
PHYSICAL RE VIE%' B VOLUME 10, NUMBER 6 15 SEPTEMBER 1974

Imyroved calcII&ations of the comylex dielectric constant of semiconductors

Roger A. Breckenridge
NASA Langley Research Center, Hampton, Virginia 23665

Robert %. Shaw, Jr.
Booz-Allen Applied Research, Bethesda, Maryland 20014

Arden Sher*
College of Wil)iarn and Mary, Williumsburg, Virginia 23185

(Received 6 May 1974)

Expressions for the real, static part «,(0) and the imaginary part «,(co) of the dielectric constant of
semiconductors in the long-wavelength limit are obtained using the isotropic nearly-freeclectron band

approximation (Penn model). Earlier calculations of these functions do not satisfy the Kramers-Kronig
relations and yield an excessively large result for the f-sum rule. The corrected expressions eliminate

these inconsistencies. Values' of the energy gap between the bonding and antibonding states are obtained

for diamond, silicon, and germanium, respectively. «1(eo) is obtained from «,(co) through the use of the

Kramers-Kronig relation. The theoretical curves for «, (eo) and «,(co) are compared with experimental

results.

I. INTRODUCTION

Although detailed band-structure calculations
have been used to evaluate the dielectric constant
for semiconductors with excellent results, ' the ap-
peal of approximate calculations based on the iso-
tropic nearly-f ree-electron band approximation re-
mains strong due to the simplicity of the analytical
results obtained. Several authors have reported
calculations of the long-wavelength limit of «, (0},
the real part of the dielectric function in the static
limit, ",and «o(&o), the imaginary part. ' However,
it can be shown that the expressions given previ-
ously do not satisfy the Kramers-Kronig relations
and give an excessively large value for the f-sum
rule. These inconsistencies motiva. ted the present
work, an effort we felt was particularly important
due to the dependence of the PhiQips-Van Vechten
theory of ionicity on the Penn expression for «, (0).

Vfe have found that all the inconsistencies in the

earlier results can be eliminated within the frame-
work of the Penn model and that the resulting ex-

pressions for «I(0) and «o(or} differ from those giv-
en previously. The calculations of the dielectric-
function components are presented in Sec. II. In
Sec. DI we verify that the Kramers-Kronig rela-
tion is satisfied for «I(0) and «o(GI) and we calculate
«I(e) from «o(&u) by use of the Kramers-Kronig re-
lation. Then we show that «o(&o) closely satisfies
the f-sum rule. ' In Sec. IV we obtain values for
the energy gap of silicon, germanium, and dia-
mond from experimental values of «I(0), and com-
pare our theoretical calculations to experimental
results for «I(v) and «o(~}. Finally, in Sec. V we
indicate the implications of our calculations rela-
tive to theoretical developments based on the Penn
result.

II. CALCULATION OF «l (0) AND e2(u) USING THE PENN
MODEL

The complex dielectric function for a solid is
given in the reduced zone by Ehrenreich and Co-
hen6 as

4IIe' g l(klie ' '
Ik+q&f }I (fo(Ei.o, I') —fo(Ea))

«(0, g =1 —llm
a 0 'V ~

ITI III' Eg+~ j& EI)rt A~+ + SSQ

where fo(EI, ) is the distribution function for the reduced wave vector k and band 1, and 0 is the volume of the

solid. Ikl} is a Bloch wave function which satisfies H~lk/} =Er, ik/), where H&& is the Hamiltonian for an

electron in the unperturbed periodic lattice.
«(&o, q) can be expressed in the extended zone scheme, 7

4IIe' g 1(kl e "'lk+ j+G}l'(Nf„-,G —NI)
«ro, q =1 —Iim o

e 0 'V~ E ~ G Eg,- 0 —Eg —k(d+ sAQ.

where the distribution functions have been replaced by occupation numbers, corresponding to the condition
of zero tempex'ature, and 0 is a reciprocal-lattice vector. The complex dielectric function is defined here
as

10



2484 R. A. BRECKENRIDGE, R. +. SHAW) JR. , AND A. SHER

&(0),q) = e1(0/, q) —2&2((d, q),
so that e2(0), q) will be a positive quantity.

From (2. 2) and (2. 3),

(2. 3)

4me' ~
&1((d q) =1- ".' ~ l(kle "'lk+(1+G&I2(&2,i G +2) +[1/(Ef j G E2 8(d)],j, y Rg (2 4)

where P indicates the principal value, and

m'e~ ~
22((d, q)= — ~ l(kle lk+q+G)l (f)&,-- —x&)5(E„,-- —Ee' rG (2. 5)

) {E0+E0 ~ [(EO EO )2 E2]1/2j

where E„-=If'f1 /2m and k'=k —2f2r$. f2rf2 is the
Fermi wave vector. The wave functions are

(2. 6)

ak r 1
"' -$2IFI re

(2. 7}

where

E~
E 0 E0 + [(E0 EO )2+ E2]1/2

k k k k'

In the preceding expressions, the —and + super-
scripts refer to k in the first Brillouin and k in the

We are interested in 2, (0, q) and &2((d, q) in the
limit as q goes to zero and obtain closed form ex-
pressions for these quantities from (2. 4) and (2. 5)
by use of the Penn model for a semiconductor. The
model is equivalent to the nearly-free-electron
model, isotropically extended to three dimensions,
as shown in Fig. 1. The energies of the two bands
are given by

second Brillouin zone, respectively.
Since we are interested in e, (0, q) and 22((d, q) as

q goes to zero, we use the Srinivasan condition'
that for a given k, then k& =k&+ q does not have an
independent reciprocal-lattice vector if the angle
between k& and k& is smaller than the smallest
angle between the reciprocal-lattice vectors of in-
terest in a real crystal. Srinivasan argues that in
a real crystal there are only a discrete number of
reciprocal-lattice vectors, so assigning separate
reciprocal-lattice vectors to all k, and k2 is not
physical. In our calculations, this condition should
definitely hold since q is always small and will fi-
nally be allowed to go to zero. There are two val-
ues of G associated with the Penn model: 5 = 0
which corresponds to the normal process and 6
= —2k~k which corresponds to the umklapp pro-
cess. Since we are using the Srinivasan condition,
k and k+ q have the same reciprocal-lattice vector,
—2k~k.

Substituting (2.6) and (2. 7) in the general ex-
pressions, we obtain

8me2 M I (kl e "'Ik+(1)I'
g, (0) =1+lim, Z Nf(1-N„-.;)

q" 0 0 k k+a k

8me' V' l(kle ""Ik'+(l)l'
+ lim 2 ~N2(1 —N2, 0}

4("0 7 k k'+q
(2. 8)

22
e2((d) =lirn &Ãf(1 —N"„„-)l (kl e "lk+(1)

l
5(E'-„;—E„=—8(o)

a~o k

+ +& (( —)(;.')1(21 e""(2'' t() I

' ()(~' —E —~)] (2.9}

where v is restricted to positive frequencies. Nk
=1 for k in the first Brillouin zone and N„-=0 for
k elsewhere.

To perform the integrals for the calculation of
the matrix elements, we assume a real crystal.
Evaluation of the matrix elements yields

(1+0jP'„.;)'"l(kle-" 'lk+q)l'=
[ (p ),][ ""(~. ),]



10 IMPROVED CALCULA TIONS OF THE COMPLEX DIELECTRIC. . . 2485

E(k)

E~ & E«4 Ez (1 + b. )
Equation (2. 14) differs from the result given by

Penn,

E 2

«, (0) =1+ ~~ (1 —n+-,'n ) .

EF

kF kF

I IG. 1. Electron. energy as a function of wave number
for an isotropic three-dimensional nearly-f ree-electron
model.

If the expressions in (2. 10) are examined as q
tends to zero, the lea.ding term goes as

f
&k

f

e-"'
f
k+ q& f

' =
f

&k
f

e-"'
f

k'+ q& f

'
@2+2g

2

4(x'+ nz)' '

where z=cos8, 8 is the angle between k and q, x
=1 —k/kp, 5=Ez/4EF, =t7/qk, zand Ez =ff'ky/2m.

The normal process does not contribute to «, (0) '
or «z(~), ' so (2.8) and (2. 9) become

8me' g z znz 1
«, 0 =1+ z 2 2 2 +kF~ z(1st Bz) 4(+ + n )

(2. 12)

The factor of 3 appearing in the second term of
(2. 14) is of particular importance in calculations
of a homopolar energy gap F, from measured val-
ues of «, (0). The difference arises because of the
two approximations that Penn employs. The first
approximation is that the electron energy is the
free-electron energy for k&(l —n)kz. and for k
& (1 + n)kF; but E -„= (1 —b.)EF for (1 —n)kz & k & kz
and E'„-= (1+6}Ez for kz&k&(1+ 6)kz. Penn indi-
cates that this approximation will introduce an er-
ror in «t(q) that is of order E,/EF which is size-
able. The second approximation is that Penn uses
the matrix-element values at the Brillouin-zone
boundary to perform his calculations. These two
approximations tend to maximize the value of
«t(0).

Equation (2. 15) differs from the Bardasis and
Hone result by a factor of 2, but has the same
functional dependence on E~, E~, E~, and E. In
Sec. III, we present additional evidence to support
the reduction by —, in the strength of the absorption.
Furthermore, the expression for «z(ru) given by
Bardasis and Hone holds for the same region of
frequency (or energy} as ours, but the derivation
given by these authors does not make this con-
straint on the result explicit.

4m e V' z's
«z(~) = z 2 2 2km~ ttt taz) 4(+ +n )

&& 5(Ez, —E„--ku&), (2. 13)

III. KRAMERS-KRONIG RELATION AND THE f-SUM RULE

A. Verification and application of the Kramers-Kronig relation

The Kramers-Kronig relation of interest can be
shown to be

(2. 14)

respectively, where the limit as q- 0 has been
taken. The sum on k over the first Brillouin zone
is converted into an integral, and the integrals
completed by quadrature to give

2E
«, (0}=1+-, ~Ez [(I+nz}t" - n]

2 «z(E')E'dE'
1 v Eiiz Ez

0

and for E=O,

2
" «z(E') dE'

0
+~t

(3. 1)

(3.2)

z EI [E,—n(E' —E',)"']'
«z(E) =

2 ~E (Ez Ez)ua ~ (2. 15)

where E~ =(4k ve'n/m)'~' is plasma energy and E
=k~. Equation (2. 15) holds for E,«E
«4'(1+ nz)t z and «z ——0 for other values of E. The
procedure for setting @=0 directly in the 5 function
in (2. 13) is somewhat facile, but it can be shown
(see Appendix A) that if q is retained to second or-
der in the 5 function, the same expression as in
(2. 15) is obtained which holds for the energy range

2 E
«, (0) =1+ —~[(l+ nz)"z —n], (3.4)

which is in complete agreement with (2. 14). Thus,

Since the 5 function in «z(E') restricts its nonzero
range to E,&E'«4'(1+ n')"', the principal-value
sign can be dropped. From (2. 13) and (3.2),

2 e'n'k, " ' (I-x)'dx dE'
t v 3 I (+2+hz)z Et

x 6(4'(z z+ az)"z —E') .
We obtain the following expression for «,(0):
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the Kramers-Kronig relation is satisfied by our
expressions for c,(0) and ea(&u), a condition which
is not met by expressions for the dielectric con-
stants derived previously using the Penn model.
It can be easily shown, for example, that Penn's
expression for c,(0) and Bardasis and Hone's ex-
pression for ea(E) do not satisfy (3.2).

For E & E, (cu &~ )a, we examine the Kramers-
Kronig relation to obtain &,(E). From (2. 15) and
(3.1), we obtain

eawakr 1 —x) dx
emE ~ (xa+ ga)3/a[xa+ ga (E/4E )3]

(3 5)
where the principal-value sign has been dropped
because the integral exists. We can write e&(E) as

~,(E)=1 -'(E',/E', )f(E), (3.6)
where

~1 1 —x cfx

~, (x'+ ~a)ala[(x/~)a+1 —(E/E, )']

This expression has been evaluated numerically for
selected values of A (see Sec. IV). For Ea&E
&4'(1+ ha)'~a a similar procedure has been fol-
lowed, except the integral has been performed ex-
actly.

energy states does not improve the situation. A

plausible explanation for why the f-sum rule is not
satisfied exactly is that the nearly-free-electron
model yields approximate wave functions and ener-
gies because a perturbation expansion has been
employed to obtain them.

The Bardasis and Hone result for aa(a) is a fac-
tor of 2 larger than ours and for 4=0. 1, gives

2 E ea(E) dE = l. 6 VER,
0

a result which is in significant disagreement with
the f-sum rule. If one does not restrict the range
of energy over which the expression for aa(E) is
valid in conducting the integral, the discrepancy is
even larger The. present calculation brings ca(E)
is closer agreement with the f-sum rule but leaves
open the question of why the total oscillator
strength is too small in the Penn model.

IV. COMPARISON OF THEORETICAL CALCULATIONS
WITH EXPERIMENTAL RESULTS

To obtain E„ the energy gap between the bonding
and the antibonding states, (2. 14) can be approxi-
mated as

B. f-sum rub

The f-sum rule can be written in the form

Ec (E)dE = E'2
(3.8)

ia (»

l6

l4.

l2

- ———Experimental Curve

—-- Theoretical Curve For
E = II, 2 eV IEII Calculated

FromEI (0)}
g

- Theoretical Curve For

r&
—ll. p eV

We can use the expression for za(&o) obtained ear-
lier [Eg. (2. 15)] to sum the oscillator strength and
obtain

lp

E'2

8

E ca(E)dE
2

0

2 1/2
Ea (I, ~a)ua 2~, ~3~ I+(I+& )'

(3.8)
For typical semiconductors, A is usually near 0. 1,
we therefore use this value to obtain

I& 00

E ea(E) dE = 0. 835E~ .
7t kp

Evidently the simple two-band model proposed by
Penn artifically reduces the total oscillator
strength either by reducing the density of states at
the gap or by eliminating the possibility of transi-
tions to other bands. To estimate the importance
of additional bands, we have used a nearly-free-
electron three-band model which is isotropically
extended to three dimensions to determine the ef-
fect of including more energy states on the f-sum
rule. For 6 =0.1, essentially the same result is
obtained which impbes that the inclusion, of more

0
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Ele Vi

", . (b) c
Experimental Curve—-—Theoretical Curve For
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l4.
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IO.
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4.
2

0
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-4.

-lp '

0 2 4 6 8 IO l2 f4 l6 IB 20

E(eV)

FIG. 2. Imaginary and real parts of the dielectric con-
stant in the long-wavelength limit (q-0) for diamond, as
measured optically and as predicted by theory.
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cq(0)-=1+—~ 1—2 Ep Eg
3 E~ „4E~ (4. 1)

Experimental values of e, (0) are 5. 7, 12, and 16
for diamond, silicon, and germanium, respective-
ly. From (4. 1), we calculate that E, is 11.2 eV
for diamond and 3.92 eV for silicon. If we include
Van Vechten's empirical value D to take into ac-
count d-state effects in germanium, then (4. 1) be-
comes

45
( )

35-

25-

20-

l5-

l0-

l Curve

Curve For

V (Eg

rom 6l (0)l
Curve For

ci(0) = 1+ —
z 1—2 DEp Eg

F
(4. 1')

For germanium we use the Van Vechten value of
D = 1.25 to obtain a value of 3.53 eV for E~. We
note that our values for E~ are lower than the val-
ues of 13.6, 4. 8, and 4. 3 eV for diamond, silicon,
and germanium, respectively, obtained from the
Penn expression for c,(0) because of the presence
of the 3 in our expression.

Our value of E, for diamond agrees fairly well
with Harrison's value of 10.8 eV for the covalent
bonding energy of diamond, although he has taken
a bond-orbital-model approach to the calculation
of the static dielectric constant. Harrison's co-
valent bonding energy values are 3.0 and 2. 7 eV
for silicon and germanium, respectively, substan-
tially smaller than the values we obtain. However,
Harrison indicates that for group-IV semiconduc-
tors with a sufficiently small gap a Penn-type mod-
el probably yields better results, but that his mod-
el is better for large gaps. '0

Since &ll =z, in the limit of small q, the energy
gaps obtained from (4. 1) and (4. 1') can be used to
generate theoretical curves for zz(E) by the use of
(2. 15), where E is the optical energy. For germa-
nium, we must multiply E~~ by Van Vechten's D to
take into account the effects of d core states on
«,(E). Figures (2a), (Sa), and (4a) serve to com-
pare theoretical curves with experimental results.
To illustrate the dependence of the theoretical re-
sult on the value of E~, these figures include an
additional curve for an arbitrarily selected E,. The
experimental results for silicon and germanium
are those of Philipp and Ehrenreich, '~ while the
experimental results fox diamond are those of
Philipp and Taft. ~3 The theoretical curves for E~
calculated from z&(0) agree fairly well with the ex-
perimental results but do not exhibit the structure
of the experimental curves, because all interac-
tions have been ignored with the exception of the
interactions of the electron with the electromag-
netic field and the electron gas through the self-
consistent-field approximation. 6 Heine and Jones'4
have proposed that the higher-energy peak of c2(E)
is associated with E, which seems to be consistent
with our results.

The theoretical curves for c&(E) are obtained

0
0 I 2 3 4 5 6 7 8 9 l0

E(eV)

40
Si

32

28

24

20

I6

l2

8.
4.
0.

-4.
-8
-l2 .
-16;

0 I 2 3

Experimental Curve

Theoretical. Curve For

Eg
—3.92 eV (Eg

Calculated trom c
l

(0))

4 5 6 7 8 9 l0

E(eV)

FIG. 3. Imaginary and real parts of the dielectric con-
stant in the long-wavelength limit (q —0) for silicon, as
measured optically and as predicted by theory.

from the Kramers-Kronig relation involving aq(E).
The theoretical values of E, for diamond, siliron,
and germanium are substituted into (S.5). For
E&E„ the integral is evaluated numerically; for
E,& E&4E~(l+ d,a)'~', the integral is performed ex-
actly. In Figs. (2b), (Sb), and (4b), the theoreti-
cal curves are shown so that a comparison can be
drawn between them and the experimental curves.
In all cases, the theoretical values are far too low
except at low energies, but the theoretical curves
do exhibit some qualitative agreement with the ex-
perimental curves.

V. CONCLUDING REMARKS

We have obtained corrected expressions for the
real and imaginary parts of the dielectric constant
of semiconductors in the long-wavelength (q- 0)
limit through the use of the Penn model. Since
Phillips's theory of ionicity' is based on Penn's ex-
pression for c,(0) rather than the correct result
given by (2. 14), the values of E„, C, and E~ in his
theory are subject to some error. E„and C are
the average homopolar energy gap and the average
heteropolar energy gap, respectively. ' (For ex-
ample, Phillips's values for E„, C, and E~ for gal-



2488 R. A. BRECKENRIDGE, B. %. SHAW, JR. , AND A. SHER 10

32 (a)
2& .

24.

62 l6.

12.

Ge

Experimental Curve
- —- Theoretical Curve For

Eg
— 3.53 eV (Eg

Calculated From &( (0))

---------Theoretical Curve For

Eg —3.40 eY

the ionicity as defined by Phillips is not sensitive
to the constant which multiplies (E2/E, )
&([1 —(E2/4')] in the expression for z, (0). In
fact, if the term E2/4' is neglected, the ionicity
can be shown to be independent of this constant.
An investigation of the impact of the correction in
z, (0) on the Phillips-Van Vechten theory is under-
way and will be reported elsewhere.
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APPENDIX A

In this appendix we derive the expression (2. 15)
presented above for z2(((3) when terms to second
order in q in the 5 function, 5(E'-„.„-—E=,—%d) are
retained. We begin with equation (2. 13) for z2(E),

FIG. 4. Imaginary and real parts of the dielectric con-
stant in the long-wavelength limit {q-0) for germanium,
as measured optically and as predicted by theory {with
the Van Vechten correction for core d-state effects in-
cluded).

4m~e~ ~ z ~h~
z2(E) hm

x 5(z", ,—z= —z), (Al)

lium arsenide are 4. 32, 2. 90, and 5. 20 eV, re-
spectively. '6 The correct values of Phillips's pa-
rameters are 3.55, 2. 39, and 4. 28 eV. )

However, we have calculated the ionicities that
would result from our expression for 34 crystals,
and we find that they differ only slightly from
Phillips's values although the gaps E„and C are
significantly different. The reason for this is that

I

(4(«2+ g2)1/2 2«[1 + («2+ /(2) 3/2]qz

+ qzs2(X'+ /3.') "+3}''I, - (A2)

where 3i= q/I2z and «=1 —&/4.
We convert the sum on k in the first Brillouin

zone to an integral, and obtain

where E=@o. To second order in q, the energy
difference is

ezbzk ~' ~' (1-x)2zodzdx
z2(E) —= lim

x 5(zz [4(x'+ a2)"2 —2«[1+ (x'+ a2)-'/2]3}z+ ((i'z2(«2+ a2) "'+3i'] —Z),

(((/(*)) =(( ~ . &(*-*.),df (A4)

where

where the lower limit on the x integration has been

set equal to 0. Although this is an approximation,
since q is small but not equal to zero, it can be
shown to introduce only terms of higher order in q
than we will retain.

The 5 function can be written

f(x) = E,(4(«2+ ~2)"2 —2x[1+(x'+ ~2)-»2]~z

+ 3i z'(x + n ) ' '+3i /- E
and f(xo) =0.

We first e3iamine f(x) and investigate the case
where E =E2. At x = 0, f(0}& 0 since the limit as
q- 0 has not been taken. For «3(0, 4'(«2+ n2)»2

—E~ is positive and always dominates for suffi-
ciently small 3} (or q). Therefore, f(x}&0for E
= E~ and the 5 function cannot be satisfied. This
means that the point E= E~ contributes nothing to



IMPROVED CALCULATIONS OF THE COMPLEX DIELECTRIC. . . 2489

zR(E)
Next we set f(x) equal to zero to determine xR:

4(x +n ) -2x[1+(x +n ) ' ]qz

+ rPz'(x'+ n')- 1'/+rP E—/E„=O .
(A5)

If terms involving q and rP are neglected, the solu-
tion is

x, = [(E/4E,}'—AR]'/2 .
Now let xo = x1+ 0., where o is.small relative to x1,
and xR is the solution to (A5). We make use of bi-
nomial expansions and find that to second order in

Qp

x, = x, +A(E}qz+ E( E}q' zR+E, (E)q"-,

It can be shown that the ex..:ression for xo is valid
for all E&ER+ 0(q") where 0& n &2 and the region
of invalidity vanishes in the limit as q-0 except
for the point E~.

Finally, we have

5(E (4(xR+AR)1/2 —2x[1+(x +/RR) 1/ ]gZ+-q'Z'(XR+/R') 1/ +rP-} E)—
(x2+ AR)2/2

E,(4x(x'+ rp) —2qz[n'+ (x'+ n')"'] —rpz'x)

where xR is given bI/ (AS). From (AS) and (AV), we have

&2~2' /. 1 / 1 (1 —x)Rz 5(x- x2) dzdx
zR(E) = 111n

2 E (xR + AR)1/2(4x(xR + n2) 2r}z[nR + (x2 + nR)3/2] qRzzx)

(A7}

(AS)

(A9)

The expression we obtain is
ER [E 4 (ER ER)1/2]2

z2(E) 2 ET (E2 E2)1/2 y

for ER &E~ 4'(I + nR)'/2 and eR(E) =0 for other
values of E. Hence, a careful evaluation of the

limit yields our earlier result except directly at
the energy gap, where the limit is not defined.

It can be shown that the Kramers-Kronig rela-
tion for q1(0) and zR(E} is satisfied through the use
of (AS). In addition, the agreement with the sum
rule is the same as that obtained in (S.9}.
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