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A theory of crystal distortions in ternary chalcopyrite semiconductors is developed, taking into account
both covalent and ionic forces. Covalent effects are calculated assuming nearest-neighbor bond-stretching
forces, and next-nearest-neighbor bond-bending forces. The effect of the ionic forces is determined by

evaluating the Ewald sums for an arbitrary charge transfer between the ions. The observed tetragonal
compression and the sublattice displacement in the crystals are found to be primarily due to the
covalent forces, and are opposed by the ionic forces. A phenomenological fit to the crystal distortions
is also given and discussed.

I. INTRODUCTION

The ternary chalcopyrite semiconductors are of
current interest because of their applications in
light-emitting diodes~ and nonlinear optics. Here
we investigate the structural properties of the II-
IV-V& and I-OI-VI3 compounds, and in particular we
formulate a theory of the tetragonal distortions
and sublattice disp1acements in these crystals.
Our calculations are in agreement with the physical
arguments developed by Phillips. 3 '

Ne calculate the distortion energy of the crystal
in terms of the strains and the sublattice displace-
ments, using the valence-force-field (VFF) model
for the lattice dynamics first introduced by Keat-
ing, and used by Martin to develop a theory of the
elastic constants of the sphalerite compounds. %e
include the effect of the Coulomb forces on the
terms linear in the strains in the distortion energy,
but we neglect their effect on the elastic constants,
since this gives a small contribution for the binary
compounds.

II. COVALENT MODEL

In the following discussion we use ZnSiPz as an

example, and we start with an undistorted chal-
copyrite structure, with equal Zn-P and Si-P bond
lengths, perfect tetrahedral coordination about the
cations, and x= 4 for the sublattice displacement
parameter (P coordinate). We use the primitive
unit cell with the Zn ion at the origin of the tetra-
hedral coordinate system, and the lattice constants
ao„=a»=co, a0, =2ao. The other particles in the
unit cell are Zn(0, —,', &), Si(0, 0, —,), Si(0, -„-,),

atomic arrangement of the atoms in ZnSiP~ is
shown in Fig. 1. The distortion energy for arbi-
trary strains, s, where

a =ao (1+s ) (1}

and an arbitrary x parameter, where for P(x, &, —,')
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x= 4a0(l+s„„+l)),
ZINC SILICON PHOSPHORUS

where g is the sublattice displacement parameter,
can be expanded in powers of scalar invariants, 6 FIG. 1. Atomic arrangement in ZnSiP2'.
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and X» =X„-X&,x» =x, -x„arethe separations of
the ions before and after the distortion, respec-
tively. The linear term in the expansion does not
vanish because the crystal is not initially in the
equilibrium configuration. Fo r nearest-neighbor
bond-stretching forces and next-nearest-neighbor
bond-bending forces there are 14 force constants
for the chalcopyrite compounds. For simplicity we
assume that the Zn-P-Zn and P-Zn-P bond-bend-
ing force constants are equal, and similarly for
the Si-P-Si and P-Si- P bond-bending force con-
stants. The ten remaining force constants are di-

l

vided equally between the linear and quadratic
terms in the distortion energy. The linear bond-
stretching (bending) constants for the Zn-P and
Si-P bonds are denoted by A|(A|i), A2(App), re-
spectively, and Bx(axi)i Ba(au) are the correspond-
ing quadratic stretching (bending) constants. The
linear and quadratic bond-bending constants for the
Zn-P-Si bond are denoted by A~~ and Bia, respec-
tively. The notation for the force constants is sum-
marized in Table I.

Substituting Eqs. (1) and (2) in Eqs. (3) and (4)
we obtain for the distortion energy per unit cell

u=(5V/V) [—'(A —A )+Ir(A' —A )+$(28 +a )+~(a| —a )]+n [&(A —A )+~(A -A&)
++8"+~pp(8„—8")]+ }'p[(A' A+„) +(~8' +8")] +e[ (2A'-A") i+(A"-A z1)

+ra" + 8(agm —8")]
+(5v/v)h[$(A"-Aip)+~&~(aiz —8' )]+( v5/v) )(p53A + ,' 58—}+g n( ~A5+&58 )+2p)5A'+ -n(A" —A|p}

+(5v/v) [2(A'-A")+-', (A"'-A„)],

5V/V=s„„+s„+s„,
n, =s„„+s,„—2s„=2—c/a,
~ =5' ~yy y

A =-', (Ai+Ap),

A" = —', (A|1+A22),
a'=-'. (a, +a,),

5A' =-,'(A, -Ap),

5a' =-,'(8, —a,),

TABLE I. Nomenclature for the force constants of the
linear and quadratic terms in the distortion energy for
the valence-force-field model.

Bond

A-C
8-C
A-C-A
C-A-C
8-C-8
C-8-C
A-C-8

Linear

A(
A~

A((
A)(
A22

A22

A))

Quadratic

81
Bp

Bi(

a" = ,'(a„+a„-),5a" = ,'(a„-a„)-.
In deriving Eq. (5} we have put ao = 1 for con-

venience. The magnitude of ao can be determined
from Eq. (1), using the calculated values of s, ,
and the observed values of the lattice constants.
The force constants A' -A» and B"—B„arenon-
vanishing if the linear and quadratic bond-bending
constants for the Zn-P-Si bond are not equal to the
corresponding averages of the Zn-P-Zn and Si-
P -Si constants.

%'e now neglect the terms linear and quadratic in
5V/V in the distortion energy, on the basis that
there is little difference between the volume of a
ternary chalcopyrite crystal and its binary analog.
%'e also neglect the difference B,2 —8" as well as
the effect of the linear force constants on the elas-
tic constants. The quadratic terms which stabil-
ize the distortion may then be evaluated using Mar-
tin's theoryv for the binary compounds, and Le-
vine's calculation of the bond ionicities in the ter-
naries. The distortion energy is now given by

U = a,q+ a,a+ by&+-,'c, q'+ —,'c,Z~, (6)

c, = ,(8'+8 -), c2=-,'8 . From Eq. (6) we see
that, for positive q, the term a,q gives a negative
contribution to the distortion energy when A~ -A2
&0. Since the Si-P bond is more covalent than the
Zn-P bond we expect that Az &A&, similar to the
quadratic bond-stretching constants, for which B2
& B,. Similarly the tetragonal compression lowers
the energy when a~ & 0, which requires that the lin-
ear bond-bending constant for the Zn-P-Si linkage
must be greater than the average of the correspond-
ing constants for the Zn-P-Zn and Si-P-Si linkages.
As pointed out by Phillips, ' this situation can arise
from a deficiency of bonding electrons in the Zn-
P-Zn linkage, and an excess of bonding electrons
in the Si-P-Si linkage, as compared to the Zn-P-Si
linkage.

Minimizing the distortion energy, Eq. (6)„with
respect to q and 4 gives

pj = (Q2b —Q|cp)/(c|C2 —b }

n = (Qgb —sacs)/(c|cp —b )
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It is known experimentally' ~' that to a good ap-
proximation the x parameter can be calculated
assuming perfect tetrahedral coordination about
the 8 cation, giving

x=a[0. 5 —(c'j22a'-~6)"'] .
Substituting Eqs. (1) and (2) in Eq. (8) we find, to
lowest order in the distortion, the relation g = 4.
Noting that 8» 8, and neglecting higher-order
terms in the distortion, we get from Eq. (7)

sglsp (fly + Ifp)l (+gg + II22)

0.18

0.16

a 0&2

0.10
O
CL

0.08
v)o

0.06

A~B~C~
2

CdSiP2

The only other restriction on the linear force con-
stants is that they must vanish individually for a
binary compound. No relationship between these
constants and the ionicities of the bonds and the
bond lengths has been found, and we fit the experi-
mental values of 4 to the following expression in-
volving the electronegativities X and the rationalized
tetrahedral radii R,

(10)

The form of Eq. (10) is suggested by the approxi-
mately linear relationship of the square of the
electronegativity difference of the cations with the
tetragonal distortion (Fig. 2). The form of the
coefficient is chosen to represent the difference in
the size of the A and 8 atoms. A least-squares
fit of Eq. (10) for ten II-IV-Vz compounds gives o.
=0.089, P=5. 385, and y= —l. 323& where 8» R,
are in A, and the Phillips electronegativity scale
is used. " The calculated values of ~ for the II-
IV-Va compounds are given in Table II. The
agreement with experiment is better than 20/~, and

in most cases better than IIPc For the I-III-VI2
compounds there are irregularities which may be
due either to the short-range bonding with the d
electrons, ' or to Coulomb forces, or both. The
effect of the Coulomb forces is estimated in Sec.
III. A least-squares fit of Eq. (10) to fifteen I-III-
VI~ compounds gives e = 0. l05, P = 7.459, and y
= —3.115, and the calculated values are given in
Table III. The agreement with experiment is
better than 20%, although there is on the average
a larger deviation than for the II-IV-V~ compounds.
A fit of Eq. (10) for both the II-IV-V2 and I-III-VI2
compounds with a single set of parameters gives
poor agreement with experiment, with errors as
large as 5&o.

Expressions for the force constants a~ and a~ can
be obtained from Eqs. (7), (9), and (10). The most
promising approach for determining the unknown

force constants however is to calculate the ir and

Raman spectra for the ternary chalcopyrite crys-
tals. Measurements" "for a number of com-
pounds show a more complicated spectrum than for
a typical zinc-blende crystal, and the splitting of
the extra lines can be related to the unknown force

0.04

0.02

0.00
0.00 0.05 0.40 0.15 0.20 0.25 0.50 0.55

(XA —Xe)

FIG. 2. Diagram showing linear relation between

Aygyt and {Xz—XB) for II-IV-V2 compound s . The solid
lines are drawn for reference only.

constants and the crystal distortion. A more com-
plete theory along these lines is required to ex-
plain the accurate measurements of the x param-
eter carried out by Abrahams and Bernstein ~ for
a number of the II-IV-Va and I-III-VI3 compounds.

We make a final comment about the form of the
expression, Eq. (10). The correlation of d with

(X„-Xs) is an experimental fact, and it is tempt-
ing to regard Eq. (10) as part of an expansion of
the form

& —uq(X„—X~) + np(X„—Xa) +. . .
It can be argued that the odd terms in the expan-
sion should vanish because the crystal is invariant
under interchange of all the A and 8 atoms, and

hence has the same 4. The expansion parameter
moreover is smaLL, and there should be no prob-
lems with the convergence of the series. We
would like to point out that such an interpretation
of Eq. (10) may be incorrect. Although the crys-
tal distortion is relatively small, on a microscopic
level there may be considerable charge redistri-
bution as compared to a zinc-blende type of binary
compound, and an expansion of ~ as a power series
in (X„—Xs) may not exist. Furthermore, it is
not clear whether such an expansion should be
carried out starting from the binary analog of the
ternary compound, or some other starting point.
If Eq. (10) is part of a series expansion in (X„
—Xs), then the coefficient of (X„—X~)~ should be
evaluated for X~ =X~ =Xo and should be a symmetric
function in A and B. A symmetric function does not
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TABLE II. Experimental and calculated values of the
tetragonal distortion 6 =2 —g/g for the AII~IYC2v con.
pounds. The calculated values are based on Eq. (10)
with o. = 0. 089, P = 5.385, and & = —1.323. The experi-
mental values are taken from Ref. 13, except in the case
of ZnSiP2 (Ref. 8), CdSiP, (Ref, 9), an.d CdGeAs2 (Ref.
11).

unit ceQ. We follow the treatment of Keffer and
Portis, ~~ who have carried out a similar calcula-
tion for the wurtzite-type compounds. The energy
density of the crystal, U, is expanded in powers
of the strains, s~, about the equilibrium crystal
configuration, which in this case is the ideal zinc-
blende structure,

CdSiP2
CdSiAs2
CdGeP~
CdGeAs2
CdSnP2
CdSnAs&
ZnSiP2
ZnSiAs&

ZnGeP2
ZnGeAs2

0. 164
0. 151
0. 123
0. 113
0. 048
0. 044
0. 067
0. 057
0. 039
0. 034

0. 159
0. 143
0. 128
0.115
0. 049
0. 044
0. 057
0.051
0. 044
0. 039

1 82U
+2 S +$8 fItsgs + ~ ~ s e

8SI888 eggs 0
(12)

As discussed before, we assume that the terms
linear in s~ are due only to the Coulomb forces.
Minimizing the energy density with respect to
s~, we get for the tetragonal strain

fit the experimental data. , however. Hence the cor-
relation between d and (X„—X|r) is not understood.

III. IONIC MODEL

In this section we estimate the amount of tetrag-
onal distortion caused by charge transfer from the
A cation to the B and C ions. In order to obtain
a quantitative estimate, we assume that the terms
linear in the distortion are due only to the Coulomb
forces, and that the restoring forces are determine
by the elastic constants. We neglect the sublattice
displacement, since the piezoelectric strain con-
stants for these compounds have not been mea-
sured and it is not known how strongly the ionic
forces couple the sublattice displacement to the
tetragonal strain. It can be seen qualitatively,
however, by considering the interaction for sec-
ond neighbors, that the Coulomb forces favor a
tetragonal dilatation of the crystal, instead of a
tetragonal compression as caused by the covalent
forces. Furthermore the sublattice displacement
is in the opposite sense to that in the covalent
model. This can been seen from a tetrahedron with
a C ion at the center. If there is a charge trans-
fer from the A ions to the B and C ions, the Cou-
lomb force on the C ion is towards the A ions,
which is opposite the direction for the covalent
force. Hence the tetragonal strain and the sublat-
tice displacement due to the Coulomb forces are
coupled and opposite to the distortions caused by
the covalent forces. The fact that the II-IV-V2
compounds and most of the I-III-VI~ compounds
show a tetragohal compression rather than a dila-
tation is evidence for the weakness of the polar
binding in these crystals.

We assume that the charges on the A, 8, and
C iona are e&, e2, e3, respectively, and we must
have ei+e~+2e3=0 for charge neutrality of the

a=2+ (d~-d~)
B 880 0

where d, &
is an element of the compliance matrix.

In the absence of information about the elastic con-
stants, we assume diaz dzzp de diaz diaz dye de p

and Eq. (13) simplifies to

(14)

where C z are the elastic constants. The evalua-
tion of the derivatives of the energy density and the
resulting Ewald sums for the ideal chalcopyrite
structure is a straightforward but lengthy proce-
dure, and we give the result

(e, —e,)'&= —0437
4( )

AgA152

AgAlSe2
AgAlTe2
AgGaS2
AgGaSe2
AgGaTe&
AgInS2
AgInSe2
AgInTe2
C uAlS2
CuAlSe2
CuAlTe&
C uGaS2
CuGaSe2
CuGaTe2

0. 199
0. 195
0. 122
0.210
0. 183
0. 102
0. 080
0. 077
0. 040
0. 042
0. 041
0. 025
0. 041
0. 034
0. 017

0.238
0. 183
0.120
0. 193
0. 149
0. 097
0. 094
0. 072
0. 047
0. 050
0. 039
0. 025
0. 038
0. 029
0. 017

TABLE III. Experimental and calculated values of the
tetragonal distortion 4 =2 -e/a for the A B C2 com-
pounds. The calculated values are based on Eq. (10) with
n = 0.105, P = 7.459, and p = —3.115. The experimental
values are taken from Ref. 10.
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We refer to the paper of Keffer and Portis~ for
more details. The above result gives a negative
value of the tetragonal strain, which is to be ex-
pected, and it vanishes for a zinc-blende crystal,
since e, =e& in this case. As we discussed earlier,
we estimate the elastic constant by using Martin' s
theory for the binary compounds, and Levine's
calculation of the bond ionicities in the ternaries.
Assuming that (e~ —ea) =e, and using the observed
lattice constant we get for CdSiP3 a dilatation
which is about 20 jf of the observed compression.
For all of the II-IV-V3 compounds, and for most
of the I-III-VIz compounds, we find that the crys-
tal distortion is not predominantly due to polar
forces. For CuInS~, CuInSez, and CuInTe~, all of
which have a negative 4, ~~' it is not known

whether the change of sign of the distortion is due

to the Coulomb forces, or to bonding with the d
electrons.

IV. CONCLUSIONS

%'e have shown, using the valence-force-field
model, that the tetragonal compression and the
sublattice displacement of a ternary chalcopyrite
crystal can be attributed mainly to the covalent
forces. The distortion occurs because of an ex-
cess and deficiency of bond charge in the B-C and
A-C bonds, respectively. This results in a short-
ening of the 8-C bond, compared to the A-C bond,
with a corresponding shift of the C ion (sublattice
displacement). The 8-C tetrahedron is conse-
quently stiffer and shows little distortion, while
the A-C tetrahedron is considerably distorted.

The bond charge distribution also results in the
tetragonal compression because the A-C-8 bond-
bending force constant is not equal to the average
of the corresponding A-C-A and B-C-B force con-
stants, and the bond-bending energy is lowered by
the compression.

The effect of the ionic forces has been calculated
assuming arbitrary charge transfer between the
ions, consistent with over-all charge neutrality.
The calculated distortion is opposite to that ob-
served for most of the compounds, and is propor-
tional to the square of the difference of the charges
on the A and B cations. The ionic effect is of
secondary importance for these compounds, with
the possible exception of CuInS2, CuInSe2, and
CuInTe2, which have a negative 4 =2 —e/a. It is
possible that ionic forces are responsible for this
reversal of sign, since the Cu compounds were found
to have the largest degree of ionicity of the sphalerite
crystals. Before this can be determined, how-
ever, it is necessary to know the effect of the
shortrange bonding of the d-electrons.

The main difficulty with the present theory is
the large number of unknown force constants. This
can be resolved by a calculation of the ir and Ba-
man spectra, and by measurements of the elastic
constants and the piezoelectric strain constants.
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