T)sin8q cosy;

(Is) V(T) ~2p, ) =[u T, u &, u~T] C(T)cos8& cosg&

—C(T) sing;
I

B(T) sin8& sing&

(Is~ V(T) ~2P, ) = [u ~, u't, u~i ] C(T) cos8-, sin@-,

C(T) costi

where

(A10)

e ' (r'+R'- —2rR-, cos8)'" '
00 +

)
r

T cos (A11)

( )
—&q {1

~

r sin8(cos j) or silly
) 2 2 )(r'+R& —2rR& cos8)"~ (A12)

Substituting (A10) into (3.3) and considering the n = 2p term only, we are able to Write by comparison with
the result (2.6) and (3.1), fT in the following form:

with

B(T)cos8; B(T)sin8; cosQ-, B(T) sin8; sing&-,

(-)C(T) sin8-, C(T) cos8;cosP; C(T) cos8-, sing;

0 (-)C(T) sing; C(T) cosp-,

2(E~ —E~)
(E~ —E,.)' —(I~)'

(A13)

APPENDIX B

Here we shall give relevant steps in the evaluation of A(T), B(T), C(T). Consider

-eq
A(T) =

~r +8, -2'~ cos8
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Integration over P gives 2m. Performing the 8 integration, we then obtain

d)li= —),„, d f (i — )
- ~" 'd,

which on r integration leads to

The expression for B(1) can be written as

1 r cos8(rcos8 -B-, )=fff d id )*'* )d' d' d~d-: e)'"' ""'"""'"""'d'+R; rRq cose

Integrating over the angles gives

2
B(T)= —— e "~"cr'dr + e '"~"c r dr3(2)'"a', Rf

and r integration produces

Finally we write

c(l)=(--eq
,~, r'sin8drd8dg.

1

Integration over the angles gives

and the integration over r yields
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